GEOD. LIST GOD. 66 (89) 2 S. 77–148 ZAGREB, LIPANJ 2012. SADRAJ Izvorni znanstveni èlanak Bajiæ: Zrakoplovni hiperspektralni nadzor uljnog oneèišæenja s brodova u hrvatskom dijelu Jadranskog mora ....................................................................77 Struèni èlanci Ninkov, Govedarica, Trifkoviæ: Jedna metoda obnove stereografske izmjere na podruèju opæine Èoka .......................................................................................101 Gopi, Ramakrishnan: Digitalna katastarska izmjera za identifikaciju prisvajanja zemljišta primjenom prostornih tehnologija ....................................113 Vijesti ................................................................................................................................125 Pregled struènog tiska i softvera ........................................................................................139 In memoriam ....................................................................................................................................143 Predstojeæi dogaðaji ...........................................................................................................148 CONTENTS Original scientific paper Bajiæ: Airborne Hyperspectral Surveillance of the Ship-based Oil Pollution in Croatian Part of the Adriatic Sea .....................................................................77 Professional papers Ninkov, Govedarica, Trifkoviæ: One Method of Renewal of Stereographic Survey Data in Èoka Municipality.......................................................................101 Gopi, Ramakrishnan: Digital Cadastral Surveying for Land Encroachment Identification using Spatial Technologies ............................................................113 News .................................................................................................................................125 Publications and Software review.......................................................................................139 In memoriam ....................................................................................................................................143 Forthcoming events ...........................................................................................................148 Naslovna stranica: Prometne brodske linije u Jadranskome moru, (izvor: http://www.mppi.hr/UserDocsImages/Adria%20VTS,%20prezentacija.pdf). II INHALT Originalbeiträge Bajiæ: Hyperspektrale Fernerkundung der Ölverunreinigung von den Schiffen in der kroatischen Adria .........................................................................................77 Fachartikel Ninkov, Govedarica, Trifkoviæ: Eine Methode zum Wiederaufbau der stereographischen Vermessung auf dem Gebiet der Gemeinde Èoka .......101 Gopi, Ramakrishnan: Digitale Katastervermessung zur Identifizierung der Aneignung von Grundstücken durch Anwendung der Raumtechnologien....113 Nachrichten .......................................................................................................................125 Bücher und Softwareschau ................................................................................................139 In memoriam ....................................................................................................................................143 Termine .............................................................................................................................148 SOMMAIRE Contribution scientifique authéntique Bajiæ: La surveillance aérienne hyperspectrale de la pollution pétrolière par les navires dans la partie croate de la Mer Adriatique................................77 Contributions professionnelles Ninkov, Govedarica, Trifkoviæ: Une méthode de renouvellement de l’arpentage stéréographique dans la région de la municipalité de Èoka .............................101 Gopi, Ramakrishnan: L’arpentage cadastrale digital dans l’identification d’usurpation de terrains en appliquant les technologies spatiales ...................113 Actualités ...........................................................................................................................125 Revue de la littérature professionnelle et du software ........................................................139 In memoriam ....................................................................................................................................143 Evénements precedents ......................................................................................................148 SODER@ANIE Po¶linnajnau~najstatxj Bai~: Ayro-giperspektralxnw nadzor za zagrjzneniem morj s sudov v Horvatsko ~asti Adriati~eskogo morj......................................................................................77 Specialxnwestatxi Ninkov, Govedarica, Trifkovi~: Metod vozobnovlenij stereografi~eskogo izmerenij v raÂone ob|inw ^oka .........................................................................101 Gopi, Ramakri{nan: Kadastrovoe cifrovoe izmerenie dlj identifikacii prisvoenij zemelx primeneniem prostranstvennwh tehnologi .........................113 Novosti..............................................................................................................................125 Obzor specialxno pe~ati i programmnogo obespe~enij ......................................................139 In memoriam/V pamjtx ....................................................................................................................143 Predstoj|ie sobwtij .........................................................................................................148 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 77 UDK 504.064.3:629.735:504.054:621.892:629.5(262.3)(497.5) Izvorni znanstveni èlanak Airborne Hyperspectral Surveillance of the Ship-based Oil Pollution in Croatian Part of the Adriatic Sea Milan BAJIÆ – Zagreb1 ABSTRACT. The airborne hyperspectral and multisensor surveillance of the ship so urced oil pollution of the sea was researched by the airborne system developed in the frame of the project “System for the multisensor airborne reconnaissance and surve illance in crisis situations and the protection of the environment” (MZOS 2007). While different methodologies, methods, technologies and techniques were used, the multilevel fusion was applied for linking the data, the processes and the outcomes. Fusion includes the aerial hyperspectral and the colour imagery, the visually detec ted oil spills, the formalised knowledge for the estimation of the oil spill area and oil’s quantity based on Bonn Agreement Oil Appearance Code BAOAC, the data about the spectral response of the clean sea and polluted sea, the results of hyperspec tral classification. Besides the information acquired by the airborne multisensor system, the information provided by space based system CleanSeaNet of the Europe an Maritime Safety Agency EMSA was included in the fusion process (in the frame of the large trial operational exercise in 2008). The advantages of the airborne re mote sensing of the oil spills are reliable detection of the oil spills, accurate mapping of its position and the shape in geographic coordinates, classification of the contents of the spill, measurements of the oil spill’s features, estimation of the oil quantity. Keywords: oil spill, pollution, Adriatic Sea, hyperspectral, SAM, airborne remote sensing. 1. Introduction The airborne hyperspectral and multisensor surveillance of the ship sourced oil pollution of the sea was researched by the airborne system developed in the frame of the project “System for the multisensor airborne reconnaissance and surveillance in crisis situations and the protection of the environment”, supported by 1 PhD Milan Bajiæ, HCR Centre for testing, development and training Ltd., Zagreb, Croatia, former Prof. at Faculty of Geodesy, University of Zagreb, Kaèiæeva 26, HR-10000 Zagreb, Croatia, e-mail: milan.bajic@zg.t-com.hr. 78 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 Croatian ministry of sea, transportation and infrastructure, Croatian Air Forces of Croatian Ministry of defence, Faculty of Geodesy University of Zagreb (MZOS 2007). While different methodologies, methods, technologies and techniques were used, the multilevel fusion was applied for linking the data, the processes and the outcomes. The multilevel fusion of the aerial multisensor images, data and knowledge of ship sourced pollution of the sea by illegal discharges of oil, was researched, solutions were developed, tested and evaluated and achievements are presented. The goal of the fusion is to produce the reliable and confident near real time2 (NRT) evidences of the pollution, while the data and information provided by particular sources can not provide satisfying level of the detection probability, the confidence and the spatial mapping accuracy. This research was motivated by the needs to protect the sea of the anthropogenic pollution. Our research was focused on the Adriatic Sea, which has all characteristics of the Particularly Sensitive Sea Area (Vidas 2007, p. 121–127, 136–139) although the formalization of its status was not accomplished yet. Protection of the sea requires harmonized efforts of all coastal countries. The scale of the ship-based oil pollution of the Adriatic Sea can be seen in (Ferraro et al. 2007), (REMPEC 2007), (Vidas 2007, 2008). The recent data, based on interpretation of the satellite images acquired by synthetic aperture radar (SAR), are available due to the service of the CleanSeaNet (CSN) of the European Maritime Safety Agency (EMSA), (URL 2), and have been used in our research. The state of art of the available and the operational remote sensing technologies is presented in (URL 2), (Trieschmann 2008), (Tarchi et al. 2006), (Bajiæ and Tomaiæ 2008), (Bonn Agreement 2007a), (Bonn Agreement 2007b), (Salem and Kafatos 2004), (Lennon et al. 2006), (URL 3), although other references exist. There are two complementary direction of the application of the remote sensing technology for the surveillance of the sea oil pollution: a) satellite based synthetic aperture radar (SAR) images of sea surface, while data about sea currents, wind could be available too, b) the images and data collected by the airborne electro-optical and by side looking antenna radar (SLAR) multisensor systems. The main advantages of the space based technology used by EMSA CSN are the wide coverage (300 x 300 km, spatial resolution 25 m, or 400 x 400 km, spatial resolution 50 m), day or night missions, short time of the interpretation of the imagery, delivery of alert reports at least in 30 minutes after the flight above the considered area. The main disadvantages are a low repetition frequency of the flights (e.g. over the Adriatic Sea – three to seven times per month), a very short duration of the imagery acquisition, a low confidence of the detection of the oil spills at the sea, possible false alarms due to many factors, lack of the estimation of the oil quantity, (Ferraro et al. 2010). The airborne remote sensing of the ship based oil pollution can provide the data and information of the detected oil spill, by reconnaissance and surveillance missions in accordance to national needs and plans (Bajiæ and Tomaiæ 2008; URL 1; Bajiæ et al. 2008; MZOS 2007). In the same time the airborne data can serve to verify the information obtained from CleanSeaNet. The advantages of the air2 In the considered case the term near real time pertains to the delay introduced, by whole activity between the time of the detection of the possible oil slick and the verification of this real oil slick by airborne multisensor mission and sending report to the decision makers. Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 79 borne remote sensing of the oil spills are reliable detection of the oil spills, accurate mapping of their position and the shape in geographic coordinates, classification of the contents of the spill, measurements of the oil spill’s features, estimation of the oil quantity; all depends on the used sensors and the fusion. If only electro-optical sensors are used, the main disadvantages are the narrow coverage (typical width of the imaged strip-like area is from 30% to 80% of the height above the sea) and the optical visibility is needed. The oil spills can be visually monitored up to 3 km, in a good visibility conditions3. Our efforts were focused on the research of the fusion, aimed to fuse the temporally sensitive spatial data, provided by satellite based EMSA CSN service with images, data and knowledge provided by aerial electro-optical multisensor surveillance. The frame for this purpose was the operational research project (MMPI RH 2008), a large trial aimed to the fusion of the information acquired by the airborne electro-optical multisensor system and the information provided by space based system EMSA CSN. The rationale for this approach was the need to collect a basic experience about the real potentials and limitations of the space borne and the airborne technologies, about the processes, procedures and the conditions of the providing the evidence of the illegal oil discharges from the ships. Our objective was to derive and approve the efficient and sustainable solution of the oil spill assessment based on the data acquired by the a) alone airborne multisensor system (MZOS 2007) and b) combined airborne service with the service of the EMSA CleanSeaNet (URL 2). The solution should provide needed evidences, that are valuable and strong enough at the court. Our case study was spatially constrained on the Croatian part of the Adriatic Sea. In the considered multisensor airborne system are in use the digital electro-optical sensors (URL 1), among them is the most important the hyperspectral imaging sensor. The data were provided by the hyperspectral imagery, by the measurements of the reflection coefficients of the oil spill and the clean sea, the experts’ knowledge of Bonn Agreement Oil Appearance Code – BAOAC (Bonn Agreement 2007b; p. 55–64), (Lewis 2007), the colour photography and results of the visual observations. The fusion of the mentioned data was done at various combinations, from the pixel level, the features level and the decisions level. The development and implementation of the fusion in the considered environment is based on (Hall and Llinas 1997), (Hall and Llinas 2001), (Wald 2002), the basic and classic references which provide the wide methodological frame and enable to consider very different inputs to fusion. A number of possible oil spills4 in the Croatian part of the Adriatic Sea in year 2008 was 42, in accordance to EMSA CSN data. Table 1 contain the basic statistical parameters of the considered possible oil spills. Note that 35.71% of possible oil spills appear as a single in 15 days, while 64.28% appears as multiple in 11 days. 3 If in addition a side looking radar (SLAR) is used, the oil spills can be detected up to 30 km from the aircraft and the probability of the finding the oil spills will increase. 4 Data provided c.o. I. Tomaiæ, cover the first time period (from 2008-02-21 to 2008-12-09) when the EMSA CSN data were available in Croatia. 80 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 Table 1. Basic statistical parameters of the possible oil spills in Croatian part of the Adriatic Sea, from 2008 02 21 to 2008 12 09. Oil spill Length Width Area Value km km km2 Median 5.385 0.475 1.640 Average 6.548 1.816 3.232 Standard deviation 5.437 3.400 3.642 Minimum 0.780 0.100 0.140 Maximum 23.810 20.550 13 The use of the multisensor aerial system for surveillance of the sea pollution by ship sourced oil is presented in section two. There are defined used methods and tools. In section three is presented classification of the hyperspectral images, in section four are considered particular aspects of the fusion, the new contributions, achievements, limitations of their application and future research. Follow conclusions, acknowledgments and references. 2. Use of the multisensor airborne system for the surveillance of the ship based oil pollution of the Adriatic Sea In this section we consider the aerial electro-optical multisensor system used for the surveillance of the ship sourced oil pollution of the Adriatic Sea, its operational parameters, types of the aerial missions (surveillance if the a priori information is available about possible oil spill, reconnaissance if no a priori information exist), measurements of the coefficient of reflection of a spill and the clean sea water. In this section are introduced and applied the methods and tools of the fusion. 2.1. Airborne hyperspectral multisensor system for the surveillance of the ship based pollution of the Adriatic Sea by oil The considered airborne electro-optical multisensor system was developed, tested in 2007. and 2008. in the project supported by Croatian Ministry of Science, Education and Sports (MZOS 2007), onboard of helicopter Mi-8. It contains the following digital sensors: • The hyperspectral imaging scanner (based on Imspector V9 line scanner). Wavelengths range from 430 nm to 900 nm, 95 channels. Ground resolving distance in analysed examples was 1 m. Width of the mapped strip is 33% of the height above the sea surface. Optimum height ranges from 400 m to 1000 m. • Multispectral frame camera (MS-4100, Geospatial Systems). Used in configuration of three bands. Central wavelength/channel width: green 550/~40 nm; red 670/40 nm; near infrared 800/160 nm. Each channel has own chip (charge coupled device – CCD). Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 81 • Digital photo camera (Nikon D90). Channels blue, green and red. Used for imaging at the nadir. • Longwave infra red thermovision camera (Photon 320, FLIR). Wavelengths’ range from 8 to 14 mm. • Digital video colour camera (Sony FCB IX1). Channels blue, green and red. • Inertial Measuring Unit (iVRU-RSSC, iMAR GmbH). Note that one additional colour photo camera (Sony H2) was used for manual acquisition of the oblique photographys by visual observer. More about the considered airborne multisensor system and the particular technical solution see (Bajic et al. 2004), (Bajiæ and Tomaiæ 2008), (URL 1), (Bajiæ et al. 2008), (Šemanjski and Gajski 2008). In October 2008. was realized the operational exercise of the integration of a data provided by satellite SAR service of CSN EMSA and the information and data obtained with the considered airborne multisensor system (MMPI RH 2008). 2.2. Basic operational parameters of the used airborne hyperspectral multisensor system Main operational parameters of the considered airborne multisensor system onboard of the helicopter Mi-8, for the surveillance of the ship sourced sea pollution by oil were: • The imagery acquisition speed 120 km/h, visual observation speed 100 km/h. • Altitudes for the airborne visual surveillance from 150 m to 750 m, (Bonn Agreement 2007a; p. 59). • Electro-optical surveillance at altitudes from 300 m to 1000 m, (MMPI RH 2008). • The minimum coverage of the imaged area in one flight hour is shown in Table 2. It is limited by the field of view of hyperspectral imaging scanner, although other sensors have larger coverage. • Endurance of the helicopter Mi-8 flight with additional fuel tank is 4:15 h. • Pre-flight calibration on the ground of the sensors and the inertial measuring unit lasts up to 30 min. • Post-flight calibration on the ground lasts up to 15 min. • Electric power is autonomous or provided from helicopter. • Crew: pilot, co-pilot and technician. If educated and trained, can be visual observer, who manually sketches and/or collects oblique photography of the perceived oil spill. • Surveillance team: mission leader – interpreter, operator of sensors, visual observer (technician can do this). • Navigation system for surveillance and reconnaissance mission, independent although compatible with the navigation system of the helicopter. • Wide band communication system from air to land via Internet with Maritime Rescue Coordination Centre Rijeka (MRCC). • Delivered evidences on the oil slicks: a) first report to MRCC, b) second report to MRCC, c) full report to MRCC, d) reporting to the court (if required). 82 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 Table 2. Coverage of the imaged area (km2/h, width of the imaged strip, the spatial re solution in the direction of flight, in the direction perpendicular to the direc tion of flight in dependence of altitude H above sea surface. H Strip width Coverage Resolution in flight direction Resolution perpendicular to flight direction m m km2/h m m 300 99.9 11.99 0.171 0.208 400 133.2 15.98 0.228 0.277 500 166.5 19.98 0.285 0.346 600 199.8 23.98 0.342 0.416 700 233.1 27.97 0.398 0.485 800 266.4 31.97 0.455 0.554 900 299.7 35.96 0.512 0.623 1000 333 39.96 0.569 0.693 2.3. Types of the airborne missions The airborne surveillance shall be functionally integrated with the service of EMSA CleanSeaNet (if their warnings are available), with Maritime Rescue Coordination Centre (MRCC), (MMPI RH 2008), (URL 1). While the date and time of the expected EMSA messages is determined and known in advance, it is possible to optimize the whole response and achieve minimum response time of the airborne missions. The airborne surveillance of the ship based oil pollution of the Adriatic Sea shall collect and provide the objective, reliable evidences having high confidence, which are acceptable and efficient in the legal prosecution of the polluters. For this purpose the surveillance system shall provide: a) near real time airborne evidences and reporting to MRCC, b) evidences obtained by later analysis and reporting to MRCC, c) evidences upon court requirements, with qualified explanation and interpretation of the applied methods, procedures and data (testimony of witnesses). The airborne surveillance of the oil pollution can be realized as: A. Airborne surveillance/search mission initiated by the information about one possible oil spill, obtained from EMSA via MRCC. B. Airborne surveillance/search mission initiated by the information about multiple (two or more) possible oil spills, obtained from EMSA via MRCC. C. Airborne reconnaissance missions that cover the perceived high risk areas of the Adriatic Sea in a random manner (in space and in time) and produce effect of the quasi permanent surveillance, when are not available the information of EMSA CSN. D. Combined mission of a type A. or B. with C., whereas mission starts at the day of planed information of EMSA CSN but before its arrival time. E. Training missions, exercises, trials for the operational testing and development of the system. Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 83 F. Cooperation missions with other coastal countries of the Adriatic Sea, the first one should be with Italian Coast Guard regarding their Side Looking Antenna Radar5. The processes and the fusion that we consider depend in several aspects on the type of the airborne mission. Two types of missions were used to carry out the analysis of the fusion, and two examples are considered: • Surveillance/search mission of the B type. EMSA CSN produced alarm for two possible oil spills, one was detected, and is named Oil spill 2008-10-14, Fig. 1. • Reconnaissance mission of C type, without a priori information about the possible oil spill, although one was detected from air, and named Oil spill 2008-10-15, Fig. 2. a) b) Fig. 1. The Oil spill 2008 10 14. The geographic coordinates of the approximate centre of the spill detected from air were 44° 01’ 41” N, 14° 07’ 27” E. The data of this oil spill in space borne image reported 3:15 h before by EMSA CSN are shown in Table 3. The observer estimated the area 10550 m2 of the oil spill from this raw, unprocessed image. Fig. 2. Oil spill 2008 10 15 detected without ear lier EMSA CSN information. It is shown on the raw oblique colour photography that the observer made by handheld Sony H2 photo camera, through the open door of the helicopter. On the right hand side is visible a part of the helicopter’s winch. The geo graphic coordinates of the approximate centre of the spill were 44° 54’ 16” N, 13° 28’ 14” E. 5 Aulicino, D., Cau, D. (2010): Operational use of spaceborne SAR by the Italian Coast Guard, SeaSAR Symposium. Presentation at SEASAR 2010, the 3rd International Workshop on Advances in SAR Oceanography from Envisat, ERS and third party missions, 25–29 January 2010, ESA ESRIN, Frascati (Rome), Italy. 84 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 2.4. Airborne surveillance/search of the possible oil spill based on a priori alarm The data about two possible oil spills No1 and No2 were received from EMSA CSN service via the MRCC Rijeka and the airborne mission was activated, Fig. 3. Only the oil spill No1 was detected (Oil spill 2008-10-14), Fig. 1, and despite an intensive search the possible spill No2 could not be detected. In EMSA report the confidence of the possible oil spill No1 was declared as medium in accordance to following criteria: medium contrast, sharp edges, smooth linear shaped slick, ho- Fig. 3. a) The EMSA CSN reports about two possible oil spills, initiated b) the airborne surveillance mission 2008 10 14. Legend: blue line flight route, red dot oil spills. Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 85 mogenous surrounding. Its orientation was claimed SE – NW. The locations and dimensions of the spill No1 measured by EMSA CSN at 5:16 UTC and 3:14 h later by the airborne hyperspectral system differ, Table 3. The displacement could be a consequence of the sea currents and a wind. Airborne hyperspectral system used spatial resolution of 1 m, the spatial resolution of the SAR data was ~50 m, this could partially explain mentioned differences too. One more reason is also possible, the physical and chemical processes decrease area and oil quantity of the oil slick in time (evaporation and other). The lack of the operational model of the spill shift due to wind and current speed and direction is critical for backward reconstruction of the oil spill positions and linking it to the positions of suspected polluter. The EMSA expectation of the availability of the mentioned models (shift, linking to the polluter) is rather sceptical (URL 4). The airborne multisensor surveillance proved by several means, that possible oil spill No1 from EMSA CSN report is indeed a real oil spill. The processing, fusion and interpretation gave its size, shape, provided its map, measure of reflection coefficient, thematic map obtained by the classification of the hyperspectral images. Comparison of the EMSA CSN and the airborne assessment of this oil spill is given in Table 3. By visual detection of the oil spill and by the application of Bonn Agreement Oil Appearance Code BAOAC (Bonn Agreement 2007b; p. 55–64), (Lewis 2007), to the geocoded photography Fig. 4, the oil spill assessment was approved. The main source of the data, information, were the hyperspectral images, of the oil spill and its surroundings, Fig. 5. The hyperspectral images are acquired at nadir and they are parametrically geocoded6. The observer’s estimation was used in the fusion too. Fig. 4. The best photography that visual observer made by hand held pho to camera (Sony H2). Aimed for interpretation in accordance to BAOAC, thus it was registered to the hyperspectral images (and geocoded). 6 Fig. 5. Three channels (0.755, 0.645 and 0.465 mm) of the hyperspectral ima ges are visualised as red, green, blue image. Note that hyperspectral ima ges are indeed a geographic map, showing the oil spill and the surro unding sea surface in the geograp hic coordinate system. The parametric geocoding was done by PARGE software, Version 2.3, ReSe Applications Schlaepfer. 86 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 Table 3. Data about the airborne verification of the information for the spill No1 provi ded by EMSA CSN service. EMSA CSN, space borne SAR Airborne, hyperspectral and visual (BAOAC) Date 2008 10 14, 07:16 h 2008 10 14, 10:30 h 44° 01’ 41” N, 14° 08’ 28” E 44° 01’ 41” N, 14° 07’ 27” E Area 0.15 km2 0.015003 km2 Width 0.20 km 0.075 km Length 0.78 km 0.341 km Coordinates 2.5. Application of Bonn Agreement Oil Appearance Code The important step of the airborne detection, measurement and the mapping of the oil spill is the application of the Bonn agreement oil appearance code (BAOAC), Table 4, Fig. 6. The BAOAC can be applied on the oil spill a) which was perceived visually and sketched by the observer, b) or/and on the oblique aerial colour photography made by the observer. Table 4. Estimation of the oil quantity by the The Bonn Agreement Oil Appearance Code, (Lewis 2007). Code Description of appearance Layer thickness Interval (mm) Litres per km2 1 Sheen (silvery/grey) 0.04 to 0.30 40 300 2 Rainbow 0.30 to 5.0 300 5000 3 Metallic 5.0 to 50 5000 4 Discontinuous True Oil Colour 50 to 200 50,000 5 Continuous True Oil Colour 200 to More than 200 200,000 50,000 200,000 More than 200,000 The reason is following: international maritime law and international and national courts accept the information provided by visual application of BAOAC, being the very valuable and strong evidence at the court. Note that BAOAC enables classification in up to five classes, Table 4. After the application of BAOAC, the observer concludes (or not) that the unknown object is the oil spill and thus provides (or not) the first evidence about the sea pollution by oil. When this has happen, the mission can continue by airborne hyperspectral and multisensor imaging at nadir. The acquisition of the hyperspectral and multisensor images should be done in optimum manner, regarding the Sun position, the location of the oil spill, Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 87 Fig. 6. Example of the oil spill: metallic, rainbow and sheen appearance7. flight direction, altitude and flight speed. The most important are the hyperspectral images, although images are acquired with other sensors too. The processing of the acquired hyperspectral data and the production of the hyperspectral images is quite complex (Šemanjski et al. 2008) and will not be considered here. The hyperspectral images are geocoded by means of the parametric geocoding and therefore they introduce high geographical and spatial accuracy (Schlaepfer et al. 1998), (Šemanjski and Gajski 2008). As the next step, the observer acquires the best photography which will serve in further processing. This (the best) photography ought to be registered onto the hyperspectral images, after this processing it becames spatially and geographically accurate source of data for the application of spatially very accurate BAOAC estimation of the oil spill. Once the hyperspectral images and geocoded photography are available, it is possible to apply the knowledge of BAOAC on geocoded photography Fig. 4, Fig. 9 and achieve the very accurate spatial estimation of the oil spill features, Fig. 7, Table 5. 7 Bjorn Vadt Christensen (2004): Appearance Code Sea surface Phenomena User Guide, Royal Danish Air Force, SQN 721 Air Base Aalborg, Thisted Landevej 53, DK-9430 Vadum, Denmark, June 2004. Access: June 2005. 88 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 Table 5. Estimated quantities of oil by application of BAOAC on the best geocoded photographies Fig. 4, Fig. 9 of the oil spills from Fig. 1.a and Fig. 2. Minimum/maximum litres Oil spill date, area 2 14.10.2008., 15003 m 15.10.2008., 220517 m2 Sheen Rainbow Metallic Sum 0/0 2.40/40.07 34.94/349.45 37.35/389.52 3.444/25.83 28.57/476.11 195.97/1959.65 227.98/2461.59 Fig. 7. Estimation of oil spill features. Photography (acquired by Sony H2 photo came ra) of the oil spill was registered and geocoded onto the hyperspectral images. By application of BAOAC on the geocoded photography the observer estimates area, shape, types and expected quantity of oil. 2.6. Measurements of the oil spill reflectivity Once, when the existence of the oil spill was positively confirmed by application of BAOAC, it is possible to add new evidences using the hyperspectral images. For this purpose the geocoded photography should be analysed, the polluted area, the clean water area outside of the spill should be identified and the coefficients of the reflection should be measured on the hyperspectral images. Measurement should be done at statistically significant number of points to provide reliable estimate of the measured reflectivity for both types of the surfaces, Fig. 8. The be- Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 89 Fig. 8. Dependence of the coefficient of reflection on the wavelength in m, measured for the samples inside of the oil spill area (red) and measured in the areas of clean sea water, outside of spill area (blue) on the hyperspectral images. a) Oil spill 2008 10 14, shown on Fig. 1, b) Oil spill 2008 10 15, shown on Fig. 2. 90 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 haviour of the coefficient of reflection is new and very valuable feature of the oil spill, data obtained by the measurements of the reflectivity are new set of the evidences about the sea pollution by oil. The colour photography provides information in three wide wavelength bands (0.4 to 0.5 mm – blue, 0.5–0.6 mm green and 0.6 to 0.7 mm – red) and the visual estimation of the spectral features of the oil spill is coarse, while it is based on the radiometric resolution of colour of the spill. The hyperspectral images provide specific information about the oil spill in each of ninety five wavelength channels between 0.43 mm and 0.9 mm. Therefore the hyperspectral images provide thirty times finer spectral information then the colour photography. 2.7. Airborne reconnaissance of oil spill without a priori information The airborne reconnaissance of the oil spill can be done if there is no a priori information about possible oil spill. Results of the example from Fig. 2 are shown in Fig. 9. Of course there are several important consequences in this case regarding the Fig. 9. Oil spill 2008 10 15. The best photography that visual observer made by hand held (Sony H2) camera was geocoded on the hyperspectral images. Grid 100 x 100 m. The initial (raw and unprocessed) photography was shown on Fig. 2. Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 91 whole process. The most important consequence is the increase of the time between the start of the airborne mission and the time when the oil spill will be perceived in comparison to the time needed when the initial information are given in EMSA CSN alarm. Once the oil spill was perceived and identified by visual observer or by pilots it is possible to detect it with all available means. After this event the procedure is similar to the procedure that was described above in sections 2.4., 2.5. and 2.6. 3. Detection of the oil spill by classification of hyperspectral images The hyperspectral images enable very efficient classification and the detection of the oil spill and assessment of its area, its shape and estimation of the features of the spill, see example at Fig. 10. If combined with the subjective estimate in accordance with BAOAC of the oil quantity made by visual observer on the best geocoded photography, the thematic map obtained by the hyperspectral classification provides improvement of the oil’s quantity estimate. This novel contribution overcomes the inability of the hyperspectral images to provide alone the measure of a thickness of the oil layer on the sea surface. Among several classification methods, the best results were obtained by SAM (Spectral Angle Mapping8) classifica- Fig. 10. a) Classification map obtained by Spectral Angle Mapping method, for spectral angle threshold 2.3 degrees, b) spectral angle map, c) colour scale for the classi fication map. Made from hyperspectral image of the Oil spill 2008 10 14. 8 SAM is an automated method for directly comparing image spectra to a known spectra of end members as vectors and calculates the spectral angle between them. It is insensitive to illumination since the SAM algorithm uses only the vector direction and not the vector length. Date of access 2011-02-23, available from: http://www.csr.utexas.edu/projects/rs/hrs/analysis.html. 92 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 tion.9 This classification method needs pure spectral samples – end members. The spectral samples should be taken on the hyperspectral images in the areas of the oil spill and in the areas of the clean sea water surface outside of oil spill. For the considered examples of the oil spills the best results were achieved with 2.3 degrees of the threshold spectral angle. The dependence of the coefficient of reflection on the wavelength, Fig. 8, of the samples of the oil spill and the clean sea water provides additional information about their behaviour. Although the difference of the coefficients of reflection is visible, the ratio of the reflection coefficients is more informative Fig. 11, while it defines the region of wavelengths where discrimination could be expected. For the classification can be useful sub range from la to lb, defined by ratio > 1. In example of the hyperspectral images Oil spill 2008-10-14, was la = 0.475 mm and lb = 0.758 mm. The hyperspectral classification by spectral angle mapping method (footnote 7), provides accurate assessment of the oil spill’s area, its shape, distribution in different classes, its orientation in much more than five classes. In our analysis were Fig. 11. Ratio (black) and the absolute difference (green) of the reflection coefficients in the areas of the oil spill (red) and the clean sea water (blue), of the hyperspectral images of the Oil spill 2008 10 14. Absorption wavelengths are excluded from the calculations of ratio (black curve). 9 Used software: TNTmips 2008:74 (Windows 32-bit), Issue date: 4 Mar 2009; MultiSpec, URL: https://engineering.purdue.edu/~biehl/MultiSpec/download_win.html. Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 93 obtained eleven and twenty eight classes. Using the information of the coefficient of the reflection, of the spatial distribution of the oil spill obtained by BAOAC, of the interclass distance measure (e.g. Euclidean, Bhattacharrya) similar classess can be merged. The outcome of this process is new accurate and reliable map of the oil spill and the clean sea water, which uses information contained in all ninety five channels from visible and from near infrared wavelengths. By means of the hyperspectral spectral angle mapping, the oil spill’s area can be determined automatically (not manually, subjectively), using the spectral angle map. An example of the Oil spill 2008-10-14 is shown on Fig. 10b. This is new potential for the assessment of the oil spill area, with advantages if compared with BAOAC assessment on the sketch of the oil spill, or on the raw unprocessed or even on the best geocoded photography, see comparison on Fig. 12. a) 10550 m2 b) 15003 m2 c) 15720 m2 Fig. 12. Comparison of the methods for assessment of the oil spill area. Subjective ma nual estimation of the spill area by BAOAC methodology a) on the sketch or on the raw, unprocessed image from Fig. 1a, b) on the best geocoded photography. c) The automatic measurement of the oil spill area on the hyperspectral images. 4. Fusion of aerial images, data and knowledge of the ship-based oil pollution of the sea There are two main pillars of considered airborne system for the surveillance of the sea pollution by oil: use of the hyperspectral airborne remote sensing (imaging, mapping, measurement and interpretation) and the use of the fusion. Here we consider main aspects of the fusion, which can be compiled in simplified form from (Hall and Llinas 1997), (Hall and Llinas 2001), (Wald 2002): “Fusion is the use of techniques that combine data, information, knowledge from multiple sources and gather, process, interpret that data, information, knowledge in order to achieve inferences and/or decision which will be more efficient, more accurate, more reliable and confident, than if they were achieved by means of a single source”. Fusion can be accomplished on data and information (lowest level), at the level of the features and signatures derived from data or from information (middle level) and on the level of inferences or decisions (highest level) provided by sources, with inclusion of the knowledge. All levels of fusion are applied in the considered airborne system for the surveillance of the oil slicks at the sea. 94 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 Processes and fusion levels The processes of the considered oil spill detection start a) either with satellite SAR alarm (provided by EMSA CSN to MRCC) which contains information and data about the possible oil spill, its location, shape, features, b) or/and with the airborne multisensor detection. The EMSA CSN set of data and information is delivered at least 30 minutes after the detection of the possible oil spill and serves to initiate the aerial multisensor search and the reconnaissance. The location, dimensions and orientation of the possible oil spill are included into expected region of interest (ROI0). The wider region is defined for search too (ROIs). The airborne search starts at the position defined in EMSA CSN report, taking into account possible shift of the oil spill. In the case that the a priori information is not available, the mission starts with assumed wider region (ROIrs) for reconnaissance and search, taking into account intensity of the vessel traffic in the Adriatic Sea, Fig. 13. The visual search of the possible oil spill (made by pilots and visual observer) serves for decision whether to continue or to stop the mission. If the visual observer/or pilots perceive the possible oil spill and establish the truth by evidence and Fig. 13. The basic vessel traffic lines in the Adriatic Sea (URL 5). Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 95 arguments of BAOAC methodology (manual sketch, subjective estimation of the spill appearance, area and oil quantity) that this is a real oil spill, the mission can continue. The knowledge formalised in BAOAC and the data derived by the visual observer are the first inclusions into a fusion. Here the fusion was applied at the level of the inferences. The next process is the hyperspectral imaging of the oil spill at nadir and the production of the hyperspectral images, follow registering and geocoding of the manually acquired oblique photography onto hyperspectral images. The registering (and geocoding) of the best oblique photography onto the hyperspectral images is the second application of the fusion, which was done at the pixel level. Once the photography was registered and geocoded, starts higher level of the processing and the interpretation, which was described in the sections 2.4, 2.5, 2.6. The methodology of BAOAC can be applied once again but on the best geocoded photography. Due to high spatial accuracy and precision of the geocoded photography, obtained by the fusion, the area of the oil spill, although determined manually, has increased accuracy in comparison to the area determined in the first step. Besides the oil spill area, the clean sea surface is also defined by this step. Here the features (areas, borders) are fused. Due to the hyperspectral images, the oil spill area can be assessed automatically, with high spatial accuracy by means of the Spectral Angle Mapping classification and the spectral response can be measured. The measured coefficients of the reflection of the oil and the clean sea surface, the features of both kinds of surface, are the new evidences included in the fusion. Thematic map obtained by the classification provides much more than five classes (note that maximum limit of BAOAC is five classes). The similar classes can be merged gradually, checking their spatial distribution, the interclass distance measure (e.g. Euclidean, Bhattacharrya), coefficient of reflection. The outcome of this process is a map of the oil spill and the clean sea water, which contains information of all ninety five channels from visible and from near infrared wavelengths. At this level in fusion are included all derived features and the evidences about the oil spill provided by the aerial multisensor system. 5. Limitations and future research The main limitations and disadvantages of the developed and considered aerial hyperspectral multisensor surveillance of the pollution of the sea by the ship sourced oil is its dependence on the optical visibility and the time duration of the whole process if the EMSA CSN message initiates the airborne surveillance. In this time between EMSA CSN message and the perceiving the oil spill from air, the polluter changes its position, the same happens with the spill, this decreases possibility and probability of the assessment of the right polluter, (Ferraro et al. 2010). Thus, the total time duration of the surveillance shall be minimized, particularly are critical several processes, marked in Table 6. The applied hyperspectral mapping and interpretation, being strengthened by the fusion, is limited to the detection of the oil spill, without a priori available spectral library for oil spills. The statistically significant amount of the spectral samples was collected of the clean sea surface and of several oil spills during the first airborne mission (MMPI RH 2008). Collecting the spectral samples should continue. Moreover to the considered principal limitations, there are several technical 96 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 Table 6. The list of the activities and corresponding execution times determined in the exercise (MMPI RH 2008). The most critical are the actions 4, 5, 6, less critical are 9, 10 and their times should be minimized. Nr. Activity Symbol Feasibility of shortening 1 EMSA message arrival in MRCC Rijeka TEMSA Nominally 30 min, often is shorter. 2 take off at t0, t0 temsa < 5 min 3 flight to expected region of interest Tflight1 Depends on the distance from airport. 4 search of oil slick, perceiving, BAOAC Tsearch1 Optimize search: pilots, two observers. 5 mapping oil slick, 1st reporting to MRCC Treport1 Can be as short as 5 15 minutes, onboard. 6 pre processing, 2nd reporting Treport2 Optimise, make parallel, onboard. 7 landing; fuel tanking, repeating steps 4, 5, 6, 7, for next slicks flight to airport Ttanking 8 post flight calibration Tpostcal 9 processing, delivery imagery and data Tprocessing After landing. 10 post flight interpretation, full reporting Tfullreport After landing and processing. T0 By training. Treturn limitations in the existing system. The most important are a) the duration of the transforming of the acquired raw hyperspectral data into hyperspectral channels and b) the parametrical geocoding. In the time of the exercise (MMPI RH 2008) the processing of the raw data into channels lasted several hours for several kilometres of the mapped strip, later it was reduced to less than twenty minutes. The parametric geocoding lasted hours, now it can be done in the range of ten to thirty minutes. This proves that the lasting of the processes shown in Table 6 can be reduced, the research in this direction is under way. The future research could and should a) continue advancement of the aerial hyperspectral multisensor surveillance of the pollution of the sea by the ship sourced oil, b) start development and the implementation of the fusion at the level of evidences or decisions, between the aerial hyperspectral multisensor surveillance and Croatian vessel traffic monitoring and information system (CVTMIS), Automatic Identification System (AIS, 17 base stations) and the Adriatic sea radar network system (10 stations), (URL 6), c) start scientific cooperation with Coastal Guard of Italy regarding the common surveillance of the sea oil spills with their Side Looking Antenna Radar (SLAR) and our airborne hyperspectral multisensor surveillance. 6. Conclusion The aerial hyperspectral and multisensor surveillance of the pollution of the sea by ship sourced oil spills was researched. The fusion decreased errors in area and oil spill quantity estimation from 4.5% to 32.8%, increased confidence of the oil Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 97 spill detection from low (observers BAOAC estimation) to high (hyperspectral), and enables its implementation into operationally feasible system. Based on previous facts we uphold the further development of surveillance system of the ship sourced oil pollution of the Adriatic Sea, with key pillars already available: EMSA CSN and multisensor airborne surveillance system. The fusion of the aerial and the space borne remote sensing technologies with the Croatian vessel traffic monitoring and information system (CVTMIS), Automatic Identification System (AIS) and the Adriatic Sea radar network system should be a next goal. ACKNOWLEDGMENT. Croatian Ministry of science, education and sports supported development of the aerial hyperspectral multisensor system for the surveillance of the Adriatic Sea pollution by ship sourced oil, in frame of the technological project TP-06/0007-01, acknowledgements to Prof. PhD S. Risoviæ. Croatian Ministry of sea, transportation and infrastructure, Croatian Air Forces of Croatian Ministry of defence, Faculty of Geodesy University of Zagreb, supported exercise on the operational integration of the EMSA CSN service and the airborne multisensor surveillance of the oil slicks in Croatian part of the Adriatic Sea in 2008. Cooperation of Maritime Rescue Coordination Centre Rijeka, Dezinsekcija Ltd. Rijeka and the crew of the helicopter is especially appreciated. Special acknowledgment to the researchers, the team members of the exercise I. Tomaiæ, A. Krtaliæ, H. Gold, T. Kièinbaèi, D. Gajski, B. Preseèki. References Bajiæ, M., Gold, H., Praèiæ, Z., Vuletiæ, D. (2004): Airborne sampling of the reflectivity by the hyper spectral line scanner in a visible and near infrared bands, Proceedings of the 24th EARSeL Symposium, New Strategies for European Remote Sensing, Dubrovnik, Croatia, 25 27 May 2004, Millpress, Rotterdam, 2005, pp. 703 710. Bajiæ, M., Gold, H., Fiedler, T., Gajski, D., (2008): Development of the concept from 1998. and realisation in 2007 2008 of the system for the airborne multisensor recconnaissance and surveillance in the crisis situations and the protection of the environment, in Proceedings of Disaster Management and Emergency Response in the Mediterranean Region, Oluiæ (ed.), First EARSeL Conference, Zadar, Croatia, September 2008, pp. 401 410. Bajiæ, M., Tomaiæ, I. (2008): Development of the sustainable system for the airborne oil spills detection at sea and for validation of the early warning satellite service based on SAR data, in Proceedings of Disaster Management and Emergency Response in the Mediterranean Region, Oluiæ (ed.), First EARSeL Conference, Zadar, Croatia, September 2008, pp. 273 281. Bonn Agreement (2007a): Bonn Agreement Aerial Surveillance handbook, 2004, V. 25 October 2007. Bonn Agreement (2007b): Bonn Agreement Aerial Surveillance Programme, Annual report on aerial surveillance for 2007. Ferraro, G., et al. (2007): Towards an operational use of space imagery for oil pollution surveillance in the Mediterranean basin: A demonstration in the Adriatic Sea, Marine Pollution Bulletin, Volume 54, Issue 4, April 2007, pp. 403 422. 98 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 Ferraro, G., Baschek, B., De Montpellier, G., Njoten, O., Perkovic, M., Vespe, M. (2010): On the SAR derived alert in the detection of oil spills according to the analysis of the EGEMP, Marine Pollution Bulletin, 60, pp. 91 102. Hall, D. L., Llinas, J. (1997): An introduction to multisensor data fusion, Proceedings of the IEEE, Vol. 85, No. 1, January 1997, pp. 6 23. Hall, D. L., Llinas, J. (2001): Handbook of multisensor data fusion, CRC Press, London, Editors: Hall, D. L., Llinas, J., Print ISBN: 978-0-8493-2379-9. Lennon, M., Babichenko, S., Thomas, N., Mariette, V., Mercier, G., Lisin, A. (2006): Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence, EARSeL eProceedings 5, 1/2006, pp. 120 128. Lewis, A. (2007): Current status of BAOAC (Bon Agreement Oil Appearance Code), Report to the Netherlands North Sea Agency, January 2007. MMPI RH (2008): Results of the exercise on the integration of a satellite radar surveillance and the airborne multisensor measuring the Adriatic Sea pollution by oil and the acquisition of the evidences, operational technical report, Faculty of Geodesy University of Zagreb, project TP-06/0007-01, Croatian Air Forces, for Croatian Ministry of the Sea, Transport and Infrastructure, Zagreb, Croatia, 9 November 2008, 60 p., Internal. (in Croatian). MZOS (2007): System for the multisensor airborne reconnaissance and surveillance in crisis situations and the protection of the environment, technological project TP-06/0007-01, Croatian Ministry of sciences, education, sports; Faculty of Geodesy and Faculty of transport and traffic sciences University of Zagreb, HCR Centre for testing, development and training Ltd. Zagreb, Pastor Group d.d. Zagreb, 2007 2008, Internal. (in Croatian). REMPEC (2007): Aerial and satellite surveillance of operational pollution within the Adriatic sea: a comparative analysis (AESOP), Regional marine pollution emergency response centre for the Mediterranean Sea (REMPEC), Mediterranean action plan report, April 2007. Salem, F., Kafatos, M. (2004): Hyperspectral partial unmixing techniques for oil spill target identification, Proceedings of XXth ISPRS Congress, Geo-Imagery Bridging Continents, 12 23 July 2004, Istanbul, Turkey, CD, article 250. Schlaepfer, D., Schaepman, M. E., Itten, I. (1998): PARGE: Parametric Geocoding Based on GCP-Calibrated Auxiliary Data, Imaging Spectrometry IV, San Diego, 1998, SPIE 3438:334-344. Šemanjski, S., Gajski, D., Bajiæ, M. (2008): Transformation of the hyperspectral line scanner into a strip imaging system, in Proceedings of Disaster Management and Emergency Response in the Mediterranean Region, Oluiæ (ed.), First EARSeL Conference, Zadar, Croatia, September 2008, pp. 369 375. Šemanjski, S., Gajski, D. (2008): Integration of position and orientation system and hyperspectral line scanner, in Proceedings of Disaster Management and Emergency Response in the Mediterranean Region, Oluiæ (ed.), First EARSeL Conference, Zadar, Croatia, September 2008, pp. 377 384. Tarchi, D., et al. (2006): Satellite surveillance of illicit discharges from vessels in the seas around Italy 1999 2004, European Commission, EUR 22190 EN, (2006). Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 99 Trieschmann, O. (2008): Oil spill issue and the capability of surveillance the problem by remote sensing, presentation, Int. Conf. The World Ocean in Globalization, Oslo, Norway, 21 23 August 2008, Compendium of Summaries, Fridtjof Nansen Institutt, pp. 169 176. Vidas, D. (2007): Zaštita Jadrana, Školska knjiga, Zagreb, (in Croatian). Vidas, D. (2008): The Mediterranean: The case of the Adriatic Sea; presentation, Int. Conf. The World Ocean in Globalization, Oslo, Norway, 21 23 August 2008, Compendium of Summaries, Fridtjof Nansen Institutt, pp. 125 127. Wald, L. (2002): Data fusion, definitions and architectures, fusion of images of different spatial resolutions, Les Presses de l’Ecole des Mines, Paris. URL 1: Bajiæ, M. (2008): Technological project multisensor airborne surveillance systems, presentation, CleanSeaNet Info Day, Ministry of the Sea, Transport and Infrastructure of the Republic of Croatia, EMSA European Maritime Safety Agency, Zagreb, 8 September 2008, (in Croatian), Date of access 23.02.2011, available from: www.mmpi.hr/UserDocsImages/080908-bajic.pdf. URL 2: Bal, L. (2008): EMSA operational activities and CleanSeaNet, presentation CleanSeaNet Info Day, Ministry of the Sea, Transport and Infrastructure of the Republic of Croatia, EMSA European Maritime Safety Agency, Zagreb, 8 September 2008, Date of access 23.02.2011, available from: http://www.mmpi.hr/UserDocsImages/080908-l-bal1.pdf. URL 3: CEDRE (2004): Aerial observation of oil pollution at sea Operational guide, Centre of Documentation, Research and Experimentation on Accidental Water Pollution, Brest, France, Date of access 23.02.2011, available from: http://www.cedre.fr/en/publication/aeri/aeri.php. URL 4: EMSA (2008): Non-paper EMSA’s view on further development of oil spill modeling, European Maritime Safety Agency, C.3./AHM/OTR/90, Lisbon, 21 November 2008, 6 p., Date of access 23.02.2011, available from: http://cleanseanet.emsa.europa.eu/docs/public/NonPaper_EMSAs_view_on_Modellingl.pdf. URL 5: Zec, D., Francic, V. (2011): ADRIA VTS Sluzba nadzora i upravljanja pomorskim prometom na Jadranu, Presentation, Ministry of maritime affairs, transport and infrastructure, of the Republic of Croatia, Zagreb, Croatia, 7 December 2011, (in Croatian), http://www.mppi.hr/UserDocsImages/Adria%20VTS,%20prezentacija.pdf. URL 6: Liniæ, R., Grce, C. (2010): Establishment of the Croatian vessel traffic monitoring and information system (CVTMIS), presentation, Republic of Croatia, Ministry of the Sea, Transport and Infrastructure, Directorate for safety of navigation, marine environment and inland waters, Valbandon 1.06.2010, http://www.mppi.hr/UserDocsImages/Establishment%20of%20the%20CVTMIS.pdf. 100 Bajiæ, M.: Airborne Hyperspectral Surveillance of the Ship-based …, Geod. list 2012, 2, 77–100 Zrakoplovni hiperspektralni nadzor uljnog oneèišæenja s brodova u hrvatskom dijelu Jadranskog mora SAETAK. Istraen je hiperspektralni i multisenzorski nadzor uljnog oneèišæenja mora s brodova pomoæu zrakoplovnog sustava razvijenog u okviru projekta “Sustav za multisenzorsko zrakoplovno izviðanje i nadzor u kriznim situacijama i zaštiti okoliša” (MZOS 2007). Buduæi da su korištene razlièite metodologije, metode, tehno logije i tehnike, primijenjena je višerazinska fuzija za povezivanje podataka, procesa i njihovih izlaza. Fuzija ukljuèuje zrakoplovne hiperspektralne i kolor snimke, vi zualno detektiranu uljnu mrlju, formalizirano znanje za procjenu površine uljne mrlje i kolièine ulja, na temelju koda iz sporazuma iz Bonna o pojavnosti ulja (BAOAC), podatke o spektralnom odzivu èiste i uljem oneèišæene morske površine, re zultate hiperspektralne klasifikacije. Osim informacija prikupljenih zrakoplovnim multisenzorskim sustavom, u proces fuzije bile su ukljuèene informacije dobivene od svemirskog sustava CleanSeaNet Europske agencije za pomorsku sigurnost EMSA (u okviru velike pokusne aktivnosti operativne vjebe u 2008.). Prednosti zrakoplov nih daljinskih istraivanja uljnih mrlja su pouzdana detekcija uljnih mrlja, preciz no definiranje njezinog poloaja i oblika u geografskim koordinatama, klasifikacija sadraja uljne mrlje, mjerenje njezinih obiljeja, procjenu kolièine ulja. Kljuène rijeèi: uljna mrlja, oneèišæenje, Jadransko more, hiperspektralno, SAM, zrakoplovna daljinska istraivanja. Primljeno: 2011 11 13 Prihvaæeno: 2012 06 01 Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 101 UDK 528.44.067:336.211.1:347.214.2:528.722.4(497.113) Struèni èlanak One Method of Renewal of Stereographic Survey Data in Èoka Municipality Toša NINKOV, Miro GOVEDARICA – Novi Sad1, Milan TRIFKOVIÆ – Subotica2 ABSTRACT. This research presents an approach to solving the problem of establi shing the real estate cadastre in real estate cadastre services in Serbia, where stereo graphic survey still exists. These problems are analyzed, set the goal and solutions are proposed. Old, damaged and not updated plans, the impossibility of detecting changes in the missing parts of the plan or map are characteristics of the cadastre based on stereographic method for over 25% of the province of Vojvodina. Without up to date and current topographic data, there is not, nor is possible to simply, fast and accurately reach necessary data to establish and maintain the real estate cadastre. The main goal of this research is to propose the procedure for achievement of real estate cadastre throughout the territory covered by the stereographic projection. Pro posed procedure is based on the implementation of new technologies for collecting and processing of graphic and alphanumeric data, using geographic information systems technology, digital technology and photogrammetry. Photogrammetric sur vey of the whole country (made in 2007), provides digital orthophoto plans to become the main source of data acquisition, especially in damaged cadastral maps. The new methodology used and tested on nearly 60% of the Èoka municipality area provides easy, fast and accurate data acquisition. Keywords: survey, stereographic projection, digital orthophoto. 1. Introduction In the real estate cadastre in Èoka old stereographic projection is in use. The state of cadastral register, especially the state of the working originals of cadastral plans, the equivalence of the terrain data and data in the cadastre register, require an updating of documents on the land and acquisition of new spatial data and 1 Prof. dr. Toša Ninkov, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradoviæa 6, RS-21000 Novi Sad, Serbia, e-mail: ninkov.tosa@gmail.com, Prof. dr. Miro Govedarica, Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradoviæa 6, RS-21000 Novi Sad, Serbia, e-mail: miro@uns.ac.rs, 2 Prof. dr. Milan Trifkoviæ, Faculty of Civil Engineering Subotica, University of Novi Sad, Kozaraèka 2a, RS-24000 Subotica, Serbia, e-mail: mtrifkovic@gf.uns.ac.rs. 102 Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 their presentation in an appropriate form (photographic, graphic, 3D etc.). Working original of cadastral plan mean a copy of the archived original in analogue and digital form certified by the Administration authority and shall serve for maintaining survey. Photogrammetric survey of the entire country (done in 2007) provides that digital orthophoto plans can be used as the main source of data acquisition, especially in damaged cadastral plans. 2. One Renewal Method of the Stereographic Survey in Area of Èoka Municipality 2.1. Actual (Current) State Èoka municipality is placed in the northern part of the Republic of Serbia, in northern Banat. The plans for cadastral municipalities of Jazovo, Ostojiæevo, Sanad, Crna Bara and Èoka are produced in scale of 1:2880 using graphic method in stereographic projection, based on the survey from 1876-1903 in Budapest coordinate system. Cadastral plans in stereographic projection, which cover about 70% of the municipal territory, are almost (90%) unusable for qualitative implementation of spatial changes in real estate or for activity and maintenance of real estate cadastre. Besides the plan sheets from that time period, which are in daily use, the land registers with parcel’s areas are saved in hvat measurement system (analogous to fathom). It can be concluded that the lack of updated and digital cadastral records prevents any further development of information systems which would use geodetic data and prevents the effective usage of modern computer technologies in the process of real estate databases. Fig. 1. The actual state of scanned cadastral plan, part of Èoka municipality. Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 103 The main reason for choosing cadastral municipality of Èoka as a pilot area for the application of this method was poor condition of the original plans, in which the maintaining and updating has been impossible for many years. The actual state of scanned cadastral plan which presents the construction area of Èoka municipality is shown in Fig. 1. The state of graphic survey in stereographic projection suggests the need for emergency reaction on making appropriate decisions regarding its further usage. Any delay would just further deepen existing problems. Data about new changes-updates are placed on the sketches of surveying maintenance, or are recorded on tracing paper in scale of copied plans of individual parcels. This all mean that mapping errors in the maintenance of surveying are evident. Another problem is the fact that there are graphical and numerical data missing for some parcels which are placed in database of real estate cadastre (the basic parcel is divided in parts, parcelling data do not exist). There are also reverse situations in which the trace of change exists but the change is not implemented in the land register. All these problems affect the work of the service for real estate cadastre (administration authorities), as maintenance was reduced to the assessment and management of the individuals. The survey conducted in the end of 19th and in the beginning of 20th century could satisfy users in that time period. Today, such register not only fails to meet the user’s needs, but presents a major problem with its total unreliability (Ninkov and Bulatoviæ 2011), both in the field of geodesy and in all areas which base their work on survey data (planner and design organizations, citizens, tax administration, banks, etc). One of the tasks which the state institutions have to fulfil in this area is to create and establish the real estate cadastre throughout all the state territory by the end of 2011. Since up-to-date and current topographic material do not exist and it is difficult to create it easily, quickly and accurately, in order to establish real estate cadastre there is a need to find solution that solves the existing problems (Trifkoviæ 2003). 2.2. Photogrammetric Survey of Serbia In time period 2007-2010 aerial photogrammetric survey of the territory of the Republic of Serbia was carried out with the aim of producing a digital orthophoto of the Republic of Serbia. Digital orthophoto (DOP) of Èoka municipality was produced in resolution of 10 cm, in Gauss-Kruger projection; for the urban area of Èoka the recording period was September 2007. Single DOP’s in resolution of 10 cm are produced in tiff format with associated tfw files. Dimensions of a single DOP for the urban area of Èoka are 900 m x 600 m, a total number of produced DOP sheets is 16. 2.3. The Integration of Graphic Data from Stereographic and Photogrammetric Survey The integration of graphic data from stereographic survey (plans in scale of 1:2880) and photogrammetric survey in Gauss-Kruger projection (in scale of 1:2500) is necessary for obtaining qualitative base material for the digitizing of missing data. 104 Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 2.3.1. Existing Data Plans in stereographic surveying have scale of 1:2880. Urban construction area of Èoka covers four map sheets numbered 14, 15, 22 and 23 in the sheets numeration for the whole cadastral municipality of Èoka. The plans are scanned in the Republic Geodetic Authority (RGA), Department of Geodetic Information System, according to the official procedure applicable in plan sheets of tiff extension. Scanned plans are geocorrected (georeferenced). Fig. 2. Geocorrected map sheets and plans of maintaining the construction area of Èoka. As shown in Fig. 2, there is missing part of 30% of city territory which has none of original data, due to damaged maps. Working originals of this area exists, derived from old original data at some time point by combination of copying and using old laminating sketches. Those working originals are in use today, updating is applied on them. The quality of the data used in the maintenance of the cadastre does not need further comment. When overlapping working originals with the original plans from stereographic projection, deviations occur in various directions which mean that both linear and nonlinear deformations are presented and in such a way the data can hardly be useful. Proposed methodology emphasize digital orthophoto, produced in 2007 in resolution of 10 cm in Gauss-Kruger projection as the most important source of collecting the missing data. Produced othophoto plans are parts of orthophoto mosaic generated from very large blocks of images where aerial triangulation was performed using a minimum number of control points (Pajiæ and Govedarica 2010). Although first comparison seemed good, the control measurement of same (identical) details in the plans in stereographic projection and orthophoto plans showed inconsistency of Datum in these two graphic data. In order to improve the scale of orthophotos and stereographic plans and to determine the translation and rotation, both images are placed in Gauss-Kruger projection, control measurements were carried out in the area of interest and the coordinates of points identified in both images were and determined. In order to determine the coordinates of identical points identified in both graphic data and control points for improved geocorrection of orthophotos, GPS fast static method was used with the calculated transformation parameters for deter- Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 105 mining the local Datum for the area of interest (territory of the project). The measurements of control profiles were carried out by the method of continuous kinematics using corrections from AGROS permanent station network from Republic Geodetic Authority RGA. Measured control profiles along horizontal signal lines (visible in orthophoto), had the spatial coordinates calculated in every ten meters, approximately. Measurements were carried out by using GPS device fixed to the vehicle, with fixed GPS height and the vehicle was moving in a way that the vertical axis of GPS was above the street centre line with an accuracy of 3-5 cm, vehicles are shown in Fig. 3 (Ninkov et al. 2010). The vehicle was moving at the speed up to 30 km/h, registering points every second, providing coordinates of points on centre line with a distance of less than 10 m. Achieved accuracy of locations in the horizontal signal lines, after numerical processing and setting the regression line, was within 3-5 cm provided by AGROS network of Republic Geodetic Authority and navigated driving along the lines of horizontal traffic signalization. Fig. 3. Vehicles with fixed GPS. Computer image processing was done based on information on determined control points and the data of recorded centre street lines, using Erdas Imagine software tool. Photogrammetric blocks, bordered by recorded centre street lines, were scaled in fixed frame in accuracy of 3-5 cm. This significantly increased positional accuracy of every pixel in orthophoto and eliminated residual distortions from the classical photogrammetric processing of large blocks. Fig. 4 shows all streets with measured centre lines and the identical control points identified in the stereographic and orthophoto plans. The same procedure was applied to the processing of old plans in stereographic projection in scale of 1:2880, but all recorded control profiles were used for positioning the middle between the constructing lines identified in these plans (Popov 2011). 106 Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 Fig. 4. Scale improvement of orthophoto using control points and profiles recorded by GPS ( control points). A large number of identified points (a church, a castle, different objects, some roads, crossroads) from the period of measurement in stereographic projection in scale of 1:2880, was transformed using ERDAS software based on a set of coordinates in both coordinate systems (Budapest and Gauss-Kruger) to scale of 1:2500 and Gauss-Kruger projection. In this way the stereographic plans were transformed into the same coordinate system and the same scale as orthophoto plans of the territory of the project (area of interest). Integrating geocorrected orthophotos, stereographic plans transformed to Gauss-Kruger projection and scaled copies of working original (further on will be used only for digitization of parcel’s numbers which correspond to numbers in land cadastre) provided the material for digitization and updating of existing cadastral data (with the information on data which were missing) and produce of new digital cadastral maps (Ninkov 2004) as illustrated in Fig. 5. Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 107 Fig. 5. Orthophoto, cadastral plans and copies working original of identical Datum. 2.3.2. Digitization Digitization of the missing data from valid cadastral plan and the produce of new digital cartographic plan (DCP) are done using software for digital topography MS Cad (Ver. 2010) and GIS software ArcGIS (Ver. 9.3.). New DCP is produced in accordance with valid Regulation for design of DCP and adjusted to the methodology of real estate cadastre establishment. Primary digitization is performed on undamaged parts of the cadastral plan, considering the control of parcel’s topology and objects in copy of the working original. If the differences in the geometry of parcels and/or objects are identified, then the factual state of the geometry is adopted from the orthophoto plans. Such combinations of active graphical levels for digitization are possible owing to the possibilities of used software tools that one or more graphics layers can be transparent. Digitization of parcels and objects in damaged parts of cadastral plan is implemented from orthophoto plans, with the topology control on copies of working original. Since the final processing of digitized parcels and objects was performed by using GIS technology, all parcels and objects in new digital cadastral plan have defined dimensions and polygons. The numeration of parcels was carried out in new DCP, in accordance with the numbers in the copy of the current working original. Comparing the parcel’s areas in new DCP and areas of the same parcels in land registry databases, it is asserted that the difference between the areas, on the territory defined in the project, in app. 85% of cases is within the accuracy of area determination by calculation methods used in primary mapping. In cases where the major differences were noticed, the field survey was done so that the number of conforming areas had risen to app. 92%. The numeration of objects within the parcel, in accordance with the Regulation of the RGA (Fig. 6), provided the conditions for the use of object’s areas in the process of design of the real estate cadastre. 108 Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 Fig. 6. Digitization of missing parcels and objects. Fig. 7. New digital topographic plan with the numeration of objects within parcels. The table below shows the differences in areas obtained from new updated digital plan and parcel areas from land cadastre. It is concluded that 90% of these differences are within the boundaries of permissible deviations. 109 Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 Table 1. The area differences; areas from DCM vs. areas from land cadastre. Area Parcel Area (cada No (DCM) stre) D(m2) 2167/5 375 352 23 Area Parcel Area (cada No (DCM) stre) D(m2) Area Parcel Area (cada No (DCM) stre) D(m2) 893 933 893 40 952 427 443 16 21 977 501 518 17 894 1645 873 772 951 584 605 976/1 212 229 17 895/2 478 527 49 950 384 378 6 975/1 234 256 22 897 1040 1045 5 949 199 209 10 972 374 421 47 898/2 311 316 5 948 291 274 17 973 430 410 20 899/1 337 320 17 947 375 400 25 974 427 396 31 903/3 378 398 20 946 443 450 7 978/1 335 324 11 904/1 469 427 42 945 403 414 11 979/2 182 144 38 905 1136 712 424 944 419 428 9 971/1 448 399 49 907 439 417 22 943 532 547 15 860 763 766 3 906 739 744 5 941 585 585 0 861/1 475 478 3 908 413 417 4 942 458 469 11 864 1223 1219 4 909 777 817 40 939 571 576 5 868 1416 1435 19 913 615 626 11 940 432 461 29 869 1807 1668 139 911 426 417 9 936 297 342 45 862/1 700 719 19 915 425 417 8 937 292 295 3 863 749 748 1 914 697 712 15 938/1 215 227 12 867 557 511 46 916 1567 1650 83 938/2 262 267 5 871 1957 1949 8 917 1532 1539 7 925 1094 787 307 923 419 421 2 921/2 488 468 20 873 942 942 0 910 863 978 115 872 1133 1021 112 912 419 417 2 876/1 354 334 20 969/1 268 220 48 702 738 723 15 875 1695 730 965 967 384 349 35 704 694 939 245 878 1156 1140 16 968 257 263 6 703 1140 935 205 879 532 539 7 965 486 410 76 705 1180 1194 14 880 920 945 25 966 354 407 53 706 640 644 4 881 755 759 4 964/1 375 371 4 709 381 874 493 882 1016 985 31 963 327 345 18 710 1057 1007 50 883 761 737 24 962 372 349 23 711 346 399 53 885 1024 1029 5 961 439 446 7 711 480 399 81 884 719 730 11 960 257 259 2 681 1502 1529 27 887 1012 981 31 959 425 450 25 716/1 651 565 86 886 762 773 11 958 336 320 16 719/1 549 579 30 889 1069 1054 15 957 399 385 14 718 899 870 29 888 702 730 28 956 426 421 5 721/1 584 554 30 890/1 515 353 162 955 414 414 0 722 480 475 5 891/1 355 349 6 954 366 360 6 723 2032 2032 0 892 1808 1039 769 953 344 353 9 725/1 742 719 23 110 Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 Analysis of data on parcels with uneven surface areas leads to conclusion that those are mostly rough errors occurred as a consequence of the fact that needed changes have not been applied (parcel division, parcel merger, etc.), but there are probably some undetected technical errors occurred during primary survey and/or mapping. Non-permissible deviations which are detected will be corrected in the maintenance of cadastral data. The existence of non-compliant positions of objects in relation to the parcel’s borders is also noted and recognized as a consequence of the inhomogeneity of the network, in which the primary recording was done, or as a consequence of errors made due to damaged plans. Such problems will have to be resolved through the process of maintaining the land cadastre or real estate cadastre. Final and good solution will be obtained through the renewal process of terrain survey during the process of land consolidation. Permissible differences in digitized and cadastral areas are calculated using following formula, which is fundamental and which is often referenced in professional literature that deals with this issue: Dp = 0.7 M p (1) where: • Dp – permissible difference • 0.7 – empirically adopted coefficient • M – scale denominator/1000 • p – parcel’s area. According to some studies and research, higher value can be adopted as a coefficient and those experiments are considered in many research papers (Boc 2009, Ivkoviæ and Vlašiæ 2006) and in the latest draft Regulation on maintenance and renewal of the.. This project researched whether there is a correlation between the deviation and parcel’s area and how permissible deviations affect the number of parcels with an acceptable difference of nominal areas and areas obtained in the process of digitization. From presented tables and diagrams, the following can be noted: • the deviation value comparing cadastral and digitized area does not depend on the size of parcel’s area • if the coefficient increases by 20% and 35% respectively, it increases the quantity (the number of parcels) within the permissible deviations for 5% (77%, 82% and 85%) whereas further coefficient increase by 50% does not increase the number of parcels within the permissible deviation. When analyzing the values, better indicator is the relative deviation of areas comparing to total parcel’s area with ranges of (-9%, +10%), (-11%, +10%) and (-13%, +12%) for the coefficients 0.7, 0.85 and 0.95 in the formula (1) respectively. It is concluded that the relative area deviations are proportional to the increase of coefficients in the formula (1) which means that special caution is needed when using coefficients in dealing with expensive land, and every deviation should be analyzed with great care. Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 111 3. Methodological Scheme of Proposed Method The above explained method of transforming the cadastral plans of stereographic projection to Gauss-Kruger projection with the establishment and development of new DCM can be generalized and applied to all areas where the stereographic survey is still in use. Fig. 8. Scheme of proposed method. 4. Conclusion This research presents an approach to solving the problem of establishing the real estate cadastre in real estate cadastre authorities in Serbia, where stereographic survey still exists. In practical part of this research, the main aim was to propose a procedure for the establishment of the real estate cadastre in the territory of stereographic projection and it was achieved and verified on a sample which contains 60% of the area of Èoka municipality. Proposed methodology provides easy, fast and within the limits of the accuracy, acquisition of geometric and other necessary data. Depending on the specific terms and conditions in which some sheets in stereographic projection are, in some territories other technical requirements which are not discussed in this paper may occur, but they can certainly be solved using one of modern methods and technologies of graphic and alphanumeric data processing. In order to find the optimum solution for every particular case, detail analysis of the quality and state of the base material have to be done carefully, which would provide the geodetic profession with the qualitative tool to define an appropriate methodology. A new survey would be the best solution for providing a graphical bases (graphical data) for real estate cadastre registry but this solution requires substantial financial resources which are very difficult to provide in the state budget in time of world crisis. In Serbia, the problem of updated survey is solved by the projects of consolidation which are mostly important in the last few years. 112 Ninkov, T. i dr.: One Method of Renewal of Stereographic …, Geod. list 2012, 2, 101–112 References Boc, K. (2009): Creating Digital Cadastre Maps and their Comparison with the Written Part of the Land Operator, Geodetski list, 1, 39 53. Ivkoviæ, M., Vlašiæ, I. (2006): Comparison of Cadastral Parcel Areas in the Old and New Surveys, Geodetski list, 4, 285 294. Ninkov, T. (2004): Integrating Geophysical and GPS Survey Techniques in Serbia, GEOInformatics, 6, Vol. 7, 22 25. Ninkov, T., Bulatoviæ, V. (2011): Communal information systems, lecture’s materials, study program Geodesy and geomatics, Faculty of Technical Sciences, Novi Sad. Ninkov, T., Bulatoviæ, V., Sušiæ, Z., Vasiæ, D. (2010): Application of laser scanning technology for civil engineering projects in Serbia, FIG Congress 2010, Facing the Challenges Building the Capacity, Sydney, April 11 16, Australia. Pajiæ, V., Govedarica, M. (2010): Practical Experiences in Production of DTM and Orthophoto Maps, 1st Project Workshop International experience, Dubrovnik. Popov, K. S. (2011): Jedna metoda obnove stereografskog premera na teritoriji opstine Coka, Master rad, Fakultet tehnickih nauka Univerziteta Novi Sad, Novi Sad. Trifkoviæ, M. (2003): Geodetski planovi, Viša graðevinsko-geodetska škola, Beograd. Jedna metoda obnove stereografske izmjere na podruèju opæine Èoka SAETAK. U radu je prikazan jedan pristup u rješavanju problema uspostave kata stra nekretnina u Slubama za katastar nekretnina na podruèju Srbije gdje još uvi jek postoji stereografska izmjera. Analizirani su problemi koji se pojavljuju u ovom postupku i predloena su rješenja. Stari i ošteæeni planovi, neaurnost, nemoguænost evidentiranja promjena na nedostajuæim dijelovima planova ili karata karakterizi raju katastar zasnovan na stereografskoj izmjeri za preko 25% podruèja pokrajine Vojvodine, a bez aurne i aktualne topografske podloge nema, niti se jednostavno, brzo i dovoljno toèno moe doæi do potrebnih i dovoljnih podataka za izradu i odravanje katastra nekretnina. Ovim radom eli se predloiti postupak za izradu katastra nekretnina na cijelom podruèju koje je pokriveno stereografskom projekci jom. Predloeni postupak je zasnovan na primjeni nekih od suvremenih tehnologija za prikupljanje i obradu grafièkih i alfanumerièkih podataka, korištenje tehnologije prostornih informacijskih sustava, upotrebi tehnologija digitalne fotogrametrije i to pografije. Fotogrametrijska izmjera cijele drave (izvedena 2007. godine), daje mo guænost da digitalni ortofoto planovi budu osnovni izvor prikupljanja podataka, po gotovo na ošteæenim katastarskim planovima. Nova metodologija, koja je korištena i testirana na skoro 60% podruèja naselja Èoka, omoguæava jednostavno, brzo i do voljno toèno prikupljanje tih podataka. Kljuène rijeèi: izmjera, stereografska projekcija, digitalni ortofoto. Primljeno: 2011 09 01 Prihvaæeno: 2012 05 28 Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 113 UDK 528.44:528.3:528.7:349.412.2:347.235:004.4 Struèni èlanak Digital Cadastral Surveying for Land Encroachment Identification using Spatial Technologies Krishnan T. GOPI, S. S. RAMAKRISHNAN – Chennai1 ABSTRACT. Digital Cadastral Surveying is the need of present and future genera tions. The invention of Computer has revamped the face of the world dynamically. Every day in our life is digitalised and with out computers the world could not per form efficiently. The Computers, Satellite images, Aerial digital images could be effi caciously used in the creation of new experimental methodologies for Cadastral Sur veying. Land records are obtained by Cadastral Surveying, which in turn provides the cornerstone for Land Use Planning. Land Use planning is influenced by many factors directly and indirectly. Land encroachment is found to be one of the direct factors affecting Land Use Planning. The Land Encroachments are identified by di gitisation and overlaying analysis using standard GIS software, GPS Equipments for obtaining Ground Control Points, with Satellite images and Aerial images com bined with conventional land records available with the Government Authority. Di squisition of Land encroachment is undertaken in this paper, to find the encroac hment and its types. The problems involved in the encroachments, their detrimental effects on country’s growth are considered while formation of methodology to the ser ve the purpose of its creation. Pros and Cons of the technology is known from the work and explained. This is a Research application requiring hybridization of tec hnologies to obtain high quality spatial surveying products. Keywords: digital cadastral survey, land encroachment, identification, GIS, GPS. 1. Introduction The concept of Digital Cadastral Survey evolved from the concept of digital photogrammetry (Agrawal and Kumar 2008). The Digital Photogrammetry deals with three dimensional mapping of terrain features, the digital cadastral surveying deals with two dimensional mapping of terrain features. Today’s trend is 2 Dimen1 Assist. Prof. Krishnan T. Gopi, Department of Civil Engineering, Aalim Muhammed Salegh College of Engineering, IAF Avadi, Muthapudupet, Chennai-600 055, Tamil Nadu, India, e-mail: gktphd@gmail.com, Prof. S. S. Ramakrishnan, PhD, Department of Civil Engineering, Institute of Remote Sensing, Anna University, Chennai-600 025, Tamil Nadu, India, e-mail: drssramakrishnan@yahoo.com. 114 Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 sional Cadastral Surveying to 3 Dimensional Cadastral Surveying, but the 2 Dimensional Cadastral Survey’s efficiency in finding the Land Encroachment is experimented in this paper. Image for digital cadastral surveying could be obtained from high resolution satellite image and by aerial image for the study area. Land is the important aspect of human life by which human wealth and riches are measured. The need for land escalated desperately for all kinds of human activities like settlement, cultivation, farming, rearing, and of infrastructural needs like roads, buildings, airports, ports, water storage structures in the past decades. The encroachment in land is not a recent issue for developing country like India. The land survey and land records were prepared by the British in India during their rule to collect taxes from people through Zamindars, and Thagirdhars. All the lands classified as government, forest, private lands, temple lands, grazing lands, water bodies and lands lacked proper ownerships are encroached by peoples living around the places. The Indian constituency permits them to claim ownership if they habituated the land for certain period and paid taxes for the land, they could be declared as owners if the land lacks ownership records of the past. India is an enormous country with geographical area of 3,287,240 square kilometres approximately and 1,210,193,422 persons approximately by 2011 population survey, 28 states and 7 union territories form this enormous country which is the worlds second populous. Managing and surveying the land is a consequential task (URL 1). Poor management of land already led to the court cases and mafia interferences in the land transactions. The fluent possible surveying and management of land are by spatial technology, which conceals larger area in shorter span of time. The encroachment in land is a perpetual problem which is found its existence even now in many places of the country. Encroachment seems to be a powerful instrument for some real estate owners and mafia to abduct land from government and even from private land owners some times. Due to encroachment in the land, which is needed for the public infrastructural projects, the delay is observed in completion of the project till the encroachments are removed completely. This situation in turn increases the project cost indirectly due to floating market rates of raw materials needed to complete the project (Blagoniæ and Prosen 2007). Satellite image and aerial image are two benevolent sources of data from different platforms, which provide spatial data for analysing digital cadastral surveying to experiment its suitability in land surveying digitally. This will be a fruitful method in finding the government land and also in monitoring the land related activities. The activities of illegal manner, like non-permit constructions, encroachments in private and government lands, and violation of master plan of the city could also be monitored. Any non-permit mining, deforestation, construction along coastal line could be managed and monitored. The satellite image of high resolution renders its part in finding the features easily in the satellite image as it would be carried out in the field. For fields which are very large it is difficult to identify the boundaries in site, even those issues could be easily solved by use of the satellite images. The aerial image comprises the same properties of satellite images in feature identification in the images. The availability of satellite images cannot be ensured, due to the climatic conditions like rain, fog, snow, cyclones. The aerial images are costly Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 115 when compared to satellite images in terms of image area coverage, can be availed on requirement by flying the aircraft on pre-planned image acquiring techniques. 2. Existing Land Surveying Method The method of surveying adapted in India varies from state to state, because of the difference in the terrain of the country. India is bordered by Himalayan Mountains in the north-east, Eastern Ghats and Western Ghats along the east and west side of the country and Deccan platue in the south. Similar method of survey could not be followed throughout the country. Chain and tape method is followed in the state of Tamil Nadu located south of India. Plane table method is followed in the hilly and mountainous regions to prepare the cadastral maps of the other parts of the country region. The error allowance for chain and tape method is one link (+ or – 20 cm) for one chain measurement of 20 meters. Error allowance for area is + or – 5% for the total area calculated per field. The method followed, while using chain and tape is Diagonal and Offset method. Village is the smallest unit for maintaining land records. Each parcel of land will be in village administration boundary. The value of dimensions and area which are obtained by chain and tape may have additive or subtractive errors as per the error allowances. 3. Spatial Technologies The Spatial Technologies such as GPS, GIS, Satellite Image, and Aerial Digital Image are employed in the research methodologies to find out the economical and suitable land encroachment identification method. The satellite image of Quick Bird having spatial resolution of 0.61 meters is used and the Aerial Digital Image of 0.15 meters of Ground Sample Distance is used in the research application methodologies. The Global Positioning System equipment used in this methodology is Trimble 4000SSE, and 5700 models. The GIS software used in this research is ARC GIS 9.1 product from ESRI Company. 4. Method of Digital Cadastral Surveying The spatial data used for carrying out the digital cadastral surveying are satellite imagery of quick bird with image resolution of 0.61 meters and aerial image of the study area with 0.15 meters Ground Sample Distance (GSD). The software required is ARC GIS or any other GIS (Geographical Information System) software suitable for digital cadastral survey could be used. The equipments used are Global Positioning System in static mode and respective software provided from the brand of purchase for processing the data obtained. The study area chosen is Ambattur taluk, Thiruvallur district which is under administrative boundary of Chennai. The Chennai metropolitan city is the capital of the state of Tamil Nadu, which is located in the south India. The study area and its administrative boundaries are shown clearly in Fig. 1. The study area consists of 46 villages, out of 116 Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 which 8 villages are under the administrative boundary of corporation of Chennai metropolitan city. The study area is in fast developing pace with variety of terrain features in the relatively flat surface having water bodies, residential settlements, industries and area of commercial and economical importance. The availability of various features in the study area enhances the testing ability of digital cadastral survey in a relatively flat terrain. Fig. 1. Ambattur Taluk Map Showing 46 Village Administrative Boundaries. The satellite image is obtained from the digital globe company by placing order for purchase to the specific study area by row and path numbers. Suitable locations for making GPS (Global Positioning System) observations are selected with satellite images and by field visits. The locations where GPS observations are carried out, it will be used as GCPs (Ground Control Points). Building edges with out canopy cover, road junctions, farming field edges with out vegetation cover, bridges are more suitable locations for Ground Control Points. The GPS observations are carried out in the suitable selected areas where vegetation and high rise buildings are less (Seeber 1993). The GPS unit is made to observe latitude and longitude in static mode as precise values are required for carrying out Digital Cadastral Survey. The observation made in static mode lasts for minimum of 20 to 30 minutes in static differential global positioning system mode of operation. Accuracy and precision achieved by this mode will be + or – 10 mm. This is the recommended level of accuracy for Ground Control Points in the cadastral surveying. The images are uploaded in the arc catalogue and the projection is set to UTM zone for India, State Tamil Nadu, which is 44N in the projected coordinate system Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 117 option in ARC GIS 9.1. The spatial data are registered using the ground control points obtained by GPS surveying. The Land Survey Record maps collected from the Land Survey and Land Records Department of Tamil Nadu State Government are scanned and uploaded in the Arc catalogue of Arc GIS and registered with the coordinates of latitude and longitude obtained from GPS in static mode of survey (Boc 2009). The spatial data of aerial and satellite image is uploaded in layers of Arc Map and the map layers of Land records are overlaid. The land records identical to the field boundaries in satellite image and aerial image are distinguished. The government lands are identified by land record register, which states the details of land by parcel numbers, subdivision of the parcels in the land record and in the image at the same time. The parcels belonging to government are identified and digitised in a separate layer. The encroachments in the land will be visible in the spatial data of the aerial and satellite image. The encroachments in the land parcels could be easily identified by this method. Then the encroachments are digitised separately in the same layer with different coloured hatchings. The Fig. 2 show Fig. 2. Work Flow Diagram for Identification of Encroachments using Spatial Data. 118 Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 the simplified flow diagram of the complete methodology to obtain result through this research application. The encroachment in any country is not a simple issue to be considered with ease. Spatial Technological development incites in managing and maintaining land and land records precise and updated (Enemark 2008). 5. Encroachments Specified The encroachments such as roads, pipelines, buildings in government and non-governmental lands are identified and digitised in a separate layer colour. Then the encroachments are verified with the data provided from the government for allocations and permissions for new constructions. The encroachments recorded in the separate layer are created as a separate record for land management. These encroachments will not be recorded as encroachments but will be recorded as allocated land for specific projects by Government and in the case of non-governmental lands it will be considered as permitted construction activities. If the activities on the lands are found to be non-authorised by government, then it will be considered as encroachments. In the case of private non-permit construction or infrastructural activities it will be considered as encroachments in need of immediate action from government. Then hatching will be applied to the delineated polygons of the parcel boundaries of encroached land. Confining the encroachment to two classes such as Private and Government, incites us in reducing the work. As the Government encroachments will be termed as allocated land after verification with the government allocation land records, only the private encroachments needs to be identified. Private encroachments are encroachments in private property. These private encroachments are identified by Survey Land Records and from permit for construction and infrastructural activities from the town or village land management authorities. The lands which were allotted ownership by Government have to be identified and separately digitised, which once were termed as encroachments. The details of ownership allotted lands could be obtained from the Survey and Land Records department of Tamil Nadu Government and Slum clearance board of Tamil Nadu Government. These land details are recorded in a separate layer and verified with the land records maintained by the Tamil Nadu Survey and Land Records Department, Town development and planning authority. 6. Encroachments Identified Certainly encroachments are defined as advancing beyond the limits or unauthorised gradual taking of another’s possession. The types of encroachments are important to be discussed. There are various forms of encroachments that could be found while surveying. There are Road encroachment, public land encroachment, private land encroachment, forest land encroachment, water body encroachment, river bed encroachment, boundary encroachment, memorial and sacred places encroachments and non-permit activities on land like construction, industries, wa- Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 119 rehousing. These are encroachments which cause great loss to the nation and its revenue. These encroachments are not just losses to the land value and owning authority but will lead to court cases and settlement problems. There are many encroachment issues left unsolved which causes infrastructure problems, due to that future needs cannot be met by the society. Any kind of infrastructure requires land, when the common land for infrastructure is scarce, providing basic needs like water, sanitation, fire safety, and electricity would be difficult and creates infrastructure management problem, which eventually results in accidents and trauma. Fig. 3 clearly shows the institutional encroachments. Fig. 4, 5 urban sprawl encroachments in shallow water bodies. Fig. 6, 7 shows the industrial encroachments in remote village water bodies. From the identification it’s certain that, land lacking proper protection like fencing, and compound wall are vulnerable to land encroachment. The effect of urbanization plays an important in land encroachment. The land lacking proper protection measures like fencing, compound wall and nearer to infrastructure, urban developments are susceptible to land encroachment problems. The locations like village and areas where no infrastructure facilities like roads, drinking water, and power are far, those locations showed less encroachment when compared to the previous case, some places showed zero encroachments. From this method the encroachments are able to be identified easily, the high resolution satellite and aerial imagery incites in finding the encroachments effectively. Fig. 3. Institutional Encroachment in Government Land Shown in Hatching. 120 Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 Fig. 4. Village Parcel Showing Shallow Water body Encroachment in Hatching. Fig. 5. Urban Sprawl Showing Encroachment in Water Body and Government Land. Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 121 Fig. 6. Village showing Industrial Encroachment near Water Bodies. Fig. 7. Parcels Shared by Water Bodies Showing Encroachments in Hatchings. 122 Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 7. Causes of Land Encroachments The peoples those who reside in the encroached land are not real encroachers. The persons who are responsible for encroachments are mafia and illegal abductors of land. These peoples sell land lacking proper records for cheap costs to the peoples who are poor and needy, promising them about the land law for claiming ownership in the future. This is how the land are encroached by the people, which belong to the government and some times even private land. A main cause for land encroachments are not alone illegal land abductors and mafia, but also by poor management and maintenance of land incites the local discriminates to take advantage of the existing condition. Need for land has escalated by the past decade, for various land related activities. Global rise in real estate value resulted in the demand for land in low cost. The poor peoples have to go for low cost land which will be termed as encroached land technically. 8. Result and Discussion The land encroachment in the private and government is being identified effectively utilising modern technology such as aerial and satellite image aided digital spatial technology. Concept of Digital Cadastral Survey is being developed and applied in the identification of encroachment of land by using two dimensional Aerial and Satellite images. GPS is used in obtaining Ground Control Points through Static Mode. The land records matched apparently with many locations of satellite and aerial images. The purpose of encroachment identification, overlaying analysis of chain and tape created records over aerial and satellite images are attained. But the conventional records created by chain and tape surveying remain unmatched in some parts of the study area over the satellite image. Further research contributions are required in the unmatched areas. 9. Pros Man power, costs involved, times required are saved through this method. Larger area is covered in short span of time. Instant results are possible for study area if software and computer facilities are available on site. Present condition of the study area is easily verified with very few field visits for vegetation covered areas, which are poorly or non-visible in Satellite and Aerial images. This method proved to be economical when compared to the conventional method of land management for enormous country like India. 10. Cons Image availability by satellite acquisition cannot be ensured due to cloud cover and other natural factors like fog, snow. Aerial images have restrictions like climate and defence permissions for image acquisition and use. Satellite image Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 123 acquisition depends on optical remote sensing so climate and atmosphere has greater effects on image and its quality. 11. Conclusion The demonstrated technology is found suitable for land surveying in digital mode. Launch of high resolution satellites and high resolution aerial images contribute to research of land surveying in optically remote sensed image. This field requires research contributions and hybridising the existing technology with the help of other methods of remote sensing like Microwave, and ALTM with high resolution and reaching to earth surface with vegetation cover and poor visible areas are possible. References Agrawal, K., Kumar, G. S. (2008): Digital Photogrammetry Reaches Grass Root Levels in India, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part B7. Blagoniæ, B., Prosen, A. (2007): The Importance of Modern Cadastre in Environmental Protection, Geodetski list, 4, 259 272. Boc, K. (2009): Creating Digital Cadastre Maps and their Comparison with the Written Part of the Land Operator, Geodetski list, 1, 39 53. Enemark, S. (2008): Underpinning Land Management A major challenge for the global surveying profession, Geodetski list, 2, 83 97. Seeber, G. (1993): Satellite Geodesy, Walter de Gruyter & Co, Berlin. URL 1: India, http//:www.cadastraltemplate.org, (20.04.2012). 124 Gopi, K. T. i Ramakrishnan, S. S.: Digital Cadastral Surveying for …, Geod. list 2012, 2, 113–124 Digitalna katastarska izmjera za identifikaciju prisvajanja zemljišta primjenom prostornih tehnologija SAETAK. Digitalna katastarska izmjera potreba je sadašnjih i buduæih generacija. Pojava raèunala promijenila je u dinamièkom smislu cijeli svijet. Bez digitalnih ureðaja i bez raèunala svijet ne moe uèinkovito funkcionirati. Raèunala, satelitske i zraène digitalne snimke mogu se uèinkovito upotrebljavati u kreiranju novih ekspe rimentalnih metoda katastarske izmjere. Podaci u zemljišnim knjigama dobiveni su katastarskom izmjerom, što nam osigurava temeljne podatke za planiranje i upotre bu zemljišta. Planiranje upotrebe zemljišta pod utjecajem je brojnih èimbenika, iz ravno i neizravno. Prisvajanje zemljišta moguæe je identificirati digitalizacijom i razlikovnom analizom pomoæu standardnih GIS softvera, uz upotrebu GPS ureðaja, satelitskih i aerofotogrametrijskih snimki u kombinaciji s uobièajenim podacima iz zemljišnih knjiga. Rasprava u ovom radu provodi se u svrhu otkrivanja vrsta i tipo va prisvajanja zemljišta. Razmatraju se problemi koji nastaju zbog prisvajanja te njihovi štetni utjecaji na dravu koja ima tendenciju rasta i širenja, kao i definira nje metodologije koja slui njezinom stvaranju. Prednosti i nedostaci takve tehnolo gije objašnjeni su u radu. Primjena istraivanja zahtijeva hibridnu tehnologiju za dobivanje visoko kvalitetnih rezultata. Kljuène rijeèi: digitalna katastarska izmjera, prisvajanje zemljišta, identifikacija, GIS, GPS. Primljeno: 2012 04 21 Prihvaæeno: 2012 05 31 Geod. list 2012, 2 VIJESTI 125 17. DRAVNO NATJECANJE UÈENIKA GRADITELJSKIH I GEODETSKIH ŠKOLA REPUBLIKE HRVATSKE U Geodetskoj tehnièkoj školi Zagreb, Graditeljskoj tehnièkoj školi Zagreb te Obrtnièkoj i in dustrijskoj graditeljskoj školi Zagreb odrano je, od 26. do 28. travnja 2012. godine, 17. Dravno natjecanje uèenika i uèenica graditeljskih i geodetskih škola Republike Hrvatske u znanjima i vještinama graðenja. Na tom natjecanju sudjelovali su uèenici i mentori iz ukup no 31 škole. Natjecanje je odrano u 9 strukovnih disciplina: • geodetski tehnièar • arhitektonske konstrukcije • nosive konstrukcije graðevna mehanika • crtanje • zidar • tesar • monter suhe gradnje • soboslikar lièilac • keramièar oblagaè. Èlanovi Dravnog povjerenstva za provedbu natjecanja bili su: • Biserka Maurer, dipl. ing. geod., Geodetska tehnièka škola Zagreb, predsjednica • Gordana Paškvan Budiseliæ, dipl. ing. arh., Agencija za strukovno obrazovanje i obrazo vanje odraslih, tajnica • Jasna Fabijaniæ, dipl. ing. arh., Graditeljska tehnièka škola Zagreb • Anto Vidoviæ, dipl. teolog, Obrtnièka i industrijska graditeljska škola Zagreb • dr. sc. Mladen Zrinjski, dipl. ing. geod., Geodetski fakultet Sveuèilišta u Zagrebu • Marina Æupurdija, dipl. ing. grað., Graðevinska tehnièka škola Rijeka • Nada Stipanièev, dipl. ing. arh., Graditeljsko geodetska tehnièka škola Split • red. prof. Renata Waldgoni, dipl. ing. arh., Arhitektonski fakultet Sveuèilišta u Zagrebu • Damir Bešeniæ, dipl. ing. grað., Srednja škola Bedekovèina • Dubravko Èoriæ, dipl. ing. arh., Obrtnièka i industrijska graditeljska škola Zagreb • Danijela Ðuriæ, dipl. ing. arh., Graditeljska, prirodoslovna i rudarska škola Varadin • Goran Mrðen, ing. grað., Obrtnièka škola Koprivnica • Vlatko Vincek, akad. slikar, Obrtnièka i industrijska graditeljska škola Zagreb. Èlanovi Prosudbenog povjerenstva za ocjenjivanje za zanimanje geodetski tehnièar bili su: • dr. sc. Mladen Zrinjski, dipl. ing. geod., predsjednik, autor zadataka za natjecanje • Snjeana Vouèko, dipl. ing. geod., èlanica • Saša Tièiæ, dipl. ing. geod., èlanica • Angelina Dinarina Poljak, dipl. ing. geod., prièuva. Natjecanju za zanimanje geodetski tehnièar pristupilo je sedam uèenika, a provjera znanja sastojala se od: • zadataka iz podruèja geodetskog raèunanja i • testa znanja. U tablici 1 dan je konaèni poredak uèenika za zanimanje geodetski tehnièar prema ukup nom broju ostvarenih bodova. 126 Vijesti, Geod. list 2012, 2 Tablica 1. Konaèni poredak uèenika za zanimanje geodetski tehnièar. Poredak Ime i prezime natjecatelja Ime i prezime Naziv škole mentora 1. Franco Matulja Graðevinska tehnièka škola Rijeka Saša Tièiæ, dipl. ing. geod. 2. Marijo Pejak Geodetska tehnièka škola Zagreb Snjeana Vouèko, dipl. ing. geod. 3. Dorijan Radoèaj Graditeljsko geodetska škola Osijek Alen Junaševiæ, dipl. ing. geod. 4. Tanja Erik Tehnièka škola Pula Jadranka Vreš Rebernjak, dipl. ing. geod. 5. Matej Safundiæ Srednja škola Matije Antuna Reljkoviæa Slavonski Brod Bariša ivkoviæ, dipl. ing. geod. 6. Petar Jurèeviæ Graditeljsko geodetska tehnièka škola Split Angelina Dinarina Poljak, dipl. ing. geod. 7. Luka Galekoviæ Geodetska tehnièka škola Zagreb Snjeana Vouèko, dipl. ing. geod. Èestitamo svim uèenicima i mentorima. Troje prvoplasiranih uèenika: Franco Matulja, Marijo Pejak i Dorijan Radoèaj svojim su re zultatom ostvarili direktan upis na Geodetski fakultet Sveuèilišta u Zagrebu ili na Fakultet graðevinarstva, arhitekture i geodezije Sveuèilišta u Splitu (na sveuèilišni preddiplomski studij geodezije i geoinformatike). Zahvaljujemo domaæinima Geodetskoj tehnièkoj školi Zagreb, Graditeljskoj tehnièkoj školi Za greb te Obrtnièkoj i industrijskoj graditeljskoj školi Zagreb na lijepom gostoprimstvu i druenju. Mladen Zrinjski MAGISTRI INENJERI GEODEZIJE I GEOIFORMATIKE Na Geodetskom fakultetu Sveuèilišta u Zagrebu, dana 27. travnja 2012. godine, na sveuèi lišnome diplomskom studiju geodezije i geoinformatike diplomiralo je ukupno 4 pristupnika i time stekli akademski naziv magistar inenjer geodezije i geoinformatike, odnosno magi stra inenjerka geodezije i geoinformatike. Pregled magistara inenjera geodezije i geoinformatike: Pristupnik Naslov diplomskog rada Irena Èale “Satelitska misija GOCE rezultati i primjena” Ivana Glibušiæ “Upotreba programskog paketa Pointools u obradi i modeliranju skeniranih objekata” Klement Ivandiæ “Primjena GIS-a u analizi trišta nekretnina” Zvonimir Pušiæ “Prostorna analiza katastarske èestice u odnosu na zone namjene u k. o. Centar” Datum obrane, mentor 27. 04. 2012., prof. dr. sc. Tomislav Bašiæ 27. 04. 2012., doc. dr. sc. Almin Ðapo 27. 04. 2012., prof. dr. sc. Siniša Masteliæ Iviæ 27. 04. 2012., prof. dr. sc. Siniša Masteliæ Iviæ Kratica za ovaj akademski naziv je: mag. ing. geod. et geoinf. Èestitamo novim magistrima inenjerima geodezije i geoinformatike. Mladen Zrinjski 127 Vijesti, Geod. list 2012, 2 DIPLOMIRALI NA GEODETSKOM FAKULTETU Na Geodetskom fakultetu Sveuèilišta u Zagrebu, od 25 veljaèe do 27. travnja 2012. godine, na sveuèilišnome dodiplomskom studiju geodezije diplomirao je jedan pristupnik. Pregled podataka o diplomiranom inenjeru geodezije: Pristupnik Naslov diplomskog rada Hrvoje Èikotiæ “Morsko-tehnièke konstrukcije” Datum obrane, mentor 27. 04. 2012., prof. dr. sc. Siniša Masteliæ Iviæ Èestitamo novom diplomiranom inenjeru geodezije. Mladen Zrinjski 128 Vijesti, Geod. list 2012, 2 ME\UNARODNI SIMPOZIJ O INENJERSKOJ GEODEZIJI, SLAVONSKI BROD, HRVATSKA, 29–30. SVIBNJA 2012. U organizaciji Hrvatskoga geodetskog društva je, u Slavonskom Brodu, od 29. do 30. svib nja 2012. odran Meðunarodni simpozij o inenjerskoj geodeziji International Symposium on Engineering Geodesy. Simpozij je odran u kazališno koncertnoj dvorani “Ivana Brliæ Mauraniæ”. Simpozij je odran pod pokroviteljstvom Akademije tehnièkih znanosti Hrvatske. Teme simpozija bile su sljedeæe: 1. Suvremeni trendovi u geodetskoj znanosti 2. Geodezija u legalizaciji bespravne gradnje 3. Uloga geodeta u društvu • Dravna uprava • Gospodarstvo • Obrazovanje • Poslovna komunikacija. Èlanovi Organizacijskog odbora bili su: • Joef Delak, dipl. ing. geod., predsjednik • Marija Tomiæ, dipl. ing. geod. • mr. sc. Franjo Ambroš • mr. sc. Blaenka Mièeviæ • Vladimir Krupa, dipl. ing. geod. • Davorin Špoljariæ, dipl. ing. geod. • Dejan Posavac, dipl. ing. geod. Èlanovi Znanstveno struènog odbora bili su: • prof. dr. sc. Damir Medak, predsjednik • Damir Pahiæ, dipl. ing. geod. • prof. dr. sc. Marko Dapo • prof. dr. sc. Zdravko Kapoviæ • prof. dr. sc. Gorana Novakoviæ • prof. dr. sc. Ðuro Barkoviæ • doc. dr. sc. Mladen Zrinjski • prof. dr. sc. Asim Bilajbegoviæ (Njemaèka) • prof. dr. sc. Béla Márkus (Maðarska) • doc. dr. sc. Gerhard Navratil (Austrija) • prof. dr. sc. Dušan Kogoj (Slovenija) • prof. dr. sc. Zagorka Gospaviæ (Srbija). Sveèano otvaranje zapoèelo je dravnom himnom, koju su izvele èlanice vokalnog sastava “Ad Astra”. Sudionike i goste su uz prigodne govore pozdravili: upan Brodsko posavske upanije Davor Vlaoviæ, izaslanik predsjednika Hrvatske komore ovlaštenih inenjera geo dezije Vladimir Krupa, predsjednik Hrvatske udruge poslodavaca Udruga geodetsko geo Vijesti, Geod. list 2012, 2 129 Slika 1. Predsjednik Organizacijskog odbora Joef Dedak. informatièke struke Robert Paj, predsjednik Hrvatskoga kartografskog društva i èlan Pred sjedništva Akademije tehnièkih znanosti Hrvatske prof. dr. sc. Miljenko Lapaine, izaslanik dekana Geodetskog fakulteta Sveuèilišta u Zagrebu prodekan za znanstveni rad i meðuna rodnu suradnju prof. dr. sc. Tomislav Bašiæ te izaslanica ravnatelja Dravne geodetske uprave zamjenica ravnatelja mr. sc. Blaenka Mièeviæ. Aktivni sudionici simpozija s Geodetskog fakulteta Sveuèilišta u Zagrebu bili su: prof. dr. sc. Damir Medak, prof. dr. sc. Tomislav Bašiæ, prof. dr. sc. Miljenko Lapaine, prof. dr. sc. Ðuro Barkoviæ, prof. dr. sc. Marko Dapo, dr. sc. Ivan Medved i doc. dr. sc. Mladen Zrinjski. Neki od njih bili su voditelji sesija, a ostali su prezentirali radove koje su izradili samostalno ili u koautorstvu. Prezentirano je ukupno 15 radova u 5 razlièitih sesija na hrvatskom i engleskom jeziku. Autori su prezentirali (podcrtana imena) sljedeæe radove: • Landek, I., Vilus, I.: Izrada DOF5 za potrebe legalizacije nelegalno izgraðenih objekata • Salopek, D., Ambro, F.: Iskustvo Hrvatskog telekoma d. d. u imovinsko pravnom ureðe nju svoje elektronièke komunikacijske infrastrukture • Konèiæ, A. M.: Upis ceste u zemljišne knjige temeljem novog Zakona o cestama • Pahiæ, D.: Land Administration and the United Nations Economic Commission for Euro pe Working Party on Land Administration Activities • Roll, G., Milligan, M.: Activities of the UNECE Committee on Housing and Land Mana gement • Bambagioni, G.: Economic Trends and UNECE Real Estate Market Advisory Group Acti vities • Tomiæ, M.: Izrada standarda zanimanja i standarda kvalifikacije u zvanju geodetski tehni èar/tehnièarka i geoinformatièar/geoinformatièarka • Grubiæ, I.: Standardizirani digitalni oblik kartografskih znakova i prikaza • Barkoviæ, Ð., Zrinjski, M., Zovko, M.: Vanost primjene nacionalnih norma za geodetska mjerila 130 Vijesti, Geod. list 2012, 2 • Kapoviæ, Z.: Osvrt na posebitosti inenjerske geodezije • Medved, I., Medak, D.: Primjena geostatistièkih analiza u detekciji klizišta • Glagoliæ, M.: FME transformacije visoke toènosti izmeðu HDKS i HTRS96, kao i Trst i HVRS71 • Lapaine, M.: Hrvatski jezik u geodeziji i geoinformatici • Bašiæ, T.: Neki suvremeni trendovi u geodetskoj znanosti • Dabiæ, M.: Pregovaraèke strategije. Prvog dana simpozija odran je okrugli stol na temu Geodetski aspekti ozakonjenja i regi stracije graðevina (slika 2). Slika 2. Okrugli stol: Geodetski aspekti ozakonjenja i registracije graðevina. Tijekom odravanja simpozija odrana je izloba geodetske i geoinformatièke opreme (slika 3) uz sudjelovanje sljedeæih tvrtki: DIT d.o.o., Multisoft, Geocentar, Geoplan d.o.o., Geosoft, Geosustavi, GeoWILD i Geomatika Smolèak d.o.o. Organizator posebno zahvaljuje tvrtka ma Multisoft i DIT d.o.o. na sponzorskoj potpori. Tijekom pauza simpozija, u utorak 29. svibnja organiziran je obilazak tvrðave Brod (slika 4), a u srijedu 30. svibnja, u dogovoru s Hrvatskim vodama, brodom je organiziran obilazak dravne granice s Bosnom i Hercegovinom. Zahvaljujemo Udruzi geodeta Brodsko posavske upanije koja je doprinijela uspjehu ovoga skupa te organizaciji spomenutih izleta. Na kraju prvog dana organizirana je sveèana veèera (slika 5) za sve sudionike simpozija, na kojoj su dodijeljena priznanja izlagaèima i sponzorima, kao i dopredsjednici FIG a Chryssy A. Potsiou (slika 6). Prije sveèanog zatvaranja kao nagrada za sudjelovanje i praæenje simpozija do samoga kraja sudionici zadnjih predavanja sudjelovali su u nagradnom izvlaèenju pri èemu je dvoje sudio nika primilo nagradu GPS autonavigaciju tvrtke Geosustavi, te im ovom prilikom zahvalju jemo na doniranim nagradama. 131 Vijesti, Geod. list 2012, 2 Slika 3. Izloba geodetske i geoinformatièke opreme. Slika 4. Obilazak tvrðave Brod. 132 Vijesti, Geod. list 2012, 2 Slika 5. Sveèana veèera. Slika 6. Dopredsjednica FIG a Chryssy A. Potsiou. Meðunarodni simpozij o inenjerskoj geodeziji sveèano je zatvorio, prigodnim govorom, predsjednik HGD a Joef Delak, dipl. ing. geod. Hrvatsko geodetsko društvo uloilo je mnogo truda u organizaciju Meðunarodnog simpozija o inenjerskoj geodeziji. Veseli nas primjerena posjeæenost i zadovoljstvo svih sudionika organizacijom i kvalitetom znanstveno struènih radova, što nam daje poticaj za organizaci ju buduæih skupova. Joef Delak 133 Vijesti Dravne geodetske uprave, Geod. list 2012, 2 REPUBLIKA HRVATSKA Dravna geodetska uprava HR 10000 Zagreb, Gruška 20 www.dgu.hr INSPIRATION – Spatial Data Infrastructure in the Western Balkans Dana 21. i 22. oujka 2012. u Zagrebu je odran uvodni radni sastanak projekta “INSPIRATION Spatial Data Infrastructure in the Western Balkans”. Projekt kao nit vo dilju ima promociju infrastrukture prostornih podataka u dravama regije. Glavna tema sa stanka bilo je iskazivanje oèekivanja zemalja korisnica od samog projekta. U ime glavnih korisnika projekta, dravnih institucija nadlenih za dravnu izmjeru i kata star, sastanku su prisustvovali predstavnici (slika 1): • Središnjeg ureda za registraciju nekretnina Republike Albanije • Federalne uprave za geodetske i imovinsko pravne poslove Federacije Bosne i Hercegovine • Republièke uprave za geodetske i imovinsko pravne poslove Republike Srpske, BiH • Uprave za nekretnine Crne Gore • Katastarske agencije Kosova (This designation is without prejudice to positions on status, and is in line with UNSC 1244 and the ICJ Opinion on the Kosovo declaration of inde pendence.) • Agencije za katastar na nedvinosti Republike Makedonije • Republièkog geodetskog zavoda Republike Srbije i • Dravne geodetske uprave Republike Hrvatske. Slika 1. Sudionici uvodnog sastanka. Sastanku je u ime Europske komisije prisustvovao i predstavnik Joint Reaserch Centre dr. sc. Vlado Cetl. Projekt æe biti implementiran od strane konzorcija kojeg èine: • GFA Consulting Group GmbH, Njemaèka • Con terra GmbH, Njemaèka • Umweltbundesamt GmbH, Austrija • GISDATA d.o.o., Hrvatska. 134 Vijesti Dravne geodetske uprave, Geod. list 2012, 2 Tri su osnovne komponente projekta: • Analiza zakonodavnog i institucionalnog okvira za uspostavu NIPP a • Stvaranje kapaciteta i prijenos znanja • Promocija i dizanje svijesti o NIPP u. Na sastanku Upravnog odbora ravnatelj DGU a, gosp. Danko Markovinoviæ, imenovan je predsjednikom, a ravnatelj Agencije za katastar na nedvinosti Republike Makedonije gosp. Ljupèo Georgievski zamjenikom predsjednika Upravnog odbora. Tomislav Ciceli FIG Working Week 2012 Glavni godišnji radni tjedan Meðunarodnog udruenja geodeta (FIG) FIG Working Week, odrao se u Rimu od 6. do 10. svibnja 2012. s temom “Knowing to manage the territory, pro tect the environment, evaluate the cultural heritage”. Na konferenciji je sudjelovalo više od 1500 delegata iz cijelog svijeta. Glavni organizatori konferencije bili su institucija Consiglio Nazionale Geometri e Geometri Laureati (Nacionalno vijeæe geodeta i diplomiranih inenje ra geodezije) i FIG, dok je glavni partner bio FAO (Food and Agriculture Organization of United Nation). Sveèano otvaranje konferencije (slika 1) bilo je u Guiseppe Sinopoli Hall, Parco della Musica uz koncert Simfonijskog orkestra iz Rima. Slika 1. Sveèano otvaranje konferencije. Vijesti Dravne geodetske uprave, Geod. list 2012, 2 135 Kao predstavnici Dravne geodetske uprave u radu konferencije sudjelovali su dr. sc. Dan ko Markovinoviæ, ravnatelj i Jelena Unger, dipl. ing. geod., proèelnica Podruènog ureda za katastar Koprivnica. Gosp. Markovinoviæ je, pored ostalog, sudjelovao u radu Foruma di rektora (Director General Forum) (slika 4), organiziranog za direktore organizacija èlanica FIG a u èijoj su nadlenosti katastar i kartografija, a gða. Unger u sesiji “Land Policy and Reform” s prezentacijom rada “Cooperation between Municipality and Cadastre on Land and Housing Policy” (slika 2 i slika 3). Rad je nastao u koautorstvu s Majom Ištvan Krapi Slika 2. Predstavljanje Hrvatske. Slika 3. Izlaganje Jelene Unger. 136 Vijesti Dravne geodetske uprave, Geod. list 2012, 2 nec, dipl. ing. arh., proèelnicom Upravnog odjela za komunalno gospodarstvo, prostorno ureðenje i zaštitu okoliša u Gradu Koprivnici. U radu se daje prikaz projekata realiziranih u suradnji izmeðu Grada Koprivnice i Dravne geodetske uprave, koji su doprinijeli poboljšanju katastarskih podataka i modernizaciji ka tastra te pomogli Gradu u izgradnji uèinkovitog sustava prostornog planiranja, zašiti okoli ša i odrivom razvoju. Opisana je interakcija katastarskog i prostorno planskog sustava u mnogim segmentima djelovanja Grada Koprivnice, pa i u primjeni Zakona o postupanju s nezakonito izgraðenim zgradama. U tri dana konferencije prezentacije radova odravale su se u desetak paralelnih sesija, razvrstane prema temama iz mnogih podruèja kao što su: prostorne informacije, zemljišna administracija, zemljišni menadment, geodetski datumi, fotogrametrija, inenjerska geo dezija, prostorno planiranje, zaštita okoliša i kulturnih dobara, klimatske promjene, hidro grafija, kartografija, oporezivanje, GIS, praæenje deformacija i još mnoga druga. Lijepo je vidjeti da je u jednakom rangu s ostalim podruèjima naše struke i sam katastar. Bez obzira o kojoj se zemlji radi, katastar se svugdje tretira kao bitno podruèje za sveopæi razvoj svake zajednice. Slika 4. Sudjelovanje u radu Foruma direktora. Iz bogatog programa treba još izdvojiti inspirativnu posjetu katastru (slika 5) koji je zajed no sa zemljišnom knjigom u sastavu Agenzie del Territorio (slika 6). Agencija je tako orga nizirana da ovlašteni inenjeri geodezije preuzimanje podataka i predaju elaborata obavlja ju elektronskim putem. Potpisivanje je riješeno elektronskim potpisom, a pristojbe se plaæa ju iz depozita koji svaki ovlaštenik polae u katastru. Katastar se sastoji od zemljišnog kata stra Land cadastre, u kojem se obraðuje 82 milijuna èestica i katastra urbanih zgrada Urban building cadastre, u kojem se obraðuje 63 milijuna zgradnih èestica. Za preuzimanje podataka i predaju elaborata u Agenciji su izradili specifiène vlastite aplikacije PREGEO za zemljišni (ruralni) katastar i DOCFA za katastar zgrada, koje su dostupne ovlaštenicima putem web stranice Agencije bez plaæanja ikakve naknade i upotrebljavaju se na jedinstveni naèin u cijeloj dravi. Vijesti Dravne geodetske uprave, Geod. list 2012, 2 Slika 5. Posjet katastru. Slika 6. Predstavljanje Agenzie del Territorio. 137 138 Vijesti Dravne geodetske uprave, Geod. list 2012, 2 U drugom dijelu godišnje skupštine odranom zadnji dan skupa, koji je vodio Cheehai Teo (slika 7), predsjednik FIG udruenja, izabrana su dva nova potpredsjednika za razdoblje od 2013. do 2016. godine Bruno Razza iz Italije i Pengfei Cheng iz Kine te predsjednici komi sija za razdoblje od 2013. do 2014. godine. Prihvaæeni su neki novi èlanovi FIG udruenja, tako da se broj redovnih èlanova poveæao na 105 (iz 87 zemalja), broj korporativnih na 25, a broj akademskih na 90. Slika 7. Provoðenje izbora u FIG u. Takoðer, izabrane su dvije nove destinacije za daljnje odravanje skupova FIG a. FIG Working Week 2015. odrat æe se u Sofiji u Bugarskoj, a 2016. u Christchurchu u Novom Zelandu. Velika panja posveæena je mladima i enama u našoj profesiji te je paralelno odrana i prva FIG konferencija mladih geodeta. Danko Markovinoviæ i Jelena Unger Geod. list 2012, 2 PREGLED STRUÈNOG TISKA I SOFTVERA 139 USPOREDBA PODATAKA ATKIS-a i OpenStreetMapa ATKIS (Amtliches Topographisch Kartographisches Informationssystem) je slubeni topo grafsko kartografski informacijski sustav Republike Njemaèke. Izvedbeni projekt ATKIS a završen je, nakon petogodišnjeg rada, 1989. godine i tada se pristupilo njegovoj realizaciji. Topografske informacije pohranjene su u digitalnim topografskim modelima za koje se upo trebljavaju i nazivi digitalni modeli krajolika (Digitale Landschaftsmodelle DLM). Postoje èetiri DLM a: Osnovni DLM (odgovara kartama mjerila 1:10 000 1:25 000), DLM50 (1:50 000 1:100 000), DLM250 (1:200 000 1:500 000) i DLM1000 (1:1 000 000 i sitni ja mjerila). Glavni izvornik za izradu Osnovnog DLM a je njemaèka osnovna karta mjerila 1:5000 na kojoj toèkasti i linijski elementi imaju poloajnu toènost od ±3 m. Stoga i polo ajna toènost Osnovnog DLM a u najveæoj mjeri odgovara toj toènosti. OpenStreetMap (OSM) je projekt virtualne zajednice s ciljem stvaranja slobodne, svi ma dostupne karte, koju svatko moe sam i doraðivati. Karte, odnosno kartografski podaci na OSM u su doprinosi suradnika, a uglavnom nastaju primjenom ruènih GPS ureðaja, preuzimanjem podataka s aerosnimaka ili satelitskih snimaka i iz drugih slobodnih izvora. Podaci su raspoloivi za preuzimanje prema Open Database License (http://hr.wikipedia.org/wiki/OpenStreetMap). Projekt pokrenut 2004. do danas je naišao na veliki odaziv (oko 400 000 registriranih korisnika) pa su za mnoge dijelove svijeta do stupne detaljne karte. Poloajna toènost podataka iznosi oko ±5 m, što odgovara toènosti ruènih GPS ureðaja. Da bi se ispitala potpunost (completeness) i poloajna toènost (positional accuracy) podata ka OSM a, odluèili su u Institutu za geoinformatiku i daljinska istraivanja Sveuèilišta u Osnabrücku usporediti te podatke s podacima Osnovnog DLM a ATKIS a (u daljnjem tek stu ATKIS). U Donjoj Saskoj odabrana su tri ispitna podruèja velièine 5 km × 5 km u tri grada razlièite velièine: velikom (Hannover), srednjem (Aurich) i malom (Wagenfeld). Za obradu i usporedbu podataka primijenjen je sustav za upravljanje bazama podataka. Iza bran je PostgreSQL s PostGIS om. U pripremi podataka svi podaci transformirani su u isti koordinatni sustav. Buduæi da su podaci ATKIS a u sustavu Gauss Krügerove projekcije, to su i podaci OSM a transformirani u taj sustav. U sljedeæem koraku iz oba skupa podataka izdvojeni su isti isjeèci. U analizi podataka prvo je ispitana potpunost linijskih i površinskih objekata. Linijski po daci svrstani su u ovih pet skupina: cestovni promet, eljeznièki promet, osi vodenih toko va, opskrbni vodovi i ograde. Površinski podaci svrstani su u ove skupine: vegetacija, vode, prometne površine, izgraðene površine i slobodne površine u naseljima. Pomoæu SQL upita odreðene su potom duljine linijskih elemenata i površine površinskih objekata. Pretpostavka je da je datoteka linijskih elementa potpunija što je zbroj duljina li nija veæi, a da je datoteka površinskih objekata potpunija što je zbroj površina veæi. Analiza potpunosti linijskih objekata pokazala je da na podruèju Hannovera u svim skupinama, osim u skupini osi vodenih tokova, više podataka sadri OSM, a na podruèju Wagenfelda u svim skupinama više podataka ima ATKIS. Analiza potpunosti površinskih podataka poka zala je da u gotovo svim skupinama bitno više podataka sadri ATKIS. U OSM u veliki udio površinskih podataka ima veliki grad, vrlo malo podataka grad srednje velièine, a gotovo da nema površinskih podataka u malom gradu. U analizi poloajne toènosti linijskih objekata podaci ATKIS a, zbog veæe toènosti, smatrani su referentnim. Uz osi linijskih objekata ATKIS a zamišljeni su koridori širine 10 m i po tom je ispitivano u kojoj se mjeri linijski objekti OSM a nalaze unutar tih koridora. Za ocje nu poloajne toènosti vano je da su duljine linija u oba skupa podataka podjednake duljine. Npr. na podruèju Hannovera OSM sadri oko 164 km više cestovnih podataka nego ATKIS. Stoga se samo 64% cestovnih podataka OSM a nalazi unutar koridora od 10 m ATKIS ovih podataka. Tamo gdje su duljine priblino jednake, toènost OSM podataka opæenito je dobra, a slabija je jedino za osi vodenih tokova. 140 Pregled struènog tiska i softvera, Geod. list 2012, 2 U zakljuèku autori istraivanja zakljuèuju da su podaci ATKIS a nezamjenjivi u pravnim i javnim pitanjima. Na tom podruèju podaci OSM a ne mogu zamijeniti podatke ATKIS a niti ih potisnuti. Umjesto toga podaci OSM a pruaju višestruke moguænosti primjene tamo gdje se trai besplatna zamjena za slubene ili komercijalne podatke, npr. kao temeljna karta za razne tematske karte. Izvor: Schoof, M. (2012): ATKIS Basis DLM und OpenStreetMap Ein Datenvergleich anhand au sgewählter Gebiete in Niedersachsen. Kartographische Nachrichten 1, 20 26. Nedjeljko Franèula GPS Solutions Èasopis GPS Solutions (izdavaè Springer) izlazi kvar talno i pokriva sve moguæe primjene globalnih na vigacijskih satelitskih sustava (GNSS) poput GPS a, GLONASS a, Galilea. Primarni interes posveæen je no vim, inovativnim i zahtjevnim namjenama. Neka od moguæih podruèja primjene jesu: zrakoplovstvo, izmje ra i kartiranje, poljoprivreda i šumarstvo, pomorska i rijeèna navigacija, javni prijevoz, komunikacije, meteo rologija i znanost o atmosferi, geoznanosti, praæenje globalnih promjena, tehnologija i inenjerstvo, GIS, geodezija i dr. Oèekuju se prilozi širokog spektra GNSS profesionalaca ukljuèujuæi sveuèilišne istraivaèe, znanstvenike iz vladinih laboratorija, proizvoðaèe GPS prijamnika, javne slubenike, poslovne ljude i dr. Èasopis izlazi od 1997, na internetu su dostupni saetci od 1998, a slobodan pristup cjelovitim tekstovima mo guæ je samo za poneke èlanke (http://www.springerlink.com/content/1080 5370). Èasopis je od 2004. ukljuèen u ugledne bibliografske i citatne baze Current Contents Physical, Chemical & Earth Sciences i Science Citation Index Expanded. Faktor odjeka (IF) za 2010. iznosi 1,483. U stalnoj rubrici Geodetskog lista Iz stranih èasopisa ponekad se navode i naslovi èlanaka iz ovog èasopisa. Ovdje skreæemo pozornost na èetiri èlanka objavljena 2011. i dva èlanka iz 2012. • R. F. Leandr, M. C. Santos, R. B. Langley: Analyzing GNSS data in precise point positio ning software, 2011, 1. • P. J. G. Teunissen, G. Giorgi, P. J. Buist: Testing of a new single frequency GNSS carrier phase attitude determination method: land, ship and aircraft experiments, 2011, 1. (slo bodan pristup). • P. Wielgosz: Quality assessment of GPS rapid static positioning with weighted iono spheric parameters in generalized least squares, 2011, 2. • A. Parkins: Increasing GNSS RTK availability with a new single epoch batch partial ambiguity resolution algorithm, 2011, 4. • S. Lejeune, G. Wautelet, R. Warnant: Ionospheric effects on relative positioning within a dense GPS network, 2012, 1. • D. Firuzabadì, R. W. King: GPS precision as a function of session duration and reference frame using multi point software, 2012, 2. Nedjeljko Franèula Pregled struènog tiska i softvera, Geod. list 2012, 2 141 IZ STRANIH ÈASOPISA Acta Geodaetica et Geophysica Hungarica, Vol.47, No.1., 2012. • Comparing GLONASS only with GPS only and hybrid positioning in various length of baselines. S. Alcay, C. Inal, C. O. Yigit and M. Yetkin. 1. 12. • A theory on geoid modelling by spectral combination of data from satellite gravity gradiometry, terrestrial gravity and an Earth Gravitational Model. L. E. Sjöberg and M. Eshagh. 13. 28. • Impact of compensating mass on the topographic mass A study using isostatic and non isostatic Earth crustal models. M. Bagherbandi. 29. 51. • Evaluation of NRTK positioning using the RENEP and rap networks on the southern border region of Portugal and Spain. M. S. Garrido, E. Giménez, J. A. Armenteros, M. C. Lacy and A. J. Gil. 52. 65. • On the question of the accuracy of leveling. O. A. Mozzhukhin. 66. 68. Allgemeine Vermessungs-Nachrichten, Vol.119, No.2., 2012. • Das Laser Radar reflektorlose Distanzbestimmung mittels Frequenzmodulation. Chri stoph Naab, Maria Hennes. • Erweiterung des Entfernungsmessbereichs bei modulierten Entfernungskameras durch ein Zeit Frequenz Multiplexverfahren. Boris Jutzi. • Leistungsfähigkeit eines “Reflektor 160” in Kombination mit einem Lasertracker. Fran ziska Bernhart, Maria Hennes. • Die kinematische Leistungsfähigkeit des iGPS. Claudia Depenthal. Geoinformatica, Vol.16, No.2., 2012. • Comparison of four line based positional assessment methods by means of synthetic data. Francisco Javier Ariza López, Antonio Tomás Mozas Calvache. 221. 243. • Blind and squaring resistant watermarking of vectorial building layers. Julien Lafaye, Jean Béguec, David Gross Amblard, Anne Ruas. 245. 279. • Automatic classification of building types in 3D city models Using SVMs for semantic enrichment of low resolution building data. André Henn, Christoph Römer, Gerhard Gröger, Lutz Plümer. 281. 306. • Generating seamless surfaces for transport and dispersion modeling in GIS. Fernando Camelli, Jyh Ming Lien, Dayong Shen, David W. Wong, Matthew Rice, Rainald Löhner, Chaowei Yang. 307. 327. • An interactive framework for spatial joins: a statistical approach to data analysis in GIS. Shayma Alkobaisi, Wan D. Bae, Petr Vojtechovský, Sada Narayanappa. 329. 355. • Moving GeoPQL: a pictorial language towards spatio temporal queries. Arianna D’Ulizia, Fernando Ferri, Patrizia Grifoni. 357. 389. • Efficient parallel algorithm for pixel classification in remote sensing imagery. Ujjwal Maulik, Anasua Sarkar. 391. 407. Geomatics Info Magazine (GIM International), Vol.26, No.5., 2012. • Greening the Cadastre: Incorporating Natural/Fuzzy Boundaries. Rohan Bennett and Paul van der Molen. • Unique National Geodetic Network in Cameroon: Supporting a Nation’s Land Reform Programme. Claude Michel and Thierry Bordas. • INSPIRE’s Shift in Emphasis: Implementation Enters a New Phase. Ian Masser. • VHR Serving the MENA Region:A Vendor Perspective. Justin Hyland. 142 Pregled struènog tiska i softvera, Geod. list 2012, 2 Journal of Geodesy, Vol. 86, No.4., 2012. • Cartesian to geodetic coordinates conversion on a triaxial ellipsoid. Marcin Ligas. 249. 256. • Mitigation of atmospheric perturbations and solid Earth movements in a TerraSAR X time series. Adrian Schubert, Michael Jehle, David Small and Erich Meier. 257. 270. • Numerical computation of spherical harmonics of arbitrary degree and order by exten ding exponent of floating point numbers. Toshio Fukushima. 271. 285. • Relation between geoidal undulation, deflection of the vertical and vertical gravity gra dient revisited. Johannes Bouman. 287. 304. • IAG Newsletter. Gyula Tóth. 305. 307. Survey Review, Vol.44, No.325 (2), 2012. • Use of airborne laser scanning to characterise land degradation processes the Dead Sea as a case study. Filin, S; Baruch, A; Morik, S; Avni, Y; Marco, S. 84. 90. • Geometric quality enhancement of legacy graphical cadastral datasets through thin plate splines transformation. Siriba, D N; Dalyot, S; Sester, M. 91. 101. • Genetic Algorithms: a stochastic approach for improving the current cadastre accuracies. Shnaidman, A; Shoshani, U; Doytsher, Y. 102. 110. • Security of ownership versus public benefit: a case study for land taking for infrastructu re in Greece, as an EU member state. Potsiou, C; Basiouka, S. 111. 123. • A case study on local SDI implementation in Germany. Müller, H; Würriehausen, F. 124. 133. • Data quality of Global Map and some possibilities/limitations for its wide utilisation for global issues. Idrizi, B; Meha, M; Nikolli, P; Kabashi, I. 134. 140. • Automatic georeferencing of non geospatially referenced provisional cadastral maps. Siri ba, D N; Dalyot, S. 142. 152. • VGI in Cadastre: a Greek experiment to investigate the potential of crowd sourcing techniques in Cadastral Mapping. Basiouka, S; Potsiou, C. 153. 161. • An agent based model for simulating urban morphology: Sachnin as a case study. Fisher Gewirtzman, D; Blumenfeld Liberthal, E. 162. 167. Zeitschrift fur Geodasie, Geoinformation und Landmanagement, Vol.137, No.2., 2012. • Geoportal.DE Ein Blick in die Geodateninfrastruktur Deutschland. Sebastian Schmitz. • Ist der Datenschutz Finis Terrae auf unserer Reise in einen offenen Geodatenmarkt?. Dietrich Diez. • GIS entwickelt sich zu einem gesellschaftspolitischen Kommunikationsinstrument. Chri stoph Babilon. • Verkehrswert und Preisbildung in Boom und Rezessionsphasen. Sabine Schretter. • Bayesischer Ansatz zur Integration von Expertenwissen in die Immobilienbewertung (Teil 1). Hamza Alkhatib, Alexandra Weitkamp. • Bayesischer Ansatz zur Integration von Expertenwissen in die Immobilienbewertung (Teil 2). Alexandra Weitkamp, Hamza Alkhatib. • Accuracy Evaluation for Automated Optical Indoor Positioning Using a Camera Phone. Verena Händler, Volker Willert. • Herausforderungen für die Landentwicklung in Sachsen Anhalt in der Förderperiode 2014 bis 2020. Hubertus Bertling, Harald Lütkemeier. Vlado Cetl Geod. list 2012, 2 IN MEMORIAM 143 PROF. DR. SC. PREDRAG TERZIÆ 1918.-2012. Naš cijenjeni prof. dr. sc. Predrag Terziæ iznenada nas je napustio u utorak 10. travnja 2012. U petak 20. travnja na gradskom groblju Mirogoj ispratili smo ga na vjeèni poèinak. U ime Geodetskog fakulteta Sveuèilišta u Zagrebu oprostio se dekan profesor Miodrag Roiæ, a prigodnim govorom o ivotu i djelu profesora Terziæa oprostio se jedan od njegovih naj bliih suradnika profesor Nikola Solariæ. Profesor Predrag Terziæ roðen je 1918. godine u Zenici. Osnovnu školu završio je u San skom mostu, a gimnaziju u Banja Luci 1937. Iste se godine upisao na Kulturno tehnièki i geodetski odsjek Tehnièkog fakulteta Sveuèilišta u Zagrebu. Studij prekida 1941., a nastav lja ga nakon drugoga svjetskog rata. Diplomirao je 1948. godine. Nakon završetka studija radio je godinu dana u Geozavodu u geofizièkoj grupi. Za asistenta na Tehnièkom fakultetu izabran je 1949. godine kod profesora Nikolaja Abakumova. Habi litacijsku radnju pod naslovom Astrolab s prizmom, primjena metoda Zingera i Pjevcova obranio je 1963. Iste je godine izabran za docenta, a 1971. za izvanrednog profesora. Dokto rirao je 1982. obranivši doktorsku disertaciju Neki aspekti metoda suvremenih astronom skih odreðivanja geografske širine. U znanstveno nastavno zvanje redovitog profesora iza bran je 1983., a u mirovinu odlazi 1988. godine. Profesor Terziæ jedan je od rijetkih djelatni ka Geodetskog fakulteta koji je praktièno cijeli svoj radni vijek od priblino 40 godina odra dio na matiènom fakultetu. Nastavni i znanstveni razvojni put profesora Terziæa bio je postepen. Svoj pedantan, upo ran i temeljit rad okrunio je obranom doktorske disertacije i to kad je veæ imao 64 godine, što je rijetkost. U toj vrijednoj disertacijskoj radnji zakljuèio je da se uzroci sustavnih po greška izmeðu noæi nalazi u pojedinim dijelovima instrumenta, a ne u anomalijama refrak cije, kao što je u to vrijeme mislila veæina astronoma. Od znanstvenih radova profesora Terziæa posebno treba izdvojiti: Odreðivanje razlike geo grafskih duljina opservatorija Maksimir i Hvar i Odreðivanje geografske širine astronom ske toèke Opservatorija Hvar. Ti se radovi istièu pedantnošæu i preciznošæu, a astronomska odreðivanja geografskih koordinata Opservatorija Hvar izvedena su s najveæom moguæom 144 In memoriam, Geod. list 2012, 2 toènošæu koja se moe postiæi s preciznim teodolitom Wild T4. Geografske koordinate koje je odredio na Opservatoriju Hvar upotrebljavane su kao referentne koordinate pri uspostav ljanju novih geoidnih toèaka na podruèju Hrvatske (posebice na podruèju Dinarida i jadran skih otoka). Sistematiènost i temeljitost obiljeila je nastavni rad profesora Terziæa, a takav naèin rada prenosio je i na sve ostale oko sebe. Njegovi studenti i suradnici nauèili su kako je za obra zovanje geodetskih struènjaka vano temeljito odravanje predavanja i vjebi, pedantno i precizno opaanje i obraðivanje rezultata mjerenja. Da bi svoje znanje prenio drugima, ponajprije studentima, napisao je profesor Terziæ 1982. udbenik Sferna astronomija. U njemu je detaljno opisao osnovna podruèja sferne astrono mije od nebeskih koordinatnih sustava i preraèunavanja koordinata, pojava koje mijenjaju koordinate nebeskih tijela do vremenskih sustava i skala, navodeæi brojne primjere, što je studentima olakšalo pripremanje i polaganje ispita. Godine 1988. kad odlazi u mirovinu izlazi iz tiska njegov drugi udbenik Geodetska astro nomija II. U njemu je profesor Terziæ sustavno opisao podruèja praktiène astronomije od suvremenih ureðaja za mjerenje i registraciju vremena, astrometrijskih i astrogeodetskih instrumenata do metoda odreðivanja astronomskih koordinata i azimuta s konkretnim primjerima iz astrogeodetske prakse. I taj je udbenik znaèajno olakšao praæenje nastave i pripremanje ispita iz geodetske astronomije. Ujedno je olakšao i predavaèima, jer se moglo više posvetiti izlaganju automatiziranih metoda geodetske astronomije koje su nalazile sve veæu primjenu u geodetskoj praksi. Vrijednost udbenika uoèljiva je usporedimo li ih s onodobnim tematskim udbenicima na njemaèkom, engleskom i ruskom jeziku. Tako primjerice Siglov Geodatische Astronomie (I. izdanje 1975.) sadrajno obuhvaæa gradivo sferne i praktiène astronomije koje je profesor Terziæ podijelio i opisao u dvije knjige. Uralov Kurs geodezièeskoj astronomii iz 1980. obu hvaæa samo podruèje praktiène astronomije što sadri i Geodetska astronomija II. Po nekima najutjecajniji onodobni udbenik na engleskom jeziku Muellerov Spherical and Practical Astronomy as applied to Geodesy iz 1969., sadrajno nadmašuje udbenike profe sora Terziæa, no sva su glavna podruèja sferne i praktiène astronomije zastupljena i u udbenicima profesora Terziæa. Dok je u drugoj polovici XX. st. postojalo više vrijednih udbenika iz geodetske astronomije na nekoliko dominantnih europskih jezika, na podruèju bivše drave postojale su, pored udbenika profesora Terziæa, samo Ševarliæ Brkiæeva Geo detska astronomija I iz 1963. i Opšta astronomija iz 1979. godine. Veæ je iz naslova ove po sljednje jasno da su u njoj, izmeðu ostaloga, obraðena i podruèja opæe astronomije koja nisu neposredno vezana uz geodetsku astronomiju. Zbog toga su u tom udbeniku astrogeodet ska podruèja opæenitija za razliku od temeljitih i detaljnih opisa u udbenicima profesora Terziæa. Prema tome, udbenici profesora Terziæa po sadraju i sustavnosti te jasnom izla ganju tematske materije ne zaostaju za navedenim udbenicima i u potpunosti obuhvaæaju ona podruèja klasiène astronomije koja èine geodetsku astronomiju. Struèni rad profesora Terziæa, slièno kao i nastavni i znanstveni rad, karakterizirala je te meljitost i visoka toènost mjerenja, koju je rijetko tko kao on uspijevao postiæi. Od znaèajnih struènih radova koje je izveo moemo istaknuti sljedeæe: • rad na tunelu u Sri Lanki (zajedno s profesorom Veljkom Petkoviæem) • radove na projektu melioracije podruèja Nanlet u Burmi (zajedno s profesorom Veljkom Petkoviæem) • radove na kontroli deformacija brana i • radove na preciznom nivelmanu na podruèju rafinerije Sisak. Za marljiv je društveni rad profesor Terziæ primio više priznanja, nagrada i odlikovanja, od kojih spominjemo: • medalju za zasluge za narod • orden rada sa zlatnim vijencem In memoriam, Geod. list 2012, 2 145 • plaketu Geodetskog fakulteta Sveuèilišta u Zagrebu za uspješnu suradnju u znanstve no nastavnoj djelatnosti i za afirmaciju Fakulteta u povodu proslave 60. obljetnice geodet ske visokoškolske nastave u Hrvatskoj • pohvale i nagrade geodetske tvrtke Geozavod iz Zagreba • izabran je za poèasnog èlana Saveza geodetskih inenjera i geometara SR Hrvatske. Profesor Terziæ je i u svojim 80 im i 90 im godinama ivota bio vrlo zainteresiran za rad i napredak Geodetskog fakulteta. Nadasve je volio svoju obitelj. Uvijek je govorio, kako je najvanija obitelj, a uspjesi na poslu su prolazni. S ljubavlju i ponosom govorio je o sinu Ne nadu, snahi Danici i unukama. Premda meðu nama više neæe biti profesora Predraga Terziæa ostat æe ivjeti u našim misli ma i srcima, kao uporan, temeljit i marljiv u radu i pravedan, èovjek koji je osobito cijenio poštenje. Hvala mu za sve što je uèinio za napredak Geodetskog fakulteta i geodetske astro nomije u Hrvatskoj. Popis udbenika i knjiga 1. Terziæ, P.: Sferna astronomija, Sveuèilište u Zagrebu, 1972, 346 stranica. 2. Terziæ, P.: Geodetska astronomija II, Sveuèilište u Zagrebu, Geodetski fakultet, 1988, 263 stranice. Popis objavljenih znanstvenih radova 1. Terziæ, P.: Astrolab s prizmom, primjena metoda Zingera i Pjevcova. Zbornik radova Geodetskog fakulteta Sveuèilišta u Zagrebu, Niz A, Svezak 22, Zagreb, 1980. 2. Terziæ, P.: Odreðivanje razlike geografskih duina opservatorija Maksimir i Hvar. Zbor nik radova Geodetskog fakulteta Sveuèilišta u Zagrebu, Niz A, Svezak 25, Zagreb, 1980. 3. Terziæ, P.: Neki aspekti metoda suvremenih astronomskih odreðivanja astronomske ši rine. Zbornik radova Geodetskog fakulteta Sveuèilišta u Zagrebu, Niz B, disertacije, A, Svezak 7, Zagreb, 1983. 4. Terziæ, P.: Odreðivanje geografske širine astronomske toèke Opservatorija Hvar, Zbor nik radova Geodetskog fakulteta Sveuèilišta u Zagrebu, Niz A, Svezak 37, Zagreb, 1985. Popis objavljenih struènih radova 1. Radiogeodezija, Geodetski list, 1950, 1 3, 77 78. 2. Efemeride 1952., Almanah Boškoviæ 1952., Hrvatsko prirodoslovno društvo, Zagreb, 1952, 8 60, 81 86. 3. Efemeride 1953., Almanah Boškoviæ 1953., Hrvatsko prirodoslovno društvo, Zagreb, 1953, 6 75. 4. Efemeride 1954., Almanah Boškoviæ 1954., Hrvatsko prirodoslovno društvo, Zagreb, 1954, 6 76. 5. Efemeride 1955., Almanah Boškoviæ 1955., Hrvatsko prirodoslovno društvo, Zagreb, 1955, 6 76. 6. Efemeride 1956., Almanah Boškoviæ 1956., Hrvatsko prirodoslovno društvo, Zagreb, 1956, 6 76. 7. Efemeride 1957., Almanah Boškoviæ 1957., Hrvatsko prirodoslovno društvo, Zagreb, 1957, 6 76. 8. Komparacija invarske vrpce H.2567, Geodetski list, 1957, 5 8, 144 151, Petkoviæ, Terziæ. 146 In memoriam, Geod. list 2012, 2 9. Efemeride 1958., Almanah Boškoviæ 1958., Hrvatsko prirodoslovno društvo, Zagreb, 1958, 6 65, 88 96. 10. Efemeride 1959 1960., Almanah Boškoviæ 1959. 1960., Hrvatsko prirodoslovno dru štvo, Zagreb, 1959, 6 76, 84 154. 11. Efemeride 1961 1962., Almanah Boškoviæ 1961. 1962., Hrvatsko prirodoslovno dru štvo, Zagreb, 1961, 6 76, 84 84, 88 158. 12. Efemeride 1963., Almanah Boškoviæ 1963., Hrvatsko prirodoslovno društvo, Zagreb, 1963, 6 76. 13. Efemeride 1964 1965., Almanah Boškoviæ 1964. 1965., Hrvatsko prirodoslovno dru štvo, Zagreb, 1964, 6 78, 83 86, 90 162. 14. Efemeride 1966 1967., Almanah Boškoviæ 1966. 1967., Hrvatsko prirodoslovno dru štvo, Zagreb, 1966, 6 78, 83 86, 90 162. 15. Efemeride 1976., Almanah Boškoviæ 1976., Hrvatsko prirodoslovno društvo, Zagreb, 1976, 6 76. 16. Sadašnje stanje osnovnih mrea stalnih geodetskih toèaka u SR Hrvatskoj. Zbornik ra dova Saveza geodetskih inenjera i geometara Jugoslavije, Hercegnovi, 1976, 20 30, Gjurgjan, Klak, Petkoviæ, Terziæ. Popis znaèajnih izvedenih struènih radova i eleborata 1. Geomagnetska mjerenja na podruèju rudnika Ljubija i podruèju Podgoraèa u geofizièkoj grupi Geozavoda, 1948. godina. 2. Terenski radovi na triangulaciji, poligonskoj mrei i terestrièkoj fotogrametriji u podru èju rudnika Raduša u Makedoniji, u geofizièkoj grupi Geozavoda, 1948. godina. 3. Radovi s Eötvösovim variometrom u rudniku Vareš i na HE Nikola Tesla i na prijenosu smjera i visina kroz vertikalno okno za HE Nikola Tesla, u geofizièkoj grupi Geozavoda, 1948. godina. 4. Triangulacijski radovi na jednom dijelu podruèja nacionalnog parka Plitvièka jezera, te renski rad i raèunska obrada podataka mjerenja, 1952. godina. 5. Sastav programa opaanja za odreðivanje vremena Zigerovom metodom za Astronom ski opservatorij u Maksimiru, 1954. godina. 6. Raèunanje srednjih ekvatorskih koordinata zvijezda po programu odreðivanja geograf ske širine zapadnog stupa Astronomskog opservatorija u Maksimiru za 1953. do 1959. godine. 7. Obrada jednog dijela opaanja izvršenih Horrebow Talcottovom metodom na zapadnom stupu Astronomskog opservatorija u Maksimiru 1955. i 1956. godine. 8. Tahimetrijsko snimanje 160 ha Tivatskog polja za projekte melioracija s kartiranjem snimljenog podruèja, 1953. godina. 9. Tahimetrijsko snimanje jednog dijela opæine Rabac, 1954. godina. 10. Izjednaèenje poligonske i nivelmanske mree opæine Rabac, 1954. godina. 11. Kontrolna mjerenja iskolèenja tunela HE Gojak. Vršene su: kontrole smjera, visina i duina uz mjerenja invarnim icama na nekim dijelovima trase tlaènog i pristupnih tu nela. Toènost izvršenih mjerenja i raèunanja potvrðena je visokim slaganjem pravaca i visina na mjestima proboja tunela. Radovi su vršeni kroz tri godine, 1954. do 1957. go dine, u okviru Geodetskog zavoda Tehnièkog fakulteta, odnosno AGG fakulteta. 12. Premjer jednog dijela Makarske, u okviru Geodetskog zavoda Tehnièkog fakulteta, 1955. godina. 13. Tehnièki nivelman uz rijeku Kupèinu i rijeku Èesmu u duini od 120 km, 1956. godina. 147 In memoriam, Geod. list 2012, 2 14. Odreðivanje 26 trigonometrijskih i orijentacijskih toèaka na podruèju Graèaca za Zajed nicu elektroprivrednih poduzeæa SR Hrvatske, 1956. godina. 15. Precizna indirektna mjerenja duina, uz mjerenje baza invarnim icama za mostove preko Save u Jankomiru i u Trnju. Kolektivni rad èlanova Geodetskog zavoda AGG fa kulteta, 1956. godina. 16. Trigonometrijska i poligonska mrea jednog dijela poplavnog podruèja rijeke Gomjeni ce, terenski rad i obrada podatka mjerenja za Geodetski zavod AGG fakulteta, 1957. go dina. 17. Sudjelovanje u astronomskim radovima na trigonometrijskoj toèki prvog reda Koz jak/Laplaceova toèka/ u SR Srbiji. Radove je izvodila Savezna geodetska uprava, 1958. godina. 18. Dopuna mikrotriangulacijske mree za kontrolu deformacija brane HE Peruèa i odreði vanje horizontalnih i vertikalnih pomaka brane u prvom mjerenju, 1959. godina. 19. Trigonometrijska mrea i orijentacijske toèke za aerofotogrametrijsko snimanje na jed nom dijelu podruèja Sinj Livno, za potrebe zajednice elektroprivrednih poduzeæa SR Hrvatske, u okviru Zavoda za višu geodeziju AGG fakulteta, 1959. godina. 20. Snimanje 1037 ha terena za istoèni i zapadni lateralni kanal zajednice Kupa 1960. i 1961. godina. Kupèina, 21. Geodetski i astronomski radovi za projekt melioracija rijeke Nanlet u Burmi, zajedno s profesorom Veljkom Petkoviæem, kao suradnik poduzeæa Elektroprojekt: mjerenja mree precizne poligonometrije, mjerenja bazisa samostalne trigonometrijske mree, mjerenja ove trigonometrijske mree, astronomska orijentacija mree, sva raèunanja i izjednaèenja. Radovi su obavljeni u vremenu od 25. 11. 1963. do 1. 5. 1964. godine. 22. Kontrolna mjerenja visina toèaka tlaènog cjevovoda Liš HE Nikola Tesla, za Elektro projekt u Zagrebu, 1965. godina. 23. Kontrolna mjerenja za HE Senj u kosom cjevovodu, tunelu Gusiæ polje Hrmotine te meljnog ispusta na brani Sklope, za poduzeæe Elektroprojekt u Zagrebu, 1965. godina. 24. Odreðivanje deformacija betonske brane Valiæi na Rjeèini i horizontalnih pomaka toèa ka klizišta na desnoj obali Rjeèine, za poduzeæe Elektroprojekt, 1965. i 1966. godina. 25. Geodetska osnova za hidrotehnièki tunel Polpitiya za Maskeliyaoya projekt u Šri Lan ki. Kontrola ranije postavljenih toèaka od strane Survey Departementa iz Colomba i kontrole svih elemenata u nacrtima kanadske projektne organizacije Ingledow Kid iz Vancouvera. O izvršenim mjerenjima dat je izvještaj “Geodetski radovi” na 243 stranice na hrvatsko srpskom i engleskom jeziku. Proboji svih tunela izvršeni su s visokom toè nošæu. Duina tlaènog tunela s dva pristupna tunela iznosi 8500 metara. Radove je izvršio zajedno s profesorom Veljkom Petkoviæem, za poduzeæe iz Splita. 26. Mjerenje visina kontrolnih toèaka na brani Sklope HE Senj i betonskoj brani Selišæe HE Senj za odreðivanje vertikalnih pomaka ovih toèaka. Radovi su izvršeni u okviru Zavoda za višu geodeziju za HE Senj u 1967., 1968. i 1969. godini. 27. Odreðivanje horizontalnih pomaka kontrolnih toèaka na nasipima u Gusiæ polju, toèa ka mikrotriangulacije i orijentacijskih toèaka za HE Senj u 1967. i 1968. godini. 28. Projekt radova iz geodetske astronomije na Opservatoriju Hvar, 1971. godina. 29. Kontrolna mjerenja visina repera preciznim nivelmanom na podruèju Rafinerije Sisak, 1979. godina. 30. Kontrolna mjerenja visina repera preciznim nivelmanom u podruèju strojarnice, brane, dovodnog kanala i na nasipima jezera HE Varadin, za Višu geotehnièku školu Va radin, 1979. do 1983. godine. Nikola Solariæ i Drago Špoljariæ 148 PREDSTOJEÆI DOGAÐAJI LIPANJ 4th International Conference on Cartography and GIS Albena, Bulgaria, 18. 22. 6. Web: http://www.cartography gis.com/ /4thConference/Index.html E mail: bgcartography@gmail.com SRPANJ ESRI International User Conference San Diego, California, USA, 23. 27. 7. Web: http://www.esri.com/events/ /user conference/index.html KOLOVOZ XXII ISPRS 2012 Congress Melbourne, Australia, 25. 8. 1. 9. Web: http://www.isprs2012 melbourne.com E mail: isprs2012@icms.com.au 32nd International Geographical Congress Cologne 2012 Cologne, Germany, 26. 30. 8. Web: http://www.igc2012.org/ E mail: info@igc2012.org RUJAN GIScience 2012 Columbus, Ohio, USA, 18. 21. 9. Web: http://www.giscience.org/ E mail: giscience2012@osu.edu SDI Days Zagreb, Croatia, 25. 29. 9. Web: http://nipp.kartografija.hr E mail: mlapaine@geof.hr LISTOPAD INTERGEO 2012 Hannover, Germany, 9. 11. 10. Web: http://www.intergeo.de/en/englisch/ /index.php E mail: cschlegel@hinte messe.de V. simpozij ovlaštenih inenjera geodezije Opatija, Hrvatska, 19. 21. 10. Web: http://www.hkoig.hr/ E mail: peti.simpozij@hkoig.hr rd 3 International FIG Workshop on 3D Cadastres Shenzhen, China, 25. 26. 10. Web: http://www.cadastre2012.org/ E mail: shy@whu.edu.cn Geod. list 2012, 2 NATIONAL SCIENTIFIC CONFERENCE GEO2012 Belgrade, Serbia, 26. 27. 10. Web: http://www.usg grf.com/geo2012.php E mail: dmilicevic@grf.bg.ac.rs STUDENI International Symposium on Service Oriented Mapping SOMAP 2012 Vienna, Austria, 22. 23. 11. Web: http://somap.cartography.at/ PROSINAC Gi4DM Enschede, The Netherlands, 13. 16. 12. Web: http://www.gi4dm.net/2012/ E mail: pc@gi4dm.net; info@gi4dm.net 2013 International IABSE Conference 2013 Rotterdam, The Netherlands, 6. 8. 5. Web: http://www.iabse2013rotterdam.nl/ E mail: secretary@iabse2013rotterdam.nl ESRI International User Conference San Diego, California, USA, 8. 12. 7. Web: http://www.esri.com/events/uc/index.html 26th International Cartographic Conference Dresden, Germany, 25. 30. 8. Web: http://www.icc2013.org/ E mail: sneumann@intercom.de IAGA 2013 12th Scientific Assembly Mérida, Yucatán, México, 26. 31. 8. Web: http://www.geociencias.unam.mx/iaga2013/ E mail: contact@iaga2013.org.mx IAG Scientific Assembly 2013 Potsdam, Germany, 1. 6. 9. Web: http://www.iag2013.org/IAG_2013/ /Welcome.html E mail: iag2013@fu confirm.de INTERGEO 2013 Essen, Germany, 8. 10. 10. Web: http://www.intergeo.de/en/englisch/ /index.php E mail: cschlegel@hinte messe.de 2014 XXV FIG International Congress Kuala Lumpur, Malaysia, 16. 21. 6. Web: http://www.fig.net/fig2014/ Mladen Zrinjski
© Copyright 2024 Paperzz