Journal of Siberian Federal University. Mathematics & Physics 2014, 7(4), 472–488 УДК 514.822 Solving Yang-Mills Equations for 4-metrics of Petrov Types II, N, III Leonid N. Krivonosovв€— Nizhny Novgorod State Technical University Minina, 24, Nizhny Novgorod, 603950 Russia Vyacheslav A. Lukyanov†Nizhny Novgorod State Technical University, Zavolzhsky branch, Pavlovskogo, 1a, Zavolzhye, Nizhegorodskaya region, 606520, Russia Received 10.06.2014, received in revised form 02.07.2014, accepted 30.08.2014 We have produced 4 series of 4-metrics satisfying Yang-Mills equations for each of types II, N, III. Keywords: Einstein equations, Yang-Mills equations, manifold with conformal connection with torsion and without torsion. Introduction j According to A. Z. Petrov’s algebraic classiп¬Ѓcation, Weyl tensor Cimn of conformal curvature of the square-law diп¬Ђerential form of 4 variables is subdivided into three types I, II, III and three j subtypes D, O, N (see [1, 2]). In case of Einstein metrics its curvature tensor Rimn is subdivided into the same 6 kinds, while Weyl tensor and Riemann tensor are always of the same kind. Therefore in all cases it is possible to be limited to metric classiп¬Ѓcation by the type of its Weyl tensor. It is clear, that this classiп¬Ѓcation conformally invariant. The subtype O means, that Weyl tensor vanishes, i.e. the metric is conformally flat. All conformally flat metrics automatically satisfy Yang-Mills equations. The equations for conformally flat metrics are much easier than Yang-Mills equations. Therefore this kind of metrics does not represent any interest from the point of view of searching solutions of Yang-Mills equations (though the most discussed in cosmology Robertson-Walker metric which is the solution of Friedmann equations belongs to type O). Solutions of Yang-Mills equations for kinds I, D and O already took place in our works. All central-symmetric metrics belong to kind D or O. The full solution of Yang-Mills equations for central-symmetric metric has been found in [3]. In [4] solutions of Yang-Mills equations for the metric П€ = в€’dt2 + a2 (t) dx2 + b2 (t)dy 2 + c2 (t)dz 2 were searched. If a = b = c this metric is referred to the types I or O, if b = c — to the types D or O. In particular, when a = tО±1 , b = tО±2 , c = tО±3 the metric satisп¬Ѓes Yang-Mills equations, if 2 2 2 (О±1 ) + (О±2 ) + (О±3 ) в€’ 1 = 1 2 (О±1 + О±2 + О±3 в€’ 1) . 2 в€— oxyzt2@ya.ru †oxyzt@ya.ru c Siberian Federal University. All rights reserved – 472 – Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... When О±1 = О±2 = О±3 we obtain a metric of type I, when О±2 = О±3 = 0, we get metric of subtype D, when О±1 = 1, О±2 = О±3 = 0 — metric of subtype O. Therefore the purpose of present paper is searching the solutions of Yang-Mills equations for the remained three types II, N, III. In the modern literature such solutions have already been met. In particular, the solutions of Yang-Mills equations are found in [5] for homogeneous (i.e. allowing 3-parametrical invariancy group) Feп¬Ђerman metric. The solution is g = dx2 + dy 2 + 2 3 y du в€’ dx 3 1 11 ydr + y 3 du + dx . 9 9 Authors of that work do not notice that the metric is of the type N, since their paper has another purpose. In this article we adhere to same tactics: Yang-Mills equations are made and solved only for the metrics allowing not less, than 2-parametrical invariancy group. Only in this case there is a hope to receive "solvable" Yang-Mills equations. It has appeared, that for metrics of type N the Yang-Mills equation most often are solvable, and with the big arbitrariness. For metrics of type III classes of metrics with solvable Yang-Mills equations are also rather easily found. The greatest diп¬ѓculties for authors have caused searches of metrics of type II with solvable Yang-Mills equations since more often for such metrics the Yang-Mills equation do not allow to solve themselves though the solution may exist with arbitrariness in several functions. But if in addition to impose a stationary curvatures equality condition (A. Z. Petrov’s terminology [1, Section 17]) the metric of a type II turns into the metrics of type N, or of type III, and the equations are often can be solved. Further for brevity we will apply the term "Yang-Mills metric" to the metrics, satisfying Yang-Mills equations. 1. Solving Yang-Mills equations for metrics of type N 1. We will begin with a metric of the type II П€ = 2dt (g (y) dx + h (t) dy + f (t, y, z) dt) + dy 2 + dz 2 , (1) to illustrate, how the structure of Yang-Mills equations improves when type II turns into type N. Put П‰1 = П‰2 = 1 в€’f 2 1 +f 2 dt в€’ gdx в€’ hdy, П‰ 3 = dy, dt + gdx + hdy, П‰ 4 = dz. In this case П€ = О·ij П‰ i П‰ j , where О·ij — Minkowski components of conformal connection matrix пЈ« 0 П‰1 П‰2 пЈ¬ П‰1 0 П‰12 пЈ¬ пЈ¬ 2 0 пЈ¬ П‰ П‰12 Ω=пЈ¬ 3 3 пЈ¬ П‰ П‰1 П‰23 пЈ¬ 4 пЈ П‰ П‰14 П‰24 0 П‰ 1 в€’П‰ 2 tensor with signature (в€’ + ++) . We compute П‰3 П‰13 в€’П‰23 0 П‰34 в€’П‰ 3 – 473 – П‰4 П‰14 в€’П‰24 в€’П‰34 0 в€’П‰ 4 0 П‰1 в€’П‰2 в€’П‰3 в€’П‰4 0 пЈ¶ пЈ· пЈ· пЈ· пЈ· пЈ· пЈ· пЈ· пЈё (2) Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... ∂f = ft , according to the standard scheme [3, p. 351–352]. We will denote partial derivatives ∂t ∂f = fy etc. At п¬Ѓrst we п¬Ѓnd external diп¬Ђerentials ∂y dП‰ 1 = в€’dП‰ 2 = fz П‰ 1 + П‰ 2 ∧ П‰ 4 + fy в€’ u 1 в€’f 2 + fy + u в€’ ht П‰ 2 ∧ П‰ 3 , 1 +f 2 в€’ ht П‰ 1 ∧ П‰ 3 + dП‰ 3 = dП‰ 4 = 0, def u = gy . g (3) Then we calculate Pfaп¬ѓan forms of Christoп¬Ђel for the metrics (1) 1 3 uП‰ , 2 1 П‰13 = (в€’fy + uf + ht ) П‰ 1 + П‰ 2 + uП‰ 1 , П‰34 = 0, 2 1 П‰23 = (в€’fy + uf + ht ) П‰ 1 + П‰ 2 в€’ uП‰ 2 , П‰14 = П‰24 = в€’fz П‰ 1 + П‰ 2 . 2 Further we п¬Ѓnd external forms of Riemann curvature 1 R34 = 0, R12 = в€’ u2 П‰ 1 ∧ П‰ 2 , 4 1 1 1 uy + u2 П‰ 1 ∧ П‰ 3 , R13 = fyz в€’ ufz П‰ 1 + П‰ 2 ∧ П‰ 4 + (fy в€’ uf )y П‰ 1 + П‰ 2 ∧ П‰ 3 в€’ 2 2 4 1 1 1 R23 = fyz в€’ ufz П‰ 1 + П‰ 2 ∧ П‰ 4 + (fy в€’ uf )y П‰ 1 + П‰ 2 ∧ П‰ 3 + uy + u2 П‰ 2 ∧ П‰ 3 , 2 2 4 1 R14 = R24 = fzz П‰ 1 + П‰ 2 ∧ П‰ 4 + fyz в€’ ufz П‰ 1 + П‰ 2 ∧ П‰ 3 . 2 П‰12 = k We compute components of Ricci tensor Rij = Rijk and its trace R = О· ij Rij 1 R12 = ∆f в€’ (uf )y , R11 = R12 в€’ uy + u2 , R44 = 0, 2 (4) 3 1 1 R = 2uy + u2 . uy + u2 , R33 = uy + u2 , R22 = R12 + 2 2 2 1 1 Here ∆ is Laplacian on variables y and z. Hence, using formula bij = Rij в€’ RО·ij , we п¬Ѓnd 2 12 (nonzero) components of Pfaп¬ѓan forms П‰i = bij П‰ j 1 ∆f в€’ (uf )y , 2 b12 = b22 = b12 + K, b44 1 1 = в€’ uy в€’ u2 , 6 8 b11 = b12 в€’ K, 1 1 uy + u2 , 3 8 1 1 K= uy + u2 . 12 8 b33 = As a result П‰1 = b12 П‰ 1 + П‰ 2 в€’ KП‰ 1 , П‰2 = b12 П‰ 1 + П‰ 2 + KП‰ 2 , П‰3 = b33 П‰ 3 , П‰4 = b44 П‰ 4 , and the matrix of conformal connection is a matrix of conformal curvature пЈ« 0 О¦1 пЈ¬ 0 0 пЈ¬ пЈ¬ пЈ¬ 0 О¦21 О¦=пЈ¬ пЈ¬ 0 О¦31 пЈ¬ пЈ 0 О¦41 0 0 completely deп¬Ѓned. Now we compute components of О¦2 О¦21 0 О¦32 О¦42 0 О¦3 О¦31 в€’О¦32 0 О¦43 0 – 474 – О¦4 О¦41 в€’О¦42 в€’О¦43 0 0 0 О¦1 в€’О¦2 в€’О¦3 в€’О¦4 0 пЈ¶ пЈ· пЈ· пЈ· пЈ· пЈ· пЈ· пЈ· пЈё (5) Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... in correspondence with formulas О¦ji = Rij + П‰ j ∧ П‰i + О· jk П‰k ∧ О·is П‰ s and О¦i = dП‰i + П‰k ∧ П‰ik О¦21 О¦31 О¦41 О¦32 О¦42 = R12 + П‰ 2 ∧ П‰1 в€’ П‰2 ∧ П‰ 1 = 2SП‰ 1 ∧ П‰ 2 , О¦43 = в€’2SП‰ 3 ∧ П‰ 4 , = T П‰ 1 + П‰ 2 ∧ П‰ 3 в€’ SП‰ 1 ∧ П‰ 3 + P П‰ 1 + П‰ 2 ∧ П‰ 4 , = P П‰ 1 + П‰ 2 ∧ П‰ 3 в€’ T П‰ 1 + П‰ 2 ∧ П‰ 4 в€’ SП‰ 1 ∧ П‰ 4 , = T П‰ 1 + П‰ 2 ∧ П‰ 3 + SП‰ 2 ∧ П‰ 3 + P П‰ 1 + П‰ 2 ∧ П‰ 4 , = P П‰ 1 + П‰ 2 ∧ П‰ 3 в€’ T П‰ 1 + П‰ 2 ∧ П‰ 4 + SП‰ 2 ∧ П‰ 4 , 1 1 1 def 1 def uy , T = (fyy в€’ fzz ) в€’ (uf )y , P = fyz в€’ ufz . It means, that 12 2 2 2 j components of Weyl tensor Cimn = О¦jimn are equal to О¦2112 = 2S, О¦3113 = T в€’ S, О¦3123 = T etc. def where we denote S = О¦1 О¦2 = X П‰ 1 + П‰ 2 ∧ П‰ 3 + ZП‰ 1 ∧ П‰ 3 + Y П‰ 1 + П‰ 2 ∧ П‰ 4 , 1 = X П‰ +П‰ 2 3 2 3 1 ∧ П‰ в€’ ZП‰ ∧ П‰ + Y П‰ + П‰ 2 О¦3 = 0, 4 ∧ П‰ , О¦4 = (b44 )y П‰ 3 ∧ П‰ 4 , 1 1 def def where for brevity we denote X = в€’ (b12 )y + b12 u + uy (fy в€’ uf ) , Y = в€’ (b12 )z в€’ 2 4 1 1 def 1 fz uy + u2 , Z = uyy + uy u. Petrov matrix Q (О») [1, formula (18.14)], made with the 4 12 8 help of the components of Weyl tensor, looks like пЈ¶ пЈ« в€’2S + О» 0 0 пЈё. Q (О») = пЈ 0 в€’T + S + iP + О» в€’P в€’ iT 0 в€’P в€’ iT T + S в€’ iP + О» It is a matrix of type II with 1-fold eigenvalue О»1 = 2S and double eigenvalue О»2 = в€’S. But if S = 0 it is of type N. To compose Yang-Mills equations we will write components of a dual matrix в€—О¦ (в€— is Hodge star operator) [3, p. 352, item 6] в€—О¦21 в€—О¦31 в€—О¦41 в€—О¦32 = 2SП‰ 3 ∧ П‰ 4 , в€— О¦43 = 2SП‰ 1 ∧ П‰ 2 , в€— О¦4 = в€’ (b44 )y П‰ 1 ∧ П‰ 2 , = P П‰ 1 + П‰ 2 ∧ П‰ 3 в€’ T П‰ 1 + П‰ 2 ∧ П‰ 4 + SП‰ 2 ∧ П‰ 4 , = в€’T П‰ 1 + П‰ 2 ∧ П‰ 3 в€’ SП‰ 2 ∧ П‰ 3 в€’ P П‰ 1 + П‰ 2 ∧ П‰ 4 , = в€’T П‰ 1 + П‰ 2 ∧ П‰ 4 в€’ SП‰ 1 ∧ П‰ 4 + P П‰ 1 + П‰ 2 ∧ П‰ 3 , в€—О¦42 = в€’P П‰ 1 + П‰ 2 ∧ П‰ 4 в€’ T П‰ 1 + П‰ 2 ∧ П‰ 3 + SП‰ 1 ∧ П‰ 3 , в€—О¦2 = в€’X П‰ 1 + П‰ 2 ∧ П‰ 4 + ZП‰ 1 ∧ П‰ 4 + Y П‰ 1 + П‰ 2 ∧ П‰ 3 , в€— О¦3 = 0. в€—О¦1 = в€’X П‰ 1 + П‰ 2 ∧ П‰ 4 в€’ ZП‰ 2 ∧ П‰ 4 + Y П‰ 1 + П‰ 2 ∧ П‰ 3 , Yang-Mills equations d в€— О¦ + Ω ∧ в€—О¦ в€’ в€—О¦ ∧ Ω = 0 for external forms в€—О¦3 and в€—О¦4 are d в€— О¦3 + П‰k ∧ в€—О¦k3 в€’ в€—О¦k ∧ П‰3k = 0, d в€— О¦4 + П‰k ∧ в€—О¦k4 в€’ в€—О¦k ∧ П‰4k = 0. (6) In components they give two equations 2S (b44 в€’ K) + Zu = 0, 2S (K в€’ b33 ) в€’ (b44 )y u в€’ (b44 )yy = 0. These equations are expressed only through the function u = 1 2 (uy ) + u2 uy 2 5 5 3 2 uyyy + uyy u + (uy ) + u2 uy 2 4 2 uyy u в€’ – 475 – gy : g = 0, = 0. (7) Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... 3 1 If to denote L and Q the left parts of these equations, the formula Q = Lu + L shows that u 2 the second of these equations is a diп¬Ђerential consequence of the п¬Ѓrst. Yang-Mills equation for the external form в€—О¦1 produces 1 Xy + Z (fy в€’ uf в€’ ht ) + Yz + 2b12 S + (b33 в€’ b44 ) T в€’ uX = 0, 2 1 Xy + Zy + Z fy + в€’ f u в€’ ht + Yz + 2b12 S+ 2 1 +2SK в€’ (b33 + b44 ) S + (b33 в€’ b44 ) T в€’ uX = 0. 2 Their diп¬Ђerence on account of (7) vanishes, therefore it is possible to leave only the п¬Ѓrst equation. In detail it looks like 11 u2 ∆∆f uy ∆f + 2uy fyy + + u∆fy + в€’ (uyy в€’ uy u) fy + в€’2 3 2 6 2 uyy 5 (uy ) 5uyy u uy u uyyy f в€’ ht = 0. в€’ в€’ + + 2 6 6 12 8 (8) The Yang-Mills equation for the external form в€—О¦2 does not result new equations. Thus, the whole system of Yang-Mills equations is reduced to (7) and (8). The equation (8) serves to п¬Ѓnd function f . Though it is linear it’s diп¬ѓcult to specify its solution without additional restrictions. However if the type of the metric (1) turns from II into N, i.e. at S = 0, that is equivalent to uy = 0, u = О±, g = ОІeО±y , where О±, ОІ = const, then equation (7) is satisп¬Ѓed identically, and equation (8) becomes good enough ∆∆f в€’ 2α∆fy + О±2 ∆f = 0. (9) In particular, at О± = 0 it turn into the well known equation ∆∆f = 0. It is easy to specify its solutions in the polynomial form. ∂4f ∂2f Another special case, if f does not depend on y. Then equation (9) leads to +О±2 2 = 0. 4 ∂z ∂z Its general solution is f = О» cos О±z + Вµ sin О±z + Оґz + Оµ, where О», Вµ, Оґ, Оµ are arbitrary functions of t. ∂4f ∂3f ∂2f In the case, when f does not depend on z, equation (9) is reduced to в€’2О± 3 +О±2 2 = 4 ∂y ∂y ∂y 0, i.e. f = (О»y + Вµ) eО±y + Оґy + Оµ, where О», Вµ, Оґ, Оµ are arbitrary functions of t. Solutions of equations (7) and (8), not leading to type N, will be examined in the following section. Notice, that metric (1) will be Einstein metric, i.e. Rij = ОєО·ij , iп¬Ђ g = const = 0, ∆f = 0. It follows from (4). Further we will omit detailed computations and will write only matrixes of conformal connection Ω and curvature О¦ and п¬Ѓnal equations. 2. Let’s investigate metric 2 П€ = 2dt (dx + B (t, y) dt) + (A (t, y) dy) + dz 2 . (10) We denote with dot diп¬Ђerentiation with respect to t, and the stroke ′ denotes a derivative with – 476 – Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... respect to y. The matrix of conformal connection (2) is 1 в€’ B dt в€’ dx, 2 П‰1 = П‰12 = П‰14 = П‰24 = П‰34 = 0, П‰1 = П‰2 = П‰2 = 1 + B dt + dx, 2 П‰ 3 = Ady, П‰ 4 = dz, . def where K = B′ A 1 A П‰13 = П‰23 = в€’ 1 K П‰1 + П‰2 , 2 A B′ 1 П‰ + П‰2 + П‰3 , A A П‰3 = П‰4 = 0, .. ′ + A . The matrix of conformal curvature (5) has components A О¦31 = О¦32 = 1 K П‰1 + П‰2 ∧ П‰3 , 2 О¦21 = О¦43 = 0, О¦41 = 1 О¦42 = в€’ K П‰ 1 + П‰ 2 ∧ П‰ 4 , 2 Petrov matrix looks like пЈ« О» пЈ¬ пЈ¬ Q (О») = пЈ¬ 0 пЈ 0 О¦1 = О¦2 = в€’ 0 1 в€’ K +О» 2 i в€’ K 2 0 i в€’ K 2 1 K +О» 2 О¦3 = О¦4 = 0, K′ 1 П‰ + П‰2 ∧ П‰3 . 2A пЈ¶ пЈ· пЈ· пЈ·. пЈё It is a matrix of type N. Yang-Mills equation (6) for forms в€—О¦3 and в€—О¦4 are satisп¬Ѓed identically, and equations for forms в€—О¦1 and в€—О¦2 result in the same equation 1 A 1 A .. ′ B′ A + A A K′ A ′ = 0, or in the unwrapped shape ′ ′ = 0. We have derived one equation on two functions A and B of two variables. An arbitrariness of solutions is great: one of functions A or B can be unrestricted. It is easy to specify many particular solutions in an explicit form. For example, if A does not depend on y, then B = О±y 3 + ОІy 2 + Оіy + Оґ, where О±, ОІ, Оі, Оґ are arbitrary functions of t. 3. For metric 2 2 П€ = 2dt (dx в€’ Оµzdy) + (a (t) dy + b (t) dz) + (c (t) dz) , where Оµ = const, the matrix of conformal connection (2) has components 1 1 dt в€’ dx + Оµzdy, П‰ 2 = dt + dx в€’ Оµzdy, П‰ 3 = ady + bdz, П‰ 4 = cdz, 2 2 . 1 a Оµ 1 Оµ = 0, П‰13 = П‰23 = П‰ 3 + П‰1 + П‰2 , Pв€’ П‰ 4 , П‰34 = P+ a 2 ac 2 ac . Оµ 1 c P+ П‰ 3 + П‰ 4 , П‰1 = П‰2 = K П‰ 1 + П‰ 2 , П‰3 = П‰4 = 0, = П‰24 = 2 ac c П‰1 = П‰12 П‰14 . . .. .. b ab a c 1 2 1 Оµ def 1 where P = в€’ , K = . + + P в€’ c ac 2 a c 2 2 a2 c2 Components of conformal curvature matrix (5) are def О¦21 = О¦43 = О¦1 = О¦2 = О¦3 = О¦4 = 0, О¦31 = О¦32 = S П‰ 1 + П‰ 2 ∧ П‰ 3 + T П‰ 1 + П‰ 2 ∧ П‰ 4 , О¦41 = О¦42 = T П‰ 1 + П‰ 2 ∧ П‰ 3 в€’ S П‰ 1 + П‰ 2 ∧ П‰ 4 , – 477 – (11) Leonid N. Krivonosov, Vyacheslav A. Lukyanov .. Solving Yang-Mills Equations for 4-metrics of Petrov... .. . .. . 1 a c Оµ Оµa Оµc a def 1 . , T = P + P + 2 в€’ 2. в€’ в€’ P2 в€’ P 2 a c ac 2 a 2a c ac Yang-Mills equations for the metric (11) are satisп¬Ѓed identically. The metric has a type N. It is Einsteinian, if K = 0. Many known metrics for which Einstein equations were solved, are of type N and are reduced to metrics (1), (10) or (11). We will bring several examples. 4. Peres metric def where S = П€ = в€’dt2 + dx2 + dy 2 + dz 2 + f (t в€’ x, y, z) (dt в€’ dx) after the substitution of variables t в€’ x = в€’u, t + x = 2v, F (u, y, z) = 2 1 f (t в€’ x, y, z) turns into 2 П€ = 2du (dv + F (u, y, z) du) + dy 2 + dz 2 , which is a special case of metric (1) with g (y) = 1 and h (u) = 0. Therefore for Peres metric Yang-Mills equation consist of one equation (9) ∆∆F = 0, where ∆ is Laplacian with respect to variables y and z. 5. Takeno metric П€ = в€’ (P + S) dt2 + 2Sdtdx + (P в€’ S) dx2 + Ady 2 + 2Bdydz + Cdz 2 , where A, B, C, P, S are functions of t в€’ x, after the substitution of variables u = t в€’ x, v = t + x turns into П€ = в€’P (u) dudv в€’ S (u) du2 + A (u) dy 2 + 2B (u) dydz + C (u) dz 2 . Now, instead of v, we introduce a new variable w = в€’ new parameter П„ = 1 2 v+ S (u) du , then we introduce a P (u) P (u) du. As a result, П€ = 2dП„ dw + A (u (П„ )) dy 2 + 2B (u (П„ )) dydz + C (u (П„ )) dz 2 , i.e. special case of the metric (11). Yang-Mills equations and Petrov type of the metric are invariant with respect to performed operations, that’s why the Takeno metric is of type N and identically satisп¬Ѓes Yang-Mills equations. 6. Rosen metric П€ = в€’ exp (2Вµ) dt2 в€’ dx2 + u2 exp (2ОЅ) dy 2 + exp (в€’2ОЅ) dz 2 , where Вµ and ОЅ are functions of u = t в€’ x, is a special case of the metric П€1 = D (u) dt2 в€’ dx2 + A (u) dy 2 + 2B (u) dydz + C (u) dz 2 , and the latter is conformally equivalent to the metric (11) at Оµ = 0. Therefore, Yang-Mills equations for the Rosen metric are satisп¬Ѓed identically. 7. Bondi-Piranha-Robinson metric П€ = dt2 в€’ dx2 + О±dy 2 + 2ОІdydz + Оіdz 2 , where О±, ОІ and Оі are functions of t + x, is obviously isomorphic to the metric (11) at Оµ = 0. Therefore, Yang-Mills equations for this metric are satisп¬Ѓed identically. – 478 – Leonid N. Krivonosov, Vyacheslav A. Lukyanov 2. Solving Yang-Mills Equations for 4-metrics of Petrov... Solving Yang-Mills equations for metrics of type II 1. Let’s construct and solve Yang-Mills equations for the metric П€ = 2dt (dx + A (t, z) dt) + eО±t C (z) dy 2 + dz 2 , О± = const. (12) As we shall see, this metric can be of all types, except type I, and for types II, III, N YangMills equations admit explicit nontrivial solutions. Derivative with respect to z is denoted by a stroke ′ . Then we compute the components of the conformal connection matrix (2) П‰1 = П‰12 = 1 1 в€’ A dt в€’ dx, П‰ 2 = + A dt + dx, П‰ 3 = CeО±t dy, П‰ 4 = dz, 2 2 C′ 0, П‰34 = в€’ П‰ 3 , П‰13 = П‰23 = О±П‰ 3 , П‰14 = П‰24 = в€’A′ П‰ 1 + П‰ 2 . C The components of the Ricci tensor and its trace are R14 C′ ′ A + О±2 , R11 = R22 = R12 = A′′ + C C′ C ′′ C ′′ = R24 = О± , R33 = R44 = , R=2 C C C (13) The remaining 4 Pfaп¬ѓan forms of the conformal connection matrix Ω are П‰1 П‰2 П‰4 C ′′ 3 C ′′ 1 1 C ′ 4 П‰ + О± П‰ , П‰3 = П‰ , 6C 2 C 3C C ′′ 2 1 C ′ 4 = b12 П‰ 1 + П‰ 2 в€’ П‰ + О± П‰ , 6C 2 C ′ ′′ C′ 1 C C 4 A′′ + A′ = О± П‰ , b12 = + О±2 . П‰1 + П‰2 + 2C 3C 2 C = b12 П‰ 1 + П‰ 2 + Now we write down the components of the conformal curvature matrix (5), where for brevity C′ def P = A′′ в€’ A′ в€’ О±2 C C′ C ′′ 1 П‰ ∧ П‰2 + О± П‰1 + П‰2 ∧ П‰4 , 3C 2C C ′′ C′ 3 в€’ P П‰1 ∧ П‰3 в€’ P П‰2 ∧ П‰3 в€’ О± П‰ ∧ П‰4 , 6C 2C C′ 3 C ′′ + P П‰2 ∧ П‰3 в€’ О± П‰ ∧ П‰4 , в€’P П‰ 1 ∧ П‰ 3 в€’ 6C 2C C ′′ C′ 1 P П‰2 ∧ П‰4 + + P П‰1 ∧ П‰4 + О± П‰ ∧ П‰2 , 6C 2C C′ 1 C ′′ П‰2 ∧ П‰4 + P П‰1 ∧ П‰4 + О± П‰ ∧ П‰2 , Pв€’ 6C 2C C ′′ 3 C′ П‰ ∧ П‰4 в€’ О± П‰1 + П‰2 ∧ П‰3 , 3C 2C ′ A′ C ′′ C ′′ П‰ 1 ∧ П‰ 4 + в€’b′12 + П‰1 + П‰2 ∧ П‰4 , в€’ 6C 2C О¦21 = в€’ О¦31 = О¦32 = О¦41 = О¦42 = О¦43 = О¦1 = – 479 – Leonid N. Krivonosov, Vyacheslav A. Lukyanov C ′′ 6C О¦2 = О¦3 = в€’ О¦4 = в€’ ′ A′ C ′′ 2C П‰ 2 ∧ П‰ 4 + в€’b′12 + C ′′ 3C ′ П‰3 ∧ П‰4 + ′ C′ C О± 2 П‰1 + П‰2 ∧ П‰4 , П‰1 + П‰2 ∧ П‰3 , ′ C′ C О± 2 Solving Yang-Mills Equations for 4-metrics of Petrov... П‰1 + П‰2 ∧ П‰4 . Petrov matrix Q(О») is пЈ« пЈ¬ пЈ¬ пЈ¬ пЈ¬ пЈ¬ пЈ C ′′ +О» 3C iО±C ′ 2C О±C ′ в€’ 2C iО±C ′ 2C в€’ C ′′ в€’ +P +О» 6C О±C ′ 2C пЈ¶ iP ′′ iP в€’ C в€’P +О» 6C пЈ· пЈ· пЈ· пЈ·. пЈ· пЈё 2 2 P C ′′ 1 О±C ′ P C ′′ 1 О±C ′ = 0; type D if C ′′ = 0, = 0; + + C 2 C C 2 C type III if C ′′ = 0, О±C ′ = 0; type N if C ′′ = 0, О±C ′ = 0, P = 0; type O when C ′′ = 0, О±C ′ = 0, P = 0. Yang-Mills equation for the external form в€—О¦3 gives It has type II when C ′′ = 0, ′′ C ′′ C в€’ C ′′ C 1 2 2 (14) = 0. Yang-Mills equation for the external form в€—О¦4 results О± C ′′ C ′ C ′′ C ′ C′ 1 в€’ C 2 в€’ 2 3 2 C ′′ C C ′′ C ′ C2 = 0, (15) = 0. (16) The remaining two equations for forms в€—О¦1 and в€—О¦2 with the help of the equalities (14)–(16) lead to 2 2C ′′ 1 C ′ ′′′ 1 C′ A′′ + в€’ в€’ A(4) в€’ A + 2 C 2 C 3C (17) 3 2 2C ′′ C′ 1 C′ C ′′ C ′ C ′′′ ′ 2 = 0. A +О± в€’ в€’ + + в€’ 6C C2 2 C C 3C Thus, the system of Yang-Mills equations is reduced to (14)–(17). To solve it, we п¬Ѓrst note that the equation (14) is a diп¬Ђerential consequence of (15). Equation (15) allows reduction of order. It is equivalent to C ′ = ОІC 2 + Оі 2 3 (18) , where ОІ and Оі are constants. Put О± = 0. Then, eliminating the third derivative from (15) and (16), we obtain C ′′ C C ′′ 4 в€’ C 3 C′ C – 480 – 2 = 0. (19) Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... In equation (19) we initially set to zero the second factor. The resulting equation can be easily integrated 1 C= О», Вµ = const. (20) 3, (О»z + Вµ) This corresponds to (18) at Оі = 0. Substituting (20) to (17), we obtain the diп¬Ђerential equation of Euler type 25О»3 О± 2 О»2 1 3О» 7О»2 ′′ ′ в€’ A(4) + A′′′ в€’ A в€’ A + 2 3 2 = 0. 2 О»z + Вµ 2 (О»z + Вµ) 2 (О»z + Вµ) (О»z + Вµ) Its general solution A = Оµ1 + Оµ2 ln z + Вµ Вµ + Оµ3 + Оµ4 ln z + О» О» z+ Вµ О» 6 + О±2 Вµ z+ 32 О» 2 (21) , Вµ where Оµ1 , Оµ2 , Оµ3 , Оµ4 are arbitrary functions of t. By making the change of variable z + в†’ z, we О» obtain the п¬Ѓnal solution A = Оµ1 + Оµ2 ln |z| + (Оµ3 + Оµ4 ln |z|) z 6 + О±2 2 z , 32 C= 1 (22) 3, (О»z) depending on four arbitrary functions of the variable t. Since C ′′ = 0 and P C ′′ 1 + О± C 2 C′ C 2 = 0, this solution gives the metric of type II. Although the solution (22) is obtained for О± = 0, it is also a solution in the case О± = 0, but it is not a general solution, because equation (18) besides the solution (20) at Оі = 0, has other non-elementary solutions at Оі = 0. But in the latter case we cannot п¬Ѓnd explicit solutions of the equation (17). Solution (22) in the case of О± = 0 gives the metric of type II. Now we consider the second possibility of the equality (19), C ′′ = 0, which is equivalent to C = О»z + Вµ, where О», Вµ = const. Substituting this in (17), we again obtain the equation of Euler type 1 О» О»2 О»3 О± 2 О»2 в€’ A(4) в€’ A′′ в€’ A′ + A′′′ + 2 3 2 = 0. 2 О»z + Вµ 2 (О»z + Вµ) 2 (О»z + Вµ) (О»z + Вµ) In its general solution, we replace z + Вµ О» with z and get A = Оµ1 + Оµ2 ln |z| + Оµ3 + Оµ4 ln |z| + О±2 2 ln |z| z 2 , 4 C = О»z. (23) At О± = 0 this solution gives the metric of type III, and at О± = 0 the metric of type N, diп¬Ђerent from the metric of type N in section 1. If C = const equation (17) has a general solution A = Оµ1 (t) + Оµ2 (t) z + Оµ3 (t) z 2 + Оµ4 (t) z 3 . This solution gives the metric of type N, but it is conformally equivalent to the special case of the metric (10). From (13), it follows that (12) is Einstein metric in cases 1) О± = 2) О± = 1 0, C = const, A = в€’ О±2 z 2 + Оµ1 (t) z + Оµ2 (t) ; 2 Вµ + Оµ2 (t) . 0, C = О»z + Вµ, A = Оµ1 (t) ln z + О» In both cases, the metric has a type N. – 481 – Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... 2. Let’s return to the metric (1) and Yang-Mills equations (7) and (8). We will show that under the additional condition: f (t, y, z) doesn’t depend on z, equation (8) already has explicit solutions. In this case it turns into 1 u2 7uy в€’ fyyyy + ufyyy + fyy + в€’ 2 3 2 2 uyyy 5 (uy ) 5uyy u + f в€’ ht в€’ в€’ 2 6 6 11 (uyy в€’ uy u) fy + 6 uyy uy u = 0. + 12 8 (24) в€љ Equation (7) allows reduction of order uy = в€’ 23 u2 + О» u, where О» = const. If О» = 0 we obtain the solution in terms of elementary functions 3 , 2y + Вµ u= (25) Вµ = const. From (3) we obtain 3 g = Оі (2y + Вµ) 2 , (26) Оі, Вµ = const. Substituting (25) to (24), we obtain the equation of Euler type fyyyy в€’ 37 154 324 ht 6 fyyy + 2 fyy в€’ 3 fy + 4f = 3. 2y + Вµ (2y + Вµ) (2y + Вµ) (2y + Вµ) 2 (2y + Вµ) Its general solution f= 3 2y + Вµ 3 ht + (Оµ1 + Оµ2 ln |2y + Вµ|) (2y + Вµ) + (Оµ3 + Оµ4 ln |2y + Вµ|) (2y + Вµ) 2 , 32 (27) Оµi are arbitrary functions of t. Formulas (26) and (27) give an explicit solution (but not general) of Yang-Mills equations for the metric (1), h (t) is an arbitrary function. This solution gives the metric of type II. 3. For the following metric П€ = 2dt (dx + A (x, z) dt) + C(z)eв€’О±t dy 2 + dz 2 , О± = const Yang-Mills equations are very complicated, but all the same they are solved. Components of the conformal connection matrix Ω are 1 + A dt + dx, П‰ 3 = Ceв€’О±t dy, П‰ 4 = dz, 2 1 в€’ A dt в€’ dx, П‰ 2 = 2 П‰1 = П‰12 = в€’Ax П‰ 1 + П‰ 2 , П‰34 = в€’ Cz 3 3 П‰ , П‰1 = П‰23 = в€’О±П‰ 3 , П‰14 = П‰24 = в€’Az П‰ 1 + П‰ 2 . C The components of the Ricci tensor and its trace are Cz Az , R11 = R12 + Axx , R22 = R12 в€’ Axx , C Cz Czz = R24 = в€’Axz в€’ О± , R = в€’2Axx + 2 . C C R12 = Azz + О±2 в€’ О±Ax + R33 = R44 = Czz , R14 C The coeп¬ѓcients of Pfaп¬ѓan forms П‰i : b12 = 1 2 Azz + О±2 в€’ О±Ax + Cz 1 Az , b14 = b24 = в€’ C 2 – 482 – Axz + О± Cz C . (28) Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... 1 Czz 1 Czz Czz 1 Axx + + b12 , b22 = в€’ Axx в€’ + b12 , b33 = b44 = + Axx , 3 6C 3 6C 3C 6 Pfaп¬ѓan forms П‰i : b11 = Cz 1 О±Cz 1 Czz 1 П‰1 + Azz + О±2 в€’ О±Ax + Az Axz + П‰4 , П‰1 + П‰2 в€’ Axx + 3 6C 2 C 2 C Cz 1 О±Cz 1 1 Czz П‰2 + Azz + О±2 в€’ О±Ax + Az Axz + П‰4 , = в€’ П‰1 + П‰2 в€’ Axx + 3 6C 2 C 2 C 1 О±Cz Czz 1 1 Czz = Axz + П‰1 + П‰2 + + Axx П‰ 3 , П‰4 = в€’ + Axx П‰ 4 . 3C 6 2 C 3C 6 = П‰1 П‰2 П‰3 Then we compute the components of the conformal curvature matrix О¦. For brevity we Czz Cz Cz def def def denote S = Axx в€’ , T = Axz в€’ О± , L = Azz в€’ О±2 + О±Ax в€’ Az . C C C 1 1 О¦21 = SП‰ 1 ∧ П‰ 2 + T П‰ 1 + П‰ 2 ∧ П‰ 4 , 3 2 1 1 1 1 2 3 О¦1 = в€’ L П‰ + П‰ ∧ П‰ 3 в€’ SП‰ 1 ∧ П‰ 3 в€’ T П‰ 3 ∧ П‰ 4 , 2 6 2 1 1 1 1 4 1 2 4 1 О¦1 = T П‰ ∧ П‰ в€’ SП‰ ∧ П‰ + L П‰ + П‰ 2 ∧ П‰ 4 , 2 6 2 1 2 1 1 1 2 4 4 L П‰ + П‰ ∧ П‰ + SП‰ ∧ П‰ 4 + T П‰ 1 ∧ П‰ 2 , О¦2 = 2 6 2 1 1 3 4 1 2 3 4 О¦3 = в€’ SП‰ ∧ П‰ в€’ T П‰ + П‰ ∧ П‰ , 3 2 1 1 1 3 3 4 О¦2 = в€’ T П‰ ∧ П‰ + SП‰ 2 ∧ П‰ 3 в€’ L П‰ 1 + П‰ 2 ∧ П‰ 3 , 2 6 2 1 в€’ (b12 )x П‰ 1 ∧ П‰ 2 + P в€’ Axxz 4 1 в€’ (b12 )x П‰ 1 ∧ П‰ 2 + P + Axxz О¦2 = 4 1 О¦3 = K П‰ 1 + П‰ 2 ∧ П‰ 3 в€’ Axxx П‰ 1 ∧ П‰ 3 в€’ (b33 )z П‰ 3 ∧ П‰ 4 , 6 1 1 1 2 Axxz П‰ ∧ П‰ + M П‰ 1 + П‰ 2 ∧ П‰ 4 в€’ Axxx П‰ 1 ∧ П‰ 4 . О¦4 = 2 6 In the last four formulas we denoted О¦1 = 1 1 Axxx A в€’ 3 2 1 1 Axxx A + 3 2 1 П‰ 1 + П‰ 2 ∧ П‰ 4 + Sz П‰ 1 ∧ П‰ 4 , 6 1 П‰ 1 + П‰ 2 ∧ П‰ 4 в€’ Sz П‰ 1 ∧ П‰ 3 , 6 1 Czz 1 в€’ (b12 )z + Axxz A + Ax b14 , Az Axx + 2 C 2 2 1 C 1 C О± Czz 1 def z z + в€’ в€’ Axx + Axxx , K = в€’ Axxx A + Axz 2 6 2 C 2 C C 12 2 1 О±C О±C 1 1 def zz M = Axzz + в€’ 2z в€’ Axxx A + Axxx . 2 C C 3 12 def P = Petrov matrix Q(О») is 1 пЈ¬ в€’3S + О» пЈ¬ i пЈ¬ пЈ¬ T пЈ¬ 2 пЈ 1 в€’ T 2 пЈ« i T 2 1 1 S+ L+О» 6 2 i L 2 – 483 – 1 в€’ T 2 i L 2 1 1 Sв€’ L+О» 6 2 пЈ¶ пЈ· пЈ· пЈ· пЈ·. пЈ· пЈё Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... It has type II when S = 0, type III when S = 0, T = 0, subtype N when S = T = 0, L = 0, subtype O when S = T = L = 0. Proceeding from the speciп¬Ѓcs of the conformal curvature matrix, it’s best to start compiling Yang-Mills equations for the diп¬Ђerence between в€—О¦1 and в€—О¦2 , i.e. with the equation d (в€—О¦1 в€’ в€—О¦2 ) + П‰k ∧ в€—О¦k1 в€’ в€—О¦k2 в€’ в€—О¦k ∧ П‰1k в€’ П‰2k = 0. We obtain three equations Axxxx = 0, (29) Axxxz = 0, 2 Axxx Axxzz Axxz Cz (Axx ) Czzzz Czzz Cz 1 Czz (Ax +О±)в€’ в€’ в€’ в€’ + + 3 3 3C 6 6C 6C 2 3 C 2 в€’ Czz Cz2 = 0. (30) 6C 3 Equalities (29) mean that (31) Axxx = ОІ = const. Taking into account these equations, Yang-Mills equations for the external form в€—О¦1 provide two new conditions 1 Cz Cz 5 в€’ Azzzz + Axxzz A в€’ О±ОІA + Axxz A + Az в€’ Axzz Ax + О±Axzz в€’ Azzz + 2 C 3 C 2 C 2Cz О± 5 2 C C z z zz +Axx Azz + Az + Ax в€’ О± в€’ A2xz в€’ Axz Ax + О±Axz в€’ О±Ax + 3 3C 3 6 C C 3C 2 2 3 Czz Cz Cz Cz 2Czz Czzz C 2Czz + Az = 0, +Azz в€’ в€’ в€’ z3 + О±2 в€’ 2C 2 3C C2 6C 2C C2 3C (32) 1 Czz 2 1 О± Axx Axz + Axz в€’ ОІAz + Axzzz в€’ Axxz в€’ 3 2 6C 3 2 2 (33) Cz Cz Czzz 5Czz Cz Cz + О±Axx +О± в€’О± = 0. в€’Axz 2 + Axzz 2C 2C 3C 2C 6C 2 Taking into account (31), Yang-Mills equations for the external form в€—О¦3 yield one new equality 1 ОІ Cz О±ОІ 1 Axxzz в€’ Ax + Axxz в€’ + 6 3 2C 2 3 1 6 Czz C 1 Cz 1 ОІ C2 Cz в€’ Axxzz в€’ Axxz в€’ A2xx + Ax + zz2 в€’ 2 6C 6 3 6C 3C Czz C Czz C zz в€’ 2 1 + A2xx = 0, 6 (34) О±ОІ = 0. 6 (35) and for the external form в€—О¦4 one new equation + z Equation (31) is equivalent to A= 1 3 ОІx + f (z) x2 + g (z) x + h (z) . 6 (36) Six equations (30), (32), (33), (34), (35) and (36) connect with diп¬Ђerential relations п¬Ѓve functions A, f, g, h and C. But equations (33), (34) and (35) are linearly dependent: 2L1 + L2 = L3 , where L1 , L2 , L3 are left sides of the equations (33), (34) and (35). Therefore, equation (35) may be discarded. The rest of the equations impose to functions f, g, h and C seven diп¬Ђerential relations, only four of which are independent (we denote with stroke ′ the derivative with respect to z): f ′′ в€’ C ′ ′ О±ОІ 1 f + в€’ C 2 2 C ′′ C ′′ – 484 – + 1 2 C ′′ C ′ C′ = 0, C (37) Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... 1 C ′ ′ 2 2 ОІg О±ОІ 1 f + f в€’ в€’ в€’ 3C 3 3 6 6 f ′′ + C ′′ C 2 2 2ОІh′ C ′ ′′ 2f g ′ 2О±f C ′ 1 C′ C ′′ g ′′′ в€’ в€’ О±f ′ + g + + +g ′ в€’ 2 3 2C 3 3C 6C 2 C 1 C ′ ′′′ в€’ h(4) в€’ h + h′′ 2 C +h′ 2C ′′ 1 4f в€’ + 3 3C 2 4f C ′ C ′′′ C ′′ C ′ 1 C′ 10f ′ + в€’ + в€’ 2 3 3C 6C C 2 C в€’ в€’ g ′2 в€’ g ′ g О±g ′ C ′ C′ + +g C C О±C ′′ 2О±f в€’ 3 3C + (38) О±C ′′′ 5О±C ′′ C ′ = 0, (39) в€’ 2C 6C 2 + + h 2f ′′ + 2f ′ 5О±2 f + О±2 3 C′ = 0, C 2 C′ C 3 в€’ ′ C ′′ C 1 3 + C′ в€’ О±ОІ C в€’ 2C ′′ + 3C в€’ g ′′ (g в€’ О±) (40) 2 C′ C = 0. Without additional constraints, the system of equations (37)–(40) can not be solved explicitly. The п¬Ѓrst of these constraints is C = eОіz , (41) Оі = const = 0. In this case system (37)–(40) is solved in terms of elementary functions, but the results are diп¬Ђerent if ОІ = 0 and ОІ = 0. At ОІ = 0 we obtain solution f = Оµ1 + О±ОІ z, 2Оі g= 2f 2 Оі4 в€’ , ОІ 2ОІ h= 4 3 О±Оі 3 f в€’ z + Оµ2 . 3ОІ 2 2ОІ Directly through x and z formula (36) can be written as A= ОІ 6 x+ О± z Оі 3 + Оµ1 x + О± z Оі 2 + 2 ОІ 2 (Оµ1 ) в€’ Оі4 4 x+ О± z Оі 3 + 4 (Оµ1 ) + Оµ2 , ОІ2 (42) Оµ1 , Оµ2 , ОІ, Оі are arbitrary constants, but ОІ = 0 and Оі = 0. Formulas (42) and (41) together with (28) give Yang-Mills metric of type II. From (41) and ОІ = 0 it follows, that (by virtue of equations (37) and (38)) there are only two possibilities for the function f (z): 1 f = В± Оі2. (43) 2 If the sign is + the following solution to the equations (39) and (40) is obtained g = Оµ1 + Оµ2 z + Оµ3 eв€’Оіz , Оµ2 Оµ 3 + 2 zeв€’Оіz + z Оі 2 (Оµ3 ) zeв€’2Оіz + 3Оі 2 2 О±Оµ2 Оµ 1 Оµ2 О±2 (Оµ2 ) (Оµ2 ) . z в€’ + + + 2Оі 2 Оі2 Оі2 2Оі 2Оі 3 h = Оµ4 + Оµ5 eв€’Оіz + Оµ6 eОіz + Оµ7 eв€’2Оіz + (44) Here Оµ1 , ..., Оµ7 , Оі are arbitrary constants, but Оі = 0. Formulas (44), (43) (with + in the right side), (41), (36) and (28) give Yang-Mills metric of type III. Now consider the case with a minus in the right side of (43). Then the solution of (39) and – 485 – Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... (40) is g = Оµ1 + Оµ2 eО»1 Оіz + Оµ3 eО»2 Оіz в€’ О±Оіz, 1 h = eв€’ 2 Оіz 5 Оіz + Оµ7 sin 12 Оµ6 cos 5 Оіz 12 + (45) 2 2 (Оµ3 ) (Оµ2 ) e2О»1 Оіz + 2 e2О»2 Оіz + Оµ4 + Оµ5 eв€’Оіz + + 2 2Оі (О»1 в€’ 3) 2Оі (О»2 в€’ 3) Оµ2 Оµ3 1 О±Оµ1 + 2 (О±zОі в€’ О±О»1 в€’ Оµ1 ) eО»1 Оіz + 2 (О±zОі в€’ О±О»2 в€’ Оµ1 ) eО»2 Оіz + в€’ О±2 z z. Оі Оі Оі 2 19 19 1 1 , О»2 = в€’ в€’ . Formulas Here Оµ1 , ..., Оµ7 , Оі are arbitrary constants, but Оі = 0; О»1 = в€’ + 2 12 2 12 (44), (43) (with minus in the right side), (41), (36) and (28) give Yang-Mills metric of type II. Consider now instead of (41) other constraints: C ′′ = 0, S = 0. Then we obtain the following solution C = Оµ1 z + Оµ2 , h = Оµ9 ln z + +Оµ8 + 1 8 Оµ2 Оµ1 в€’ z+ Оµ2 Оµ1 f = 0, (Оµ3 ) 36 g = Оµ3 z + ОІ = 0, 2 z+ 2 Оµ2 Оµ1 6 + Оµ3 16 z+ Оµ2 Оµ1 4 Оµ2 Оµ1 2 + Оµ4 ln z + Оµ2 Оµ1 + Оµ5 , 2О± + Оµ4 в€’ 2Оµ5 в€’ 2Оµ4 ln z + 2 2 4Оµ6 в€’ 2Оµ7 + О±2 в€’ (Оµ4 ) + 4Оµ7 в€’ 2О±2 + 2 (Оµ4 ) ln z + Оµ2 Оµ1 Оµ2 Оµ1 + . Here Оµ1 , ..., Оµ9 are arbitrary constants, but Оµ1 = 0. We have received Yang-Mills metric of type III. Thus, the metric (28) has provided us with two series of Yang-Mills metric of types II and III. Another remarkable feature of the metric (28) is that at suitable function A(x, z) and C(z) it gives Einstein metric of type II, which is a rare phenomenon. We do not give the full solution, but only one particular case: 1 A = в€’ Оі 2 x2 + x (Оµ1 в€’ О±Оіz) + Оµ4 + Оµ5 eв€’Оіz + z 2 1 О±Оµ1 в€’ О±2 z , Оі 2 C = eОіz . This gives Einstein metric of type II, which is a particular case of solution (45) at Оµ2 = Оµ3 = Оµ6 = Оµ7 = 0. 3. Metric of type III, satisfying Yang-Mills equations Let’s investigate the metric 2 П€ = 2dt (dx + B (t, z) dy + A (t, z) dt) + (C (t) dy) + dz 2 , (46) which, as we shall see, may be of types III, N or O. The components of conformal connection matrix Ω are 1 в€’ A dt в€’ dx в€’ Bdy, П‰ 2 = 2 1 + A dt + dx + Bdy, П‰ 3 = Cdy, П‰ 4 = dz, 2 П‰1 = П‰13 C B′ 4 2 B′ 3 B 1 П‰ + П‰2 + П‰3 + П‰ , П‰1 = 0, П‰14 = П‰24 = в€’A′ П‰ 1 + П‰ 2 в€’ П‰ , = = C C 2C 2C B′ B ′′ 1 B ′′ 3 = в€’ П‰ , П‰3 = П‰ 1 + П‰ 2 , П‰1 = П‰ 2 = K П‰ 1 + П‰ 2 + П‰ + П‰ 2 , П‰4 = 0, 2C 4C 4C . П‰34 . П‰23 – 486 – Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... where dot denotes the derivative with respect to t, stroke ′ denotes derivative with respect to z, .. 2 C 1 B′ def 1 A′′ + в€’ . K = 2 C 2 C The components of the conformal curvature matrix О¦ are: О¦21 О¦31 О¦41 1 where S = 2 def B ′′ 1 B ′′ 1 П‰ + П‰2 ∧ П‰3 , О¦43 = П‰ + П‰2 ∧ П‰4 , 4C 4C B ′′ 1 П‰ ∧ П‰2 + S П‰1 + П‰2 ∧ П‰3 в€’ T П‰1 + П‰2 ∧ П‰4 , = О¦32 = 4C B ′′ 3 = О¦42 = П‰ ∧ П‰4 в€’ S П‰1 + П‰2 ∧ П‰4 в€’ T П‰1 + П‰2 ∧ П‰3 , 4C = .. 1 , T = 2 C в€’ A′′ C О¦1 def = 1 О¦2 = 4 + О¦3 = в€’ . ′ . B B′C + 2 C C . B ′′ C B ′′ B ′ в€’ K′ 8C 2 , . 2B ′′ C + C2 П‰1 + П‰2 ∧ П‰3 + П‰1 + П‰2 ∧ П‰4 в€’ B ′′′ 1 П‰ + П‰2 ∧ П‰4 , 4C B ′′′ 3 П‰ ∧ П‰4 , 4C О¦4 = 0. Petrov matrix Q(О») is пЈ« пЈ¬ пЈ¬ пЈ¬ пЈ¬ пЈ¬ пЈ О» B ′′ в€’ 4C iB ′′ в€’ 4C B ′′ 4C в€’S в€’ iT + О» iB ′′ 4C T в€’ iS T в€’ iS S + iT + О» в€’ в€’ пЈ¶ пЈ· пЈ· пЈ· пЈ·. пЈ· пЈё .. C This is a matrix of type III if B = 0; of type N if B = 0 and of type O if B = 0, A = , C B ′ C = Оµ (z) , where Оµ (z) is arbitrary function of z. Yang-Mills equations for the external form в€—О¦4 are satisп¬Ѓed identically, for the form в€—О¦3 ∂4B = 0. External forms в€—О¦1 and в€—О¦2 also yield only one they are reduced to a single equation ∂z 4 ′′ 2 ′′′ ′ 4 3B B 3 B ∂ A + = . The system of these two equations has a solution equation 4 ∂z 2 C 2C 2 ′′ B ′′ ′′ ′′ = ОІ0 z 3 + ОІ1 z 2 + ОІ2 z + ОІ3 , A = 1 C2 2 9 (ОІ0 ) 6 9ОІ0 ОІ1 5 z + z + 40 20 (ОІ1 ) 3ОІ0 ОІ2 + 8 4 2 z 4 + О±0 z 3 + О±1 z 2 + О±2 z + О±3 , where ОІ0 , ОІ1 , ОІ2 , ОІ3 , О±0 , О±1 , О±2 , О±3 , C are arbitrary functions of t. .. 1 B′ C Mertic (46) is Einstein metric when B ′′ = 0, A′′ + в€’ C 2 C 2 = 0. References [1] A.Z.Petrov, New methods in General Relativity, 1966, Mosscow, Nauka (in Russian). – 487 – Leonid N. Krivonosov, Vyacheslav A. Lukyanov Solving Yang-Mills Equations for 4-metrics of Petrov... [2] Yu.S.Vladimirov, Geometrophysics, BINOM, Moscow, 2010 (in Russian). [3] L.N.Krivonosov, V.A.Luk’yanov, The full solution of Yang-Mills equations for the centralsymmetric metrics, Journal of Siberian Federal University. Mathematics & Physics, 4(2011), no. 3, 350–362 (in Russian). [4] L.N.Krivonosov, V.A.Luk’yanov, Purely time-dependent solutions to the Yang–Mills equations on a 4-dimensional manifold with conformal torsion-free connection, Journal of Siberian Federal University. Mathematics & Physics, 6(2013), no. 1, 40–52. [5] M.Korzyjnski, J.Levandowski, The Normal Conformal Cartan Connection and the Bach Tensor, arXiv:gr-qc/0301096v3, 2003. Решение уравнений РЇРЅРіР°-Миллса для 4-метрик типов II, N, III Петрова Леонид Рќ. РљСЂРёРІРѕРЅРѕСЃРѕРІ Вячеслав Рђ. Лукьянов Приводятся РїРѕ 4 серии 4-метрик для каждого РёР· РІРёРґРѕРІ II, N, III, удовлетворяющих уравнениям РЇРЅРіР°-Миллса. Ключевые слова: уравнения Рйнштейна, уравнения РЇРЅРіР°-Миллса, многообразие конформной связности СЃ кручением Рё без кручения. – 488 –
© Copyright 2024 Paperzz