KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 1 IMAGE ENHANCEMENT - POINT PROCESSING KOM3212 Image Processing in Industrial Systems Some of the contents are adopted from R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd edition, Prentice Hall, 2008 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Today’s Lecture • Image enhancement Spatial domain Image Enhancement methods Point-based methods − − − − − − − − Negative Log transformation Power-law Contrast stretching Gray-level slicing Bit plane slicing Histogram equalization Averaging 2 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Some basic Gray Level Transformations • Image enhancement Spatial domain Image Enhancement methods Point-based methods − − − − − − − − Negative Log transformation Power-law Contrast stretching Gray-level slicing Bit plane slicing Histogram equalization Averaging 3 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 4 Intuitively • Processing an image for visual interpretation is mostly referred as Image Enhancement • Visual evaluation of image quality is a highly subjective process • Thus the definition of a good image is not always possible • Human evaluation vs machine evaluation • Performance of the algorithms has no clear-cuts KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 5 Spatial Domain • The spatial domain refers to the aggregate of pixels composing an image Spatial Domain 𝑓(0,0) 𝑓(𝑥𝑟 , 𝑦𝑐 ) Image 𝑓 g x, y = T f x, y f x, y is the input image g x, y is the output image T[ ] is an operator on f x, y s = T(r) r is the set of gray levels in input image s is the set of gray levels in input image KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 6 Different approaches for Image Enhancement • Spatial domain • Point-based processing (involved with gray levels of each pixel) • Mask-based processing (neighbor-based processing, involved with spatial filters related operations) • Frequency domain • Frequency domain filters KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Image Negatives 𝑠 = 𝑇(𝑟) = 𝐿 – 1 – 𝑟 7 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 8 Log transformation (Dynamic range compression) 𝑠 = 𝑇 𝑟 = 𝑐𝑙𝑜𝑔(1 + 𝑟 ) 9 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Power-Law transformation 𝑠 = 𝑇 𝑟 = 𝑐𝑟 𝛾 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Power-Law transformation 10 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 11 Power-Law transformation - Gamma correction KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Contrast stretching s Tr mr b 12 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Gray-level slicing 𝑠=𝑇 𝑟 = 255 𝑖𝑓 𝐴 ≤ 𝑟 ≤ 𝐵 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 13 Highlighting an intensity range 14 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Bit-plane slicing • Highlighting the contribution made by a specific bit. • For pgm images, each pixel is represented by 8 bits. • Each bit-plane is a binary image 8.Bit (msb) slice of the original image 8. bit slice 15 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 8. bit slice 7. bit slice 6. bit slice 5. bit slice 4. bit slice 3. bit slice 2. bit slice 1. bit slice KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Histogram Processing • Image enhancement 1. Spatial domain methods a) Point-based methods − Negative − Log transformation − Power-law − Contrast stretching − Gray-level slicing − Bit plane slicing − Histogram equalization − Averaging 16 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 17 Histogram • Gray-level histogram is a function showing, for each gray level, the number of pixels in the image that have that gray level. • Normalized histogram (probability): • 𝑛𝑘 = ℎ 𝑟𝑘 = • 𝑝𝑘 = 𝑛𝑘 𝑁 𝑓(𝑥,𝑦)=𝑟𝑘 1 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Dark Image Bright Image 18 Low Cont Image Hight Cont. Image 19 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Histogram - Examples 7000 6000 5000 4000 3000 2000 1000 0 -50 0 50 100 150 200 250 300 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Histogram equalization Why and when do we want to use histogram Equalization? s=T r r = T −1 (s) sk = T rk = j=0..k nj = N pr (rj ) j=0..k T(r) is single-valued and monotonically increasing within range of r T(r) has the same range as r [0, 1] 20 21 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Histogram equalization • Transformation function sk = T rk = j=0..k nj = N pr (rj ) j=0..k • pr(r) is the probability density function (pdf) • The transformation function is the cumulative distribution function (CDF) • To make the pdf of the transformed image uniform, i.e. to make the histogram of the transformed image uniform 22 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Histogram equalization - Example Calculate CDF according to gray levels Gray Level Value CDF 0 0.11 1 0.22 2 0.55 3 0.66 4 0.77 5 0.88 6 0.99 7 1 Gray Level Value CDF CDF * (Levels-1) 0 0.11 0 1 0.22 1 2 0.55 3 3 0.66 4 4 0.77 5 5 0.88 6 6 0.99 6 7 1 7 Then in this step you will multiply the CDF value with (Gray levels -1) Considering we have an 3 bpp image. Then number of levels we have are 8. And 1 subtracts 8 is 7. So we multiply CDF by 7. Here what we got after multiplying. 23 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Histogram equalization - Example Gray Level Value Frequency 0 2 1 4 2 6 3 8 4 10 5 12 6 14 7 16 Gray Level Value New Gray Level Value Frequency 0 0 2 1 1 4 2 3 6 3 4 8 4 5 10 5 6 12 6 6 14 7 7 16 if we map our new values to , then this is what we got. KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 24 Histogram equalization - Example for (k=0;k<256;k++){ r[k]=0; // initializing the input image histogram function, giving 0 value to r[0]:r[256] s[k]=0; // initializing the output image cumulative histogram function, giving 0 value to s[0]:s[256] } for (i=0; i<nr; i++) for (j=0; j<nc; j++) for (n=0; n<nchan; n++){ outimg(i,j,n)=inimg(i,j,n); for (k=0;k<256;k++) if (inimg(i,j,n)==k) r[k]=r[k]+1; //calculating the input histogram values for each gray level r[0]:r[256] } KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 25 Histogram equalization - Example for (k=0;k<256;k++){ pr[k]=(float)r[k]/(nr*nc); //calculating the input histogram probability function diving into total pixel number } for (k=0;k<256;k++){ for (j=0;j<k;j++) s[k]=s[k]+pr[j]; // calculating the output image cumulative histogram function s[0]:s[256] } for (i=0; i<nr; i++) for (j=0; j<nc; j++) for (n=0; n<nchan; n++) for (k=0;k<256;k++) if (inimg(i,j,n)==k) outimg(i,j,n)=round(255*s[k]); // giving s gray level values instead of old r gray level values KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Histogram equalization Dark Image Bright Image Low Cont Image Hight Cont. Image 26 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Local enhancement 27 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Image Averaging • Image enhancement 1. Spatial domain methods a) Point-based methods − Negative − Log transformation − Power-law − Contrast stretching − Gray-level slicing − Bit plane slicing − Histogram equalization − Averaging 28 29 KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek Image Averaging original image f x, y + noisy image g x, y noise η x, y g x, y = f x, y + η x, y M−1 M−1 g i x, y = i=0 If the noise is uncorrelated and has zero expectation, then the expectation of g x, y will be f x, y M−1 f x, y + i=0 g x, y = f x, y + η x, y η x, y I=0 E g x, y = f x, y KOM3212 Image Processing in Industrial Systems | Dr Muharrem Mercimek 30 30 Image Averaging • If the noise is uncorrelated and has zero expectation, then Egx, y f x, y 1 2 σ g x, y σ ηx, y M 2
© Copyright 2025 Paperzz