2014年10月版 PDF:5MB

the f
rst explain
), let us fi
(1
n
o
ti
a
u
n of eq
a for the
e derivatio
See Fig. 4
th
.
R
r
o
s
F
iu
.
d
ts
ra
en
n the
n of
tical argum
rical regio
ection. Whe
the theore
g the y dir
in a cylind
n
d
lo
te
a
a
Details of
lu
rm
a
o
line ev
clination
ne unif
isclination
r to the dis
clination li
d
is
la
e
d
u
th
ic
ht
f
d
o
ig
en
y
ra
energ
ane perp
der a st
in the
. We consi
ing on a pl
interested
ector n ly
f the system
ir
o
d
e
ry
th
et
ow we are
h
m
N
it
w
z.
geo
n
d
o
n
ti
a
a
corporated
n of x
disclin
e can be in
is a wedge
is a functio
m
?
n
u
o
ss
re
ti
a
a
he
e
oo
in
w
w
cl
s∂),
dis
which
(sin∂, 0, co
ation line,
e that ∂ is
plane), n =
f a disclin
z
o
y
x–
g
n
er
(a
en
rther assum
e
e
fu
lin
th
e
n
W
o
s.
n
xi
o
ormati
the z a
, cos∂). The
e twist def
, sin∂ sin∂
of n along
th
s∂
n
f
o
o
co
ti
∂
ct
ta
in
fe
ro
(s
ef
the
n =
describing
be given by
variable ∂
r field can
to
ec
ir
d
by a single
e
of
, th
assumption
nd z. Then
t of x, y a
simplifying
e
th
er
d
n
independen
u
,
sity f Frank
-energy den
Frank free
= K, is
K11 = K33
(3)
/∂z)^2}},
1/2 that
∂y)^2}+{(∂
/
∂
{(
K{
2)
/
f strength
o
(1
e
=
n
li
n
o
f Frank
clinati
lving a dis
tegration
lution invo
so
r
ia
il
being an in
m
h
it
fa
w
A
x)
).
/
∂
(z
arctan
ngth is then
2/K)sin^2
per unit le
∂=∂0+(1/2)
cos^2∂+(K2
e
is
√(
n
li
X/
=
n
o
X’
ti
h
a
wit
y ∫drf Frank
disclin
astic energ
ergy of a
e Frank el
he free en
th
T
1.
es
^iz
2)
im
z^
min
=(K/8)(x^2+
nd thus f Frank
a
t,
n
a
st
n
co
as
expressed
産総研 ナノシステム研究部門
Nanosystem Research Institute
October, 2014
+sin^2x}
K)sin^2∂)}^2
2/
K2
+(
2∂
s^
(4)
osX/√co
dr∫dx{2/(c
),
{∫
∂
8
^2
K/
n
si
c+
E
K)
=
k22/
√(cos^2∂+(
Edisclination
4)ln(R/rc)}
r with a
= Ec+{(πK/
nX, togethe
nd z = r si
a
sX
co
r
x =
of variables
sformation
n
a
tr
f n is
a
d
ce
in terms o
rder of K
ve introdu
c, of the o
onal order
E
ti
n
ta
o
en
ti
where we ha
u
ri
o
ib
ntr
of the
rc. The co
description
c cut-off
which the
in
microscopi
rc
<
r
gion
on is not
from the re
e disclinati
es
th
m
n
co
he
,
W
1)
.
(ref.
h ac0.1
xis is Ω
c = ack wit
nd the y a
lid.
and thus E
va
,
1)
er
.
g
n
ef
(r
lo
clination a
is
0
d
no
)1
e
rc
th
/
n
(R
betwee
ection is
rest, ln
)groove dir
of our inte
d the angle
4
n
a
se
)(
)
4
ca
n
)(
o
e
(3
ti
th
In
t
ng the
ve direc
length alo
axis, is ∂ a
axis (groo
and the x
e per unit
n
long the y
n
a
li
n
n
d
o
ee
te
ti
tw
a
en
be
ri
o
isclin
ngle
gy of the d
of n, the a
e free ener
thal angle
th
u
m
),
zi
1f
a
.
e
ig
th
(F
n
reover, whe
/cosΩ. Mo
Edisclination
∂. Thus,
, ∂ = Ω +
(5)
the bottom
cosΩ,
n^2(Ω+∂))}/
si
K)
/
22
(K
Ω+∂)+
the
ac+√(cos^2(
e form of
/cosΩ = K{
n
o
ti
here that th
a
te
o
n
Edisclin
e
W
lia et
on (1).
use Buscag
tal, equati
This is beca
term of Eto
t
).
rs
(4
fi
n
e
o
th
ti
on,
, equa
yielding
our notati
t from ours
4)ln(R/rc),
ination; in
is differen
cl
is
29
d
with K=(πK/
f.
a
re
d
n
arou
the
esented in
ofile of n
e profile to
n energy pr
n for the pr
applied th
io
d
pt
n
disclinatio
a
m
,
u
3
ss
a
K3
K22 =
plifying
when K11 =
an oversim
valid only
,
al.29 made
x)
/
(z
n
/2)arcta
yed ∂ = (1
they emplo
ing
K22≠K33.
ion contain
ses of K11≠
drical reg
n
ca
li
l
a
cy
er
e
th
en
g
low
of
istortion be
in an area
the twist d
is present
to
e
e
er
u
th
d
n
y
g
io
ener
distort
the elastic
in contact
t the twist
luation of
ove bottom
mption tha
u
ro
g
ss
a
e
e
th
d
In the eva
f
u
o
cr
gy
width
we make a
e free ener
at l is the
ation line,
ne, and th
∂b. Then th
a
s
a
pl
z
to
x–
the disclin
ed
e
th
it
referr
parallel to
are, per un
bottom is
ss section
the groove
ove bottom
t
ro
a
g
n
e
f
A at a cro
th
o
t
a
oring
uthal angle
rface anch
. The azim
that with su
d
n
with the NLC
a
n
io
ist distort
with the tw
associated
irection,
o
poly
porti
s. [
) an
tenti
ul fo
erest
exibl
semic
evice
trans
cting
renes
its po
OLEDs
ly fl
se int
ganic
nic d
holeondu
e of
des (
nical
ly sty
inten
o
c
s
t
o
a
r
o
i
u
n
t
h
d
d
a
:p
d
c
a
c
e
e
)
c
t
t
e
e
i
in tr
e
g
l
d
trac
nd be
impor
ophen
sive e
e in m
mittin
s and
st stu
ve at
is an
PV), a
evice
e mo
ght-e
xy thi
expen
ial us
O
i
t
h
t
d
o
(
n
l
i
t
d
i
i
n
e
t
o
po
sec n
their
d
id
n
x
a
o
,
ght
sulf
htwei
e
c
d
n
e
a
enh
ylen
4-eth
m
i
s
t
i
p
)
ono
:PSS
EDOT
y
ause
c
nderl
e
u
b
stem
s
o
c
ic
the
organ
s
aics
t
tudie
l
s
o
v
oto
a
c
t
i
r
r
o
t
imp
elec
ermo
r
e
a
h
t
ing
fur
] Add
u
SS co
l
P
y
h
met
d
e
y
l
l
stab
ical
amat
ナノシステム研究部門はナノテクノロジーと計算科学を両翼とし、幅広い分野をカバーする専門
m
e
l
b
pro
lished
o
the 家 100 名超を擁する基幹ユニットです。2010 年の発足以来、理論、計算・シミュレーション、
,
S
ransp
S
t
:P
DOT
w
s
o
e
h
i
r
car
ood
derst
および計測技術との連携のもと、ナノ粒子技術やプロセス革新による新規機能性材料およびデバ
:P
y
g
EDOT
o
P
l
o
rph
v
l
o
s
イス・システムの開発などを進めています。また、ソフトマテリアルをベースとする「やわらか
y
coticall
r
u
t
c
g
stru
plorin
いロボット」や、未利用熱の利用技術の開発も始めています。今後は、やわらかくかつ人や環境
e
h
t
fi
f
i
s o
sign
exces
e
ake a にやさしいデバイス・システムの研究開発を推し進め、従来の軽薄短小に代わる「軽薄安柔」と
m
eport
r
o
t
der
a
s
r
e
t
t
c
ea
spe
PSS cr
いう概念に基づいたナノシステムを開拓してゆきます。
s
hange
c
r
rrie
d
o
n
n
a
a
Tak
hous
morp
e
The Nanosystem Research Institute (NRI) is a key research unit, having nanotechnology and
bserv
o
e
stin
fi
d
f
o
soli
computational science as its both wings, and boasting its over one hundred specialists covering broad
dition
the
orpho
n
i
m
e
ang
s
i
areas.
Since
its
inauguration
in
2010,
NRI
has
been
developing
new
functional
materials,
devices,
and
T:P
y
t
ivi
PEDO
nduct
o
.
h
l
p
a
et
mor
systems by the development of nano-particle technologies and the innovation of processes, in close
yang
h
g
u
an
thro
e Ram
o
t
]
cooperation
with
theory,
computational
simulation,
and
measurement
technologies.
We
have
also
d
5
e
1
ut
11–
attrib
t
]
5
iffrac
[
d
.
started developing soft robot based on soft materials and new technologies to utilize unharnessed
DOT
r
u
o
t
t
c
stru
tion
ffrac
i
ls in heat. We are seeking to develop and realize devices and systems that are soft and gentle to humans
a
t
eterm
s
d
y
r
noc
,
r
e
a
t
v
e
n
How
orie
and the environment, and to pioneer nanosystems based on the new concept of Light, Thin, Safe
ded.
e
e
oreov
v
i
M
t
c
ndu
t
y
and
Soft
as
our
guiding
principle,
in
place
of
the
previous
Light,
Thin,
Short
and
Small.
l
n
d
e
fer
har
d dif
h
nt
e
f the
m
o
p
o
vel
r
e
[
v
.
n
hes
is i
proac
or
heref
t
y
a
X-r
m
n
l
e
l
l
fi
SS
cha
DOT:P
c
e
l
e
for
the
ethod
t
a
c
i
r
fab
lar
olecu
le.
h
a
s
c
a
s
ter
Yam
nome
e
v
R–UV
a
I
h
lms
e
s
u
r
a
c
carrie
y be
obabl
e
g
s.
a
l
t
e
l
l vo
mod
e Hal
;
d
y
t
d
i
s
a
den
the
rrier
is
e
t
s
c
a
e
e
f
incr
l ef
e Hal
s
n
:P
e
e
T
r
O
S sc
PED
OT:PS
g
for
e
razin
l
g
b
a
suit
X
.
s
A
r
W
o
ist
(GI
trans
c
s
d
y
n
X-ra
tz a
raher
i
t
r
e
e
h
t
p
ne
pro
termi
t
s
i
s
tran
ical
eoret
os
s why
n
pectr
o
s
s
a
e re
ta
i
y
c
l
t
a
an
cap
nifi c
f
o
e
g
y
r
t
ivi
cha
nduct
ng
i
s
dded
u
a
s
udie
ic
electr
tion
ffrac
G
E
e
ngl
the
all-a
t
s
nspor
a
ecrea
r
t
d
r
rrie
u
o
i
prev
n-gel
R
I
he EG
N
t
–
s
–vi
t o
effec
c
ecifi
of
y
th
t
i
s
w
sho
den
gher
h
t
il
n
n
i
e
G
e
a
s
o
h
w
E
t
h
g
t
A
y
t of
1 a,b
stent
ly. De
and t
hod.
tand
asurin
ctivit
moun
igure
consi
− 1 ,
e met
nders
ective
ondu
F
by me
b
p
c
u
e
.
s
m
r
o
a
t
l
d
r
e
e
c
o
u
m
r
e
a
p
w
T
r
S
z
c
mi
EG,
Info
four830
ectri
ried o
vent.
tions
s opti
rting
e car
a sol
the el
serva
ional
ith 3%
− 1 to
r
t
o
b
w
t
f
e
y
p
n
o
l
a
o
p
w
e
m
d
h
n
u
e
v
c
t
s
e
n
S
o
s
sted
denc
1.2 S
a con
tudie
. The
EG a
G is
n the
ng 01 Nanosystem
sugge
from
Research
2014
depen
use E
re S1)Institute October,
SAXS s
thout
e S2 i
a
I
u
i
1
r
e
d
r
c
g
w
u
h
−
i
e
G
e
t
s
g
o
b
F
s
i
t
a
Å
d
t
F
n
y,
lm
n,
5
d
ha
cre
SS fi
AXD a
= 1.8
wn in
holog
signe
matio
pect t
, σ in
morp
r
as as
DOT:P
nd q
Infor
, GIW
re sho
to ex
ナノシステム研究部門の概要
Introduction
ナノシステム研究部門長 山口 智彦
Dr. Tomohiko YAMAGUCHI Director, Nanosystem Research Institute
2014.04.15
t
ti
d
not
yco
duct
r mo
dies
OT:PS
t elec
oping
ne gl
l con
and
, it is
carrie
f PED
us stu
paren
and d
ethyle
cally
ctrica
T:PSS,
mero
t the
ion o
e
y
s
s
c
u
l
t
fi
trans
r
i
a
e
i
e
D
n
l
e
f
c
i
E
p
f
h
e
h
b
e
s
P O
c
a
h
g
i
p
o
t
u
S
f
u
d
s
s
m
o
o
e
u
]
,
s
h
devi
v
h
r
t
t
u
y
t
6
l
t
ven
ctric
and
impro
carrie
[ 5 ,
aqueo
uctivi
4 ] A
d sol
moele
f the
ns to
lear.
ology
cond
.[3 ,
r
to an
o
o
c
h
y
e
i
t
p
t
)
h
s
t
i
e
r
i
OT s
t
t
v
O
o
h
o
d
D
i
S
n
t
r
n
M
lm m
reme
ving
in PE
s con
nduct
as fo
till ide (D
roces
used
such
cal o
impro
measu
the fi
are s
i
p
r
t
er,
c
e
e
el
How v
ce its
olo
e
h
h
p
t
g
mor
mizin
sms
i
e
n
s
・動的不安定性
Dynamic
instabilities
a
u
h
ec
beca
ying
nge
a
tu
・複雑系
Complex
systems
s
h
c
y
l
nts
Ear
solve
Director
Tomohiko YAMAGUCHI ・自己組織化 Self-organization
e
l
o
b
h
a
i
p
l
r
re
amo
s and
m
s
a
only
ant in
ns,
h
o
g
i
・物性理論
Condensed
matter
physics
theory
u
t
o
a
lic
alth
r app
・化学物理 Chemical physics
ved
n is
o
i
mpro
r
i
e
t
Deputy Director Yoshihiro ASAI ・非平衡伝導理論 Non-equilibrium transport theory
un
.
es i
n
g
o
i
rs
chan
dispe
・ラングミュア・ブロジェット膜 Langmuir-Blodgett films
ven
l
o
r
・分子集合体 Organized molecules
co-s
ms fo
ma
Kei-ichi
IKEGAMI
,
r
s
・物性評価
Characterization
o
e
di
conf
ortstu
rge.
tr
a
o
h
r
c
h
ess
sync
s exc
re
T
a
・単層カーボンナノチューブ
Single-walled
carbon
nanotube
O
s
D
m
E
l
of P
:PSS fi
・プリンタブルエレクトロニクス
Printable
electronics
n
s
e
e
v
s
l
u
o
ca
co-s
vents
Prime Senior Researcher Hiromichi KATAURA・固体分光学 Solid state spectroscopy
f
o
,
s
r
e
e
i
ord
stud
ural
y
r
e
v
y
still
cantl
・分子機能材料 Molecular functional material
ha
t the
a
odels
h
m
t
・色素増感太陽電池
Dye-sensitized
solar
cell
ed
t
n
g
e
n
i
m
Principal
Research
Manager
Yuji
KAWANISHI
i
・重水素標識金属錯体 Deuterium labeled metal complexes
add
xper
a by
in
a
e
h
r
c
a
・量子化学 Quantum chemistry
the
there
es in
d
・水素結合 Hydrogen bonding
ring
l. use
a
catte
t
s
e
o
Umpei NAGASHIMA・同位体効果 Isotope effect
tion
a
a p
m
s
r
fo
this i
e the
・化学工学
Chemical
engineering
in
r
l
e
l
t
a
f
s a
cryst
fi lm
・化学熱力学 Chemical thermodaynamics
g
n
i
r
Takeshi
FURUYA
l
ca
orde
ologi
re
y i
lms a
obilit
fi
m
S
・有機薄膜 Organic thin films
:PS
d,
e
r
l
ca
explo
ologi
Wataru MIZUTANI ・高分子 EL Polymer light-emitting diodes
in
t
n
y
e
t
i
er
dens
h diff
y,
l
al
g
n
n
o
i
i
s
ri
oport
・知財 Intellectual property
] Surp
i
l
i
b
d
o
an
the m
・技術移転 Technology transfer
ction
e
h
g
d
u
r
o
e
NRI Innovation Office
lth
・産学官連携 Industry-Academia-Government collaboration
carri
ure, a
lm
ak
the fi
g
hich m
n
i
w
min
on
i
t
d
n
・ナノテク情報の収集、分析、広報
n
, a
conve
ation
Collection, analysis, and publicity of nanotechnology information
te
rier
a
r
r
a
t
c
s
he
emon
・ナノテク情報誌「PEN」の出版
ver, t
e
s
Office
of
R&D
Strategy
u
e
Publication of nanotechnology information magazine "PEN"
can b
been
r
r
e
e
i
r
h
t
r
a
tting
high c
・CG アニメーション Computer graphics animation
per,
y
l
his pa
t
e
rs
g
n
i
・グラフィックデザイン
Graphic
design
r
e g
u
n
s
ea
ethyle
ore m
NRI Art Office
igh
・サイエンスアート
Science
art
h
al
e
c
h
i
. T
electr
nging
,
rp
d
l
o
e
m
fi
basis
ctric
le
g
n
a
wide
ating
n
i
.
l
g
a
n
t
grazi
hita e
y
T
p
.
o
)
S
c
s
X
o
(GISA
pectr
fi
y
y
b
b
y
d
t
i
studie
mobil
非平衡材料シミュレーショングループ
n situ
] In
6
1
Nonequilibrium
Materials
Simulation
Group
[
with i
ナノ理論グループ
s.
f
el sho
o
ナノ炭素材料シミュレーショングループ
ion g
dition
Nanoscale Theory Group
intro
Nano Carbon Materials Simulation Group
could
se the
e
h
相関材料シミュレーショングループ
t
ansist
on
ナノ炭素材料研究グループ
the tr
:PSS,
s
e
c
n
Correlated
Materials
Simulation
Group
e
T:PSS
Carbon Nanomaterials Research Group
id
PEDO
g-inc
t
i
v
i
t
c
u
nd
ナノ光電子応用研究グループ
cond
ナノシステム計測グループ
XD) a
f
Nano Optoelectronics Research Group
ng
i
ased
r
e
e
r
t
c
t
in
Nanosystem Characterization Group
sca
c
n
o
c
e
r
ナノ構造アクティブデバイスグループ
er
highe
ties w
ed
3
n
i
[
b
Nanostructured
Active
Devices
Group
.
m
s
o
result
tors c
since
sed b
,
u
y
a
p
c
o
is
osc
n
h
c
i
h
ion o
w
addit
tance
f
n
o
ソフトマターモデリンググループ
i
s
s
r
rn
patte
carrie
電気化学界面シミュレーショングループ
Soft Matter Modeling Group
the q
g
e
h
n
t
o
l
a
to
Electrochemical Interface Simulation Group
スマートマテリアルグループ
s
ction
Smart Materials Group
diffra
cal 0
c
ion
t
a
フィジカルナノプロセスグループ
r
a
f
r
t
f
i
ソフトデバイスグループ
cen
The d
G on
at
Physical Nano-Process Group
Soft Devices Group
ction
ightly
a
l
r
s
f
f
d
i
d
se
s
d
e
ソフトメカニクスグループ
t
r
o
hain
ep
ナノケミカルプロセスグループ
interc
usly r
Soft Mechanics Group
y
ion
r
t
c
a
r
t
e
h
cen
Nano Chemical Process Group
that t
スマートセンシンググループ
G on
y
sed b
a
e
G
r
E
Smart
Sensing
Group
c
in
of
グリーンテクノロジー研究グループ
XD
f
l
A
a
W
t
I
a
G
形態機能ナノシステムグループ
width
he 2D
n
ns
Green Technology Research Group
Morphofunctional Nanosystem Group
y Riv
e sca
b
n
i
l
d
e
t
d
le
ned
repor
esting
s
ll
n
ne.
– π
i
g
fi
a
s
r
u
o
l
e
g
l
f
a
a
l
w
π
u
d
a
e
a
,
s
e
(
l
e
t
s
l
h
s
. C
ered
l siz
stals
gnal,
ction
e cry
e wel
rom t
ation
ly ord
crysta
T cry
s wer
ger si
ion f
nd th
refl e
weak
PEDO
fi lm
at PE
stron
culat
020)
erage
s
PSS, a
h
l
(
e
i
v
t
h
a
h
a
t
a
d
e
t
c
g
o
m
s
e
d
e
f
t
b
e
n
n
e
e
t
u
at
mplyi
itativ
ted th
tion o
e inte
is sys
istrib
i
roduc
t
a
r
c
h
p
d
,
n
t
c
e
o
s
i
a
i
y
at th
e
m
d
u
l
G
x
s
fl
n
m
xy a
wed Institute October,
nd th
ith E
the q
Nanosystem
Research
2014 02
becau
eak i
20) re
rando
the q
ing, a
lms w
G sho
per p
hough
he (0
k
iable
E
h
r
t
t
f
l
c
fi
t
l
a
i
e
h
a
a
h
t
r
S
m
w
p
i
s
S
s
,
o
t
o
ne o
fr
ed
he
s w
on
T:P
ion
rose
d pla
mpar
fi lm
ed. T
PEDO
y be n
solut
face-
組 織
ORGANIZATION
研究部門長 山 口 智 彦
副研究部門長 浅 井 美 博
池上 敬一
首席研究員 片浦 弘道
総括研究主幹 川西 祐司 ( 兼 )
長嶋 雲兵
古 屋 武
水谷 亘
NRIイノベーションオフィス
ナノテクノロジー戦略オフィス
NRIア ー ト オ フ ィ ス
IT システム IT System
ソフトシステム Soft System
テクノロジーブリッジ Technology Bridge
グリーンシステム Green System
o
poly
porti
s. [
) an
tenti
ul fo
erest
exibl
semic
evice
trans
cting
renes
its po
OLEDs
ly fl
se int
ganic
nic d
holeondu
e of
des (
nical
ly sty
inten
o
c
s
t
o
a
r
o
i
u
n
t
h
d
d
a
:p
d
c
a
c
e
e
)
c
t
t
e
e
i
in tr
e
g
l
d
trac
nd be
impor
ophen
sive e
e in m
mittin
s and
st stu
ve at
is an
PV), a
evice
e mo
ght-e
xy thi
expen
ial us
O
i
t
h
t
d
o
(
n
l
i
t
d
i
i
n
e
t
o
po
sec n
their
d
id
n
x
a
o
,
ght
sulf
htwei
e
c
d
n
e
a
enh
ylen
4-eth
m
i
s
t
i
p
)
ono
:PSS
EDOT
y
ause当部門は、多才な研究者群の協働によるナノ材料の研究開発とその集積化技術をコア・コンピタンス
c
nderl
e
u
b
stem
s
o
c
ic
the
organ
s
aics とし、グリーン・IT・ソフトシステムのアウトカムでオープンイノベーションに貢献します。研究開
t
tudie
l
s
o
v
oto
a
c
t
i
r
r
o
t
imp
elec
発の前線で技術の橋渡しをする「テクノロジーブリッジ」という概念を確立し、技術移転を加速して
ermo
r
e
a
h
t
ing
fur
] Add
u
未来社会に貢献します。国際連携を強力に推進するとともに、ユニット独自に
NRI
イノベーションオ
SS co
l
P
y
h
met
d
e
y
l
l
tab
ical
amat
フィス、ナノテクテクノロジー戦略オフィスおよび NRI アートオフィスを設置して、研究活動を機動 s blem
pro
lished
o
the 的に展開します。図:月刊情報誌 PEN (http://pengin.ne.jp)
,
S
ransp
S
t
:P
DOT
w
s
o
e
h
i
r
car
ood
derst
:P
Public Engagement with Nanoy
g
EDOT
based Emerging Technologies
o
P
l
o
N E W S L E T T E R
rph
v
l
o
s
y
coThe Nanosystem Research Institute (NRI) contributes to Open Innovation
ticall
r
u
t
c
g
stru
plorin
e
h
t
fi
f
through
achieving
outcomes
of
our
research
in
Green,
IT
and
Soft
i
s o
sign
exces
e
ake a
m
eport
r
o
t
Systems by taking advantage of our core competence: the wide-range
der
a
s
r
e
t
t
c
ea
spe
PSS cr
s
R&D
for
nanomaterials
and
their
integration
by
multiphase
collaboration
hange
c
r
rrie
d
o
n
n
a
a
Tak
hous
morp
among skillful researchers with cosmopolitan viewpoints. NRI establishes
e
bserv
o
e
stin
fi
d
f
o
soli
the concept of Technology Bridge that accelerates smooth transfers of
dition
October 2014
the
orpho
n
i
m
Volume
5,
Number
7
e
ang
s
i
new
technologies
to
the
society.
To
promote
our
agile
research,
NRI
has
T:P
y
t
ivi
PEDO
nduct
o
.
h
l
p
a
et
mor
its own unique in-house organizations: the NRI Innovation Office, the Office of R&D Strategy
yang
h
g
u
an
thro
e Ram
o
t
]
d
5
e
1
and the NRI Art Office.
ut
11–
attrib
t
]
5
iffrac
[
d
.
Figure: Monthly report: PEN (Public Engagement with Nanobased Emerging Technologies News Letter:
DOT
r
u
o
t
t
c
stru
tion
ffrac
i
ls in
http://pengin.ne.jp).
a
t
eterm
s
d
y
r
noc
,
r
e
a
t
v
e
n
How
orie
ded.
e
e
oreov
v
i
M
t
c
ndu
t
y
l
n
d
e
fer
har
d dif
h
nt
e
f the
m
o
p
o
vel
r
e
[
v
.
n
hes
is i
proac
or
heref
t
y
a
X-r
m
n
l
e
l
l
fi
SS
cha
DOT:P
c
e
l
e
for
the
ethod
t
a
c
i
r
fab
lar
olecu
le.
h
a
s
c
a
s
ter
Yam
nome
e
v
R–UV
a
I
h
lms
e
s
u
r
a
c
carrie
y be
obabl
e
g
s.
a
l
t
e
l
l vo
mod
e Hal
;
d
y
t
d
i
s
a
den
the
rrier
is
e
t
s
c
a
e
e
f
incr
l ef
e Hal
s
n
:P
e
e
T
r
O
S sc
PED
OT:PS
g
for
e
razin
l
g
b
a
suit
X
.
s
A
r
W
o
ist
(GI
trans
c
s
d
y
n
X-ra
tz a
raher
i
t
r
e
e
h
t
p
ne
pro
termi
t
s
i
s
tran
ical
eoret
os
s why
n
pectr
o
s
s
ナノ粒子
a
e re
ta
Administration
i
y
c
l
t
a
an
cap
ソフトマテリアル ナノ複合体
CNT
nifi c
f
o
e
g
y
r
t
ivi
cha
Nanoparticles
マイクロ流路
ナノギャップ
nduct
ng
i
s
Nano
Compsite
dded
u
a
CNT
Soft
Materials
s
udie
Universities
ic
Nano Gap Device
Micro Channel
electr
tion
ffrac
G
E
e
ngl
the
all-a
t
s
nspor
a
ecrea
r
t
d
r
rrie
Industries
u
o
i
prev
n-gel
Research
Units
in
AIST
R
I
he EG
N
t
–
s
–vi
t o
effec
c
ecifi
of
y
th
t
i
s
w
sho
den
gher
h
t
il
n
n
i
e
G
e
a
s
o
h
w
E
t
h
g
t
A
y
t of
1 a,b
stent
ly. De
and t
hod.
tand
asurin
ctivit
moun
igure
consi
− 1 ,
e met
nders
ective
ondu
F
by me
b
p
c
u
e
.
s
m
r
o
a
t
l
d
r
e
e
c
o
u
m
r
e
a
p
w
T
r
S
z
c
mi
EG,
Info
four830
ectri
ried o
vent.
tions
s opti
rting
e car
a sol
the el
serva
ional
ith 3%
− 1 to
r
t
o
b
w
t
f
e
y
p
n
o
l
a
o
p
w
e
m
d
h
n
u
e
v
c
t
s
e
n
S
o
s
sted
denc
1.2 S
a con
tudie
. The
EG a
G is
n the
ng 03 Nanosystem
sugge
from
Research
2014
depen
use E
re S1)Institute October,
SAXS s
thout
e S2 i
a
I
u
i
1
r
e
d
r
c
g
w
u
h
−
i
e
G
e
t
s
g
o
b
F
s
i
t
a
Å
d
t
F
n
y,
lm
n,
5
d
ha
cre
SS fi
AXD a
= 1.8
wn in
holog
signe
matio
pect t
, σ in
morp
r
as as
DOT:P
nd q
Infor
, GIW
re sho
to ex
ナノシステム研究部門の研究戦略
RESEARCH STRATEGY of NRI
PEN
ISSN 2185 - 3231
PEN October 2014
社 会
1
グリーンシステム
Green System
SOCIETY
(燃料電池、太陽電池)
(Fuel Cell, Photovoltaic Cell)
ソフトシステム
Soft System
(再生医療・予防診断)
(Tissue Engineering, Preventive Diagnosis)
オープンイノベーション
OPEN INNOVATION
ITシステム
IT System
(ナノ構造エレクトロニクス)
(Nanostructured Electronics)
テクノロジーブリッジ
Technology Bridge
(理論・シミュレーション、計測、ナノ安全)
行政
(Theory/Simulation, Characterization, Nano Safety)
産総研
AIST
大学
企業
ナノシステム
研究部門 (NRI)
他ユニット
t
ti
d
not
yco
duct
r mo
dies
OT:PS
t elec
oping
ne gl
l con
and
, it is
carrie
f PED
us stu
paren
and d
ethyle
cally
ctrica
T:PSS,
mero
t the
ion o
e
y
s
s
c
u
l
t
fi
trans
r
i
a
e
i
e
D
n
l
e
f
c
i
E
p
f
h
e
h
b
e
s
P O
c
a
h
g
i
p
o
t
u
S
f
u
d
s
s
m
o
o
e
u
]
,
s
h
devic
v
h
r
t
t
u
y
t
6
l
t
ven
ctric
and
impro
carrie
[ 5 ,
aqueo
uctivi
4 ] A
d sol
moele
f the
ns to
lear.
ology
cond
.[3 ,
r
to an
o
o
c
h
y
e
i
t
p
t
)
h
s
t
i
e
r
i
OT s
t
t
v
O
o
h
o
d
D
i
S
n
t
r
n
M
lm m
reme
ving
in PE
s con
nduct
as fo
till de (D
roces
used
such
cal o
impro
measu
the fi
are s
i
p
r
t
er,
c
e
e
el
How v
ce its
olo
e
h
h
p
t
g
mor
mizin
sms
i
e i
n
s
a
u
h
ec
beca
ying
nge
a
tu
s
h
c
y
l
nts
Ear
solve
e
u
l
b
h
a
i
p
l
r
e
固液界面の構造を理解するには、自由エネルギーの高精度計算が不可欠で、膨大amo o
and r
m
s
a
only
な構造サンプリングが必要です。当研究グループの森下主任研究員は、エネルギー
ant in
s,
gh
ation
c
i
lthou
l
p
a
p
a
関数を対数形式で表すことでサンプリング効率を上げる計算手法を考案しまし
ed
s
v
i
o
ion
impr
unter
s i
.
e
た。この手法は、超並列計算にも適しており、大規模計算への適応も期待されま
n
g
o
i
rs
chan
dispe
n
v
l
o
r
す。図はこの手法で得たグリシンペプチドの自由エネルギーを表しています。 co-s e
ms fo
a
m
,
r
s
o
e
f
di
To understand the microscopic structure of the liquid/solid interface, high precision con otr
ortstu
rge.
chr
s cha
s
n
e
y
c
s
x
e
free-energy calculations are needed, demanding extensive conformation-sampling.
re
DOT
lms a
of PE
PSS fi
Dr.
Morishita,
a
member
of
our
group,
developed
an
efficient
way
of
sampling
by
s
e
ven
s
l
u
o
ca
co-s
vents
using
the
logarithmic
form
of
the
free-energy.
This
method
suits
massively
parallel
of
,
s
r
e
e
i
rd
stud
ral o
y
computing
and
thus
can
be
applied
to
large-scale
practical
problems.
The
figure
r
e
v
y
still
cantl
ha
e
s
denotes
the
free-energy
diagram
of
a
glycine
peptide
obtained
by
this
method.
l
h
t
e
at
mod
ed th
t
n
g
e
n
i
m
i
add
xper
a by
in
a
e
h
r
c
a
he
there
s in t
d
ring
l. use
a
catte
t
s
e
o
当グループでは、プラズマやレーザー、表面活性などを利用した物理的手法に
tion
a
a p
m
s
r
fo
this i
e the
ini
r
l
e
l
t
a
f
s a
よって、必要な材料を必要なだけ作る(オンデマンド)新規微粒子合成プロセ cryst
fi lm
o
g
n
i
r
l
ca
orde
ologi
re
n
i
a
図
:
Cu-Au
合金ナノ粒子の気相中熱酸化によって、
Au-Cu(
金属
)
y
s
スを開発しています。
t
i
m
l
l
mobi
PSS fi
,
d
e
r
l
ca
explo
と Cu2O( 半導体 ) がヘテロ接合した均一ナノ粒子
ologi
in
erent
f
f
ensity
i
d
d
h
y,
l
al
g
n
n
o
i
We
are
developing
original
physical
processes
using
plasmas,
lasers
and
surface
i
s
ri
oport
] Surp
i
l
i
b
d
o
an
activities to produce novel fine particle materials. These processes enable the the m
ction
e
h
g
d
u
r
o
e
th
rri
re, al
production of just the necessary quantity of necessary materials 'On Demand'. ca h mak
lm
the fi
ic
g
h
n
i
w
in
n
Figure: Homogeneous nano-heterojunctions between Au-Cu(metal) and Cu2O
nd
a
ventio
,
n
n
o
c
o
ati
te
rier
a
r
r
a
t
c
s
he
(semiconductor) formed by thermal oxidation of Cu-Au nano-particles in gas phase. emon
ver, t
e use
n
e
can b
be
r
e
i
r
the r
r
a
tting
high c
per,
a
this p
rsely
g
n
i
r
e gl
u
n
s
ea
ナノ材料、ナノ粒子を、幅広い産業分野に応用していくため、オンデマンド・連
ethyle
ore m
igh
h
al
e
c
h
i
. T
electr
nging
続製造プロセスの開発を行っています。圧力による相や物性の制御、マイクロ流
,
rp
d
l
o
e
m
fi
basis
ctric
路などのコア技術を駆使して、必要なときに、必要な性質を持つ、必要な量のナde angle
wi
ting
al.
ng-in
ノ材料・ナノ粒子を作るプロセスの構築、およびそれらを用いた機能性部材、デ
t
e
a
grazi
hit
y
p
o
c
s
XS). T
o
バイスへの応用に取り組んでいます。 図:柔軟な耐熱ナノコンポジット断熱材
(GISA
pectr
fi
y
b
y
d by
t
i
studie
mobil
We
have
developed
chemical
processes
for
synthesis
of
a
variety
of
n
situ
I
n
6 ]
with i
s. [ 1
nanomaterials
and
nanoparticles
using
high
pressure
fluids,
micro-fluidic
f
l
e sho
o
ion g
dition
technology
and
chemical
engineering
techniques.
Our
researches
include
intro
could
se the
e
h
on-demand
synthesis,
continuous
mass
production
and
device
development
t
ansist
n
the tr
PSS, o
s
e
c
n
e
of
functional
materials.
T:PSS
id
PEDO
g-inc
t
i
v
i
t
c
Figure: Flexible and heat-resistant nanocomposite thermal insulator.
u
nd
cond
XD) a
f
ng
i
ased
r
e
e
r
t
c
t
in
ca
c
n
o
c
e
r
er
highe
ties w
ed
3
n
i
[
b
.
m
s
o
result
tors c
y
ナノ構造をベースに、人が扱うスケールまでを一貫して設計・構築する「ナノシステム」
since
sed b
,
u
y
a
p
c
o
is
osc
n
o
h
c
i
n
h
o
i
w
による、環境・エネルギー問題解決への貢献を目指しています。放射性セシウム除染
addit
tance
f
rs in
rns o
e
i
e
r
t
t
r
a
a
では、選択的にセシウムを吸着するナノ粒子を開発し、実証プラントによる汚染灰除
p
c
q
e
h
t
along
to the
染試験を進めています。また、電気的に色変化するナノ粒子インクの開発に基づき、
s
n
o
i
t
c
diffra
cal 0
t
c
ion
t
a
環境
・
省エネへの貢献を目的として、
電子ペーパーや調光ガラスの開発も進めています。
r
a
f
r
t
f
i
oncen
The d
at
y
n
l
o
t
i
h
t
c
lig
We are developing the Nanosystem based on the design and construction of
diffra
sed s
ain s
orted
h
p
c
e
r
r
e
t
y
structures
extending
from
nanoto
human-scale,
to
solve
various
environment/energy
in
usl
ys
ion
t
a
r
t
e
h cr
oncen
problems. In the issue of the radioactive-cesium decontamination, we have developed
that t
y
b
d
e
as
incre
of EG
nanoparticles for cesium-uptake, and constructed a test-plant. The R&D of
XD
f
l
A
a
W
t
I
a
G
width
he 2D
electronic-paper and color-switchable windows is also promoted by the development
n
色可変素子
ans
y Riv
e scセシウム吸着材
b
n
i
l
d
e
t
d
d inks of color-switchable
le
Cs-adsorbent
Color-switchable
device neof
nanoparticles
using
repor
esting
s printing/coating
ll technologies.
n
ne.
– π
i
g
fi
a
s
r
u
o
l
e
g
l
f
a
a
l
w
π
u
d
a
e
a
,
s
e
(
l
e
t
s
l
h
s
. C
ered
l siz
stals
gnal,
ction
e cry
e wel
rom t
ation
ly ord
crysta
T cry
s wer
ger si
ion f
nd th
refl e
weak
PEDO
fi lm
at PE
stron
culat
020)
erage
s
PSS, a
h
l
(
e
i
v
t
h
a
h
a
t
a
d
e
t
c
g
o
m
s
e
d
e
f
t
b
e
n
n
e
e
t
u
at
mplyi
itativ
ted th
tion o
e inte
is sys
istrib
i
roduc
t
a
r
c
h
p
d
,
n
t
c
e
o
s
i
a
i
y
at th
e
m
d
u
l
G
x
s
fl
n
m
xy a
wed Institute October,
nd th
ith E
the q
Nanosystem
Research
2014 04
becau
eak i
20) re
rando
the q
ing, a
lms w
G sho
per p
hough
he (0
k
iable
E
h
r
t
t
f
l
c
fi
t
l
a
i
e
h
a
a
h
t
r
S
m
w
p
i
s
S
s
,
o
t
o
ne o
fr
ed
he
s w
on
T:P
ion
rose
d pla
mpar
fi lm
ed. T
PEDO
y be n
solut
face-
グリーンシステム GREEN SYSTEM
電気化学界面シミュレーショングループ グループ長 : 中西 毅 / Electrochemical Interface Simulation Group Leader : Dr. Takeshi NAKANISHI
フィジカルナノプロセスグループ グループ長 : 川口建二 / Physical Nano-Process Group Leader : Dr. Kenji KAWAGUCHI
ナノケミカルプロセスグループ グループ長 : 依田 智 / Nano Chemical Process Group Leader : Dr. Satoshi YODA
グリーンテクノロジー研究グループ グループ長 : 川本 徹 / Green Technology Research Group Leader : Dr. Tohru KAWAMOTO
c
s
e
y
er
rgani
uctor
er
] Pol
ecaus
g lay
ate)
tia
and o
icond
l fon
rest b
polym
xible,
portin
s. [ 1
)
m
u
e
e
s
s
e
t
s
e
g
n
c
D
s
e
poten
n
i
n
fl
i
a
E
i
n
v
r
s
c
t
L
e
i
e
t
c
se
of it
es (O
ically
nic d
holey styr
ondu
e
Organ
d
n
l
inten
o
c
s
t
o
ra
a
r
o
i
u
t
n
t
h
d
d
a
:p
d
c
a
c
e
e
)
n
c
t
t
e
d be
studi
in me
itting
and i
phene
impor
ive el
attrac
most
V), an
l use
vices
ht-em
y thio
xpens
have
is an
P
a
so
e
e
g
x
e
i
O
i
t
h
t
d
o
(
n
l
i
t
d
i
i
n
n
e
seco
ir pot
of the
e
d
d
i
n
x
a
o
sulf
eight,
lightw
e
c
d
n
e
enha
thylen
3,4-e
miz
is
)
S
S
nopti
o
:P
T
(PEDO
yin
e
l
s
r
u
e
und
beca
system
ol
s
o
c
ganic
当グループでは温度差や電位差が与えられた物質の状態を高精度に記述する手法 the s a
in or
Thermoelectric
Voltage
e
s
i
c
i
stud
volta
を開発しつつ、この手法をエネルギー産業やエレクトロニクス産業で使われる材
photo
tan
tric
c
e
mpor
l
i
e
o
therm
r a
e
料のモデリングに適用します。例えば、排熱の再生利用を目指すデバイスや低消
a
h
furt
dding
Film Material
2 ] A
unt
o
c
費電力で高速の次世代メモリなどに使用される材料を対象とします。
PSS
hyl
dimet
dis
e
y
l
b
ll
atica
図:二端子熱電素子における熱起電力やフォノン熱伝導度の第一原理シミュレーション sta lems
dram
prob
ed
ublish
We develop accurate methods to describe the state of matters exposed to
ort
the Hot
Cold
,
S
ransp
S
t
:P
T
PEDO
ex
w
s
o
differences
in
temperature
and/or
electric
potential.
We
also
apply
the
methods
e
h
i
carr
stood
under
S
:P
T
O
to
materials
used
in
the
energy
and
electronics
industries
such
as
devices
for
PED
ology
n
Morph
e
v
l
o
utilization of waste heat and next-generation high speed memories with low
co-s
ally
critic
a
r
u
t
c
power consumption. Figure :First-principles simulation of thermoelectric effects and stru
ring
explo
ca
Thermal Current
f the
o
s
phonon
thermal conductance of two-terminal devices.
s
signifi
e
c
An ex
a
d
e
e
t
k
r
repo
to ma
order
a b
tes
a
e
pectr
r
s
c
S
of PS
s i
e
g
chan
r
e
carrie
d
o
n
n
a
a
当グループでは、炭素系ナノ物質 (CNT、グラフェン、生体分子など ) の特性をシ Tak
phous
amor
t
e
v
r
ミュレーションによって研究します。例えば、新しい実験技術である He イオン obse
ne
l
pristi
f
lid fi
o
n
o
i
顕微鏡 (HIM) でグラフェンの構造評価をすると、図のようなグラフェン格子像が so holo
addit
e
p
h
mor
e in t
chang
得られるものと予測されます。また、フェムト秒レーザーを用いたグラフェン加 EDOT:PS
ty is
i
v
i
P
t
c
u
cond
holo
l.
工技術のシミュレーションによる研究開発で企業との連携が始まっています。
morp
g et a
n
a
y
u
O
gh d
u
thro
aman
Our group explores the frontier of carbon nano-materials such as CNT,
the R
o
t
] S
d
5
e
t
11–1
グラフェンの格子構造 ( 左 ) と
ttribu
graphene, bio-molecules by simulation. We predict that He ion microscopy
be a
tio
c
a
]
r
diff
HIM 像のシミュレーション ( 右 )
T. [ 5
(HIM), a newly developed experimental tool, can monitor the graphene lattice
PEDO
e,
r
u
o
t
t
c
stru
ction
graphene (left) and
as
displayed
in
the
figure.
We
also
collaborate
with
companies
by
joining
a
diffra
n
i
n
i
m
s
r
l
dete
crysta
simulated
HIM image (right)
nano
,
technology research association for the development of graphene fabrication
tio
wever
o
rienta
H
o
.
d
adde
r
e
technology
using
a
femtosecond
laser.
v
o
More
uctive
cond
e
b
t
y
l
n
hard
iffere
g
and d
i
h
e
t
h
n
of t
opme
devel
e
s
r
e
[
v
.
is in
aches
当グループでは、優れた特性をもつカーボンナノチューブ (CNT) を用いた電子デ
appro
ore
heref
t
y
a
r
2D Xm
ngi
l
バイスの実現を目指し、CNT
の分散技術、分離技術、デバイス開発の研究を行っ
e
l
fi
chal
T:PSS
PEDO
ctr
e
l
e
ています。ゲルを用いたカラムで金属型と半導体型の CNT を分離し、さらに、 the
d for
metho
tin
a
c
i
ular
温度をコントロールすることで非常に簡便に単一構造の半導体型 CNT が得られ fabr hit
molec
le.
a
s
c
a
s
Yam
meter
るようになりました ( 図 )。今後、新規 CNT デバイスの実用化を目指します。
nano
pe
e
v
R–UV
a
I
h
s
fi lm
e
m
s
u
r
a
e
i
c
Toward the practical use of carbon nanotube (CNT) having superior properties,
carr
bly be
proba
. [
ltage単一構造半導体型 CNT 溶液と
o
we
are
developing
dispersion
and
structure
sorting
technologies
and
electronic
odels
v
l
m
l
a
The H
it
;
その分子模型
d
y
t
d
i
s
a
devices. We have separated metallic and semiconducting CNTs and even
the
r den
sSolutions of single-chirality
carrie
i
e
t
s
c
a
e
e
incr
isolated single-chirality (structure) semiconducting CNTs using
ll eff
s
the Ha
:PS
creen semiconducting CNTs and their
s
EDOT
S
P
S
temperature-controlled gel chromatography (Figure). Hereafter we will try to
:P
EDOT
molecular
models
g-i
r
n
o
i
f
graz
table
realize novel CNT devices.
unsui
XD)
.
s
A
r
o
(GIW
ansist
lm tr
ca
s
d
y
n
X-ra
ertz a
terah
ies
t
r
e
e
h
t
prop
mine
deter
or
t
s
i
s
当グループでは、ナノ領域に閉じ込められた光や電子の新規な特性を発現させる tran
etical
theor
c
y
s
h
o
r
w
t
Plane LED
Ridge LED
ec
asons
ため、ナノ構造を最適に設計・製造する技術を開発し、例えば高効率 LED のよう sp citan
the re
y
l
capa
cant
signifi
な高機能光デバイスや真っ暗闇でカラー撮影が可能な暗視カメラを開発していま harge ca
ty of
i
v
i
c
t
c
u
cond
g
す。また、その評価のため高機能電子顕微鏡や近接場光プローブ顕微鏡などを基 added to
s usin
e
i
d
u
t
s
ical
electr
盤として、さらに局所プラズマを利用した新規評価技術も開発しています。
ction
diffra
o
G
e
the E
-angl
リッジ
We
design
and
fabricate
optimum
nano-structures
to
apply
novel
characteristics
t
d
small
r
e
s
o
a
p
s
e
decr
r tran
500nm
of electrons and photons confined in these structures, and aim to develop
carrie
ly
s
u
o
i
prev
el
600nm higher performance opto and electronic devices, such as high efficiency LEDs
ion-g
o
R
I
he EG
N
t
–
s
UV–vi
f
and
a
novel
color
night-vision
system.
To
accelerate
the
research,
we
also
o
SEM
Image
t
c
通常の LED( 左 )
effe
c
f
specifi
o
e
develop
high
performance
electron
microscopy,
probe
microscopy
and
a
new
h
y
t
t
より明るく発光するリッジ構造
LED(
右
)
i
s
show
r den
highe
Bright emissionifrom
iled
characterization
method
using
ith local plasma.
s
on
w
EG
hen
g ridge-structured
the
ALED
t
y
t
n
,b
f
.
t
d
n
i
a
o
r
d
d
. Deta
e
v
n
u
n
i
t
t
o
1
y
a
s
t
s
a
h
n
derst
nduc
ctivel
igure
consi
− 1 ,
y mea
amou
e met
n
e
o
F
b
b
p
c
u
e
.
s
m
r
o
atio
t
l
d
r
e
e
c
o
u
m
r
e
a
p
w
T
z
EG,
Infor
four830 S
ectric
ried o
ptimi
vent.
tions
th 3%
rting
e car
a sol
the el
serva
ional
i
was o
− 1 to
r
t
o
b
w
t b
f
e
y
p
n
o
l
a
o
p
w
e
m
d
h
n
u
e
v
c
t
s
n
o
s
the S
sted
dence
1.2 S
a con
tudie
. The
EG a
G is
S2 in
sugge
hout
from
Research
2014
depen
use E
re S1)Institute October,
SAXS s
using 05 Nanosystem
t
e
a
I
u
an
i
1
r
e
d
r
c
g
w
u
h
−
i
e
G
e
t
s
g
o
b
F
s
i
a
ed t
in F
.85 Å
fi lm
tion,
D and
logy,
t that
incre
q = 1
assign
IWAX
T:PSS
expec
shown
orpho
forma
3%, σ
s
O
d
o
G
n
m
r
a
e
o
D
n
I
,
r
t
a
w
a
E
y
a
m
P
g
e
g
1
− 1
lo
− 1
fi l
abl
rtin
ing
Å −
tion
orpho
eason
n the
Suppo
1.85
1.28 Å
direc
1.28 Å
stand
I T システム INFORMATION TECHNOLOGY SYSTEM
非平衡材料シミュレーショングループ グループ長 : 宮崎剛英 / Nonequilibrium Materials Simulation Group Leader : Dr. Takehide MIYAZAKI
ナノ炭素材料シミュレーショングループ グループ長 : 宮本良之 / Nano Carbon Materials Simulation Group Leader : Dr. Yoshiyuki MIYAMOTO
ナノ炭素材料研究グループ グループ長 : 田中丈士 / Carbon Nanomaterials Research Group Leader : Dr. Takeshi TANAKA
ナノ光電子応用研究グループ グループ長 : 池上敬一 ( 兼 ) / Nano Optoelectronics Research Group Leader : Dr. Kei-ichi IKEGAMI(Acting)
en
re
or
f
in
ve be
des. [
ell
sity a
ility.
(EG)
l use
vity o
S can
ies ha
not w
entia
g den
ducti
lectro
r mob
lycol
d
OT:PS
e
n
n
e
s
g
i
u
D
i
i
o
t
t
p
r
E
c
s
e
t
r
n
nd fo
o
i
P
n
e
a
l
a
,
erous
trica
the c
:PSS,
and d
nspar
ethyle
cally
on of
c
T
m
t
i
e
y
s
s
c
u
O
l
t
fi
r
i
a
e
i
e
D
n
l
e
f
c
i
E
n tra
e
p
f
h
s
P
ough
] Spe
, suc
devic
ve the
hus a
r mob
us di
y of
lvent
5 , 6
] Alth
ctric
and t
impro
ctivit
carrie
[
aqueo
e
u
4
l
y
o
.
e
d
e
,
t
n
g
r
h
n
o
t
a
o
a
nd so
s
3
l
yn
o
) to
therm
ts of
ot cle
orpho
dition
DOT s
ivity.[
the c
(DMSO
s for
ll n
lm m
remen
ving
in PE
s con
i
nduct
a
s
u
t
o
o
s
e
s
r
fi
d
h
a
c
p
e
l
c
e
e
e
s
o
a
oxide
u
r
u
s
im
m
th
a
pr
er, a
ctric
Howev
ts ele
nce i
holog
the
morp
zing
s
ptimi
se it
anism
becau
g ech
erlyin
nge
a
studi
h
c
y
Earl
vents
cosol
1.6
iable
当グループでは、ナノ構造・界面に関する理論を構築し、解析技術を向上させ、amorphous
d rel
ies an
a sma
1.7
only
高効率な光・電子デバイスを実現するための機能設計と特性解析を行っています。
t in
n
a
t
CT2
r
h
,
o
ugh t
tions
1.5
altho
1.6
pplica
主な研究対象は有機薄膜太陽電池材料、有機半導体材料、高機能高分子材料、分
her a
ved.
is
impro
erion
count
1.5
子光機能材料、半導体光触媒、炭素系ナノデバイス、自己集積化有機ナノ構造体
.
es ind
n
g
o
ersi
chan
1.4
e disp
s
lvent
1.4
です。 図:光誘起相転移を示す断熱ポテンシャルエネルギー面
co-so
for
i
lems
rmat
s,
tudie
confo
We are developing theories for nanoscale materials and interfaces to design
e.
sports
rg
a
otron
h
r
c
1.0
cess
synch
ies ex
e
opto-electrical and electronic devices with high efficiency. The subjects include
DOT
ms ar 0.8
of PE
S fi l
0.6
OT:PS
0
s
e
vents
s
organic
solar
cells,
functional
polymers,
photo-functional
materials,
nano-carbon
l
u
0.02
s座標 0.4
ts ca
co-so
0.04
olven
0.2
s of t
0.06
er,
devices and self-assembled organic nanostructures.
studie
l ord
0.08
0
d座標(Å)
ctura
ery li
tly
Figure: Adiabatic potential energy surface showing a photoinduced phase transition. still v
Final
state
Initial
state
fi can
ls hav
he
mode
that t
rted
g
ental
addin
xperim
l
tra by
ain
are a
the ch
there
ges in
s
ring
used
t al.
scatte
ano e
onNd
磁性材料・超伝導材料・強誘電/圧電材料などを構成する機能性物質では、しば
i
t
B
a
a pow
m
s
e for
this i
rve th
しば電子相関がその特異物性発現の を握ることがあります。当グループでは、 stallinity
ter
cry
ms af
l
fi
d
第一原理電子状態計算のような計算科学的手法により、このような物質・材料をrdering on
l
a
c
i
g
o
pholo
e
対象として、必要な手法・プログラムの開発・整備を行ないながら、応用研究を
ity in
ms ar
mobil
S fi l
OT:PS
Fe
r
進めていきます。現在は、高性能永久磁石材料研究に、特に注力しています。 explo ed, wh
gical
E
pholo
nt
ty in
図:ネオジム磁石中の電子スピン密度の計算結果
iffere
densi
t
ugh d
,
ngly
ional
For several functional materials such as magnetic, superconducting or
rprisi
oport
5 ] Su
y
lit
ferroelectric/piezoelectric ones, electronic correlation plays an important role in the the mobi s
n and
actio
en
h
g
d
u
r
o
emergence of their specific properties. We investigate these materials by means of carrie
, alth
cture
lm
kes
fi
a
m
e
ng th
computational methods such as first-principles calculations, developing required which
rmini
a
d
ntion
n, an
conve
computational
techniques
and
programs.
Currently,
we
focus
on
high-performance
r
ntatio
d
rrie
strate
the ca
emon
permanent magnets. Figure: Calculated electronic spin density in Nd2Fe14B.
over,
d
e use
n
can b
ly bee
s
e
r
r
e
e
i
r
h
t
h car
tting
he hig
w
aper,
ly
this p
verse
y
g
n
i
r
u
ne gl
meas
当グループは、テクノロジーブリッジとしての役割を果たすため、ナノ領域の構
ethyle
h
efore
he hig
ical
ng. T
electr
造・物性・機能を明らかにする各種計測法の高度化とともに、システム化段階に
lengi
ho
,
d
l
e
morp
ic fi
basis
electr
対応した応用を進めています。例として、高強度パルス光の極短時間照射により、e angle X
g
wid
catin
cid
al.
ng-in
プラスチック基材にダメージを与えずに無電解めっきの密着性を向上させる研究
t
e
a
grazi
ashit
h
opy
XS). T
ctrosc
に取り組んでいます。
図:PET
フィルム上に作製した金めっき微細パターン
GISA
(
V pe
us
by fi
d by
bility
studie
er mo
We are developing not only advanced techniques to measure nano-scale
n
n situ
16 ] I
with i
els. [
w
structures
and
properties
but
also
applications
to
deal
with
the
systematization
f
el sho
ion o
ion g
addit
rod
t
stage,
in
order
to
play
a
role
as
the
Technology-Bridge.
For
example,
we
have
n
i
the
could
r
ease
developed
etchingless,
electroless
plating
processes
that
can
produce
metal
nsisto
the
n
o
,
S
he tra
S
t
:P
T
O
so
ce
thin films with strong adhesion to various polymer films.
T:PSS
ciden
PEDO
ing-in
y,
t
i
v
i
t
Figure: High-resolution patterning of gold electroless plating formed on a PET film. conduc
) and
D
X
A
W
fro
g
ased
tterin
incre
n
y sca
conce
were
igher
h
erties
,
bined
s. [ 3
s com
result
sistor
y c
e
c
当グループでは、錯体分子、導電性高分子、ナノワイヤー、ナノギャップなど特
n
i
sed b
py, s
is cau
rosco
n t
ich
ion o
異なナノ構造が発現するアクティブな性質を利用した熱電素子、不揮発性メモリ
ce wh
addit
citan
f th
in
rns o
rriers
などの新規デバイスの開発に取り組んでいます。写真は有機熱電素子 ( 左 ) とそ
patte
ge ca
z
he q
the
ong t
l
a
ed to
のモジュール ( 右 ) です。高い熱電変換性能を持つ導電性高分子 PEDOT:PSS を利 ctions a
0
diffra
rical
用した熱電素子を組み上げることでモジュール化に成功しました。
ractio
ration
t
n
e
c
e diff
n
h
o
T
G
t
E
at
ly a
ction
slight
In our research group, we develop electronic devices such as thermoelectric (TE)
diffra
eased
a
ted
ain st
repor
terch
conversion
devices
and
non-volatile
memories,
using
metal-complex
molecules,
n
i
ously
t
s a
ration
e cry
ncent
conductive polymers, inorganic nanowires, and metal nanogaps. Furthermore,that th
a
熱電素子 ( 左 ) とそのモジュール ( 右 )
EG o
ed by
EG
creas
n
i
we
aim
to
create
new
types
of
active
organic/inorganic
hybrid
devices
by
fusion
Thermoelectric
Conversion
Device
(left)
m
ct of
XD
lfGIWA
h at a
the 2D
and
of these materials. The picture shows our organic TE device and module. We widt y Rivna
ns Module (right)
a
c
s
line
d b
d
ting highly
ailed
neassembled
e.
PEDOT:PSS
films.ed, as reporte s along
s
– πTE module
gesusing
sugby
e full
( π the
lear
-defi
e waordered
tallin
l
h
s
,
z
C
s
t
l
i
l
y
l
r
e
s
.
r
a
on
a
e
i
c
n
w
m
t
l
n
t
s
e
n fro
fl ec
matio
er sig
ly ord
d the
crysta
T cry
s wer
EDO
weak
20) re
ulatio
trong
PEDO
rage
SS, an
fi lm
s
c
0
e
s
P
l
(
e
i
v
that P
h
a
h
a
t
a
d
e
t
c
g
o
m
s
e
d
e
f
t
e
n
n
e
e
h
t
i
u
o
e
v
t
c
s
y
b
t
i
y
l
u
i
t
n
n
s
r
d
p
hat b
i
a
d
t
o
e
t
i
s
t
ore
is, im
y dis
at the
uanti
G pro
se thi Research
fl ect
ndica
doml
xy ax
wed m
nd th
the q
Nanosystem
Institute October,
2014 06
o
a
with E
becau
eak i
q
20) re
h
h
,
p
s
0
s
g
e
e
g
(
l
r
u
h
m
n
o ran
b
h
t
e
o
i
e
l
relia
m th
with
pack
ith EG
sharp
SS fi
s of t
, alth
ared
e-on
e not
se fro
lms w
plane
DOT:P
. The
p
lution
b
c
E
d
a
o
d
m
fi
e
P
y
s
f
e
o
v
a
t
e
e
c
r
e
o
d
1 aro
th
Th
ye
) m
uga
T c
xis
mpr
] Th
PEDO
-conj
displa
q z a
[ 17 ]
(FWHM
EG to
was i
[ 10
テクノロジーブリッジ TECHNOLOGY BRIDGE
光励起
励起エネルギー(eV)
ナノ理論グループ グループ長 : 関 和彦 / Nanoscale Theory Group Leader : Dr. Kazuhiko SEKI
相関材料シミュレーショングループ グループ長 : 石橋章司 / Correlated Materials Simulation Group Leader : Dr. Shoji ISHIBASHI
ナノシステム計測グループ グループ長 : 久保利隆 / Nanosystem Characterization Group Leader : Dr. Toshitaka KUBO
ナノ構造アクティブデバイスグループ グループ長 : 石田敬雄 / Nanostructured Active Devices Group Leader: Dr. Takao ISHIDA
o
poly
porti
s. [
) an
tent
ul fo
erest
exibl
semic
evice
trans
cting
renes
its po
OLEDs
ly fl
se int
ganic
nic d
holeondu
e of
des (
nical
ly sty
inten
o
c
s
t
o
a
r
o
i
u
n
t
h
d
d
a
:p
d
c
a
c
e
e
)
c
t
t
e
e
i
in t
e
g
l
d
trac
nd be
impor
ophen
sive e
e in m
mittin
s and
st stu
ve at
is an
PV), a
evice
e mo
ght-e
xy thi
expen
ial us
O
i
t
h
t
d
o
(
n
l
i
t
d
i
i
n
e
t
o
po
sec n
their
d
i
n
x
a
o
,
sulf
ight
ghtwe
c
d
n
e
a
enh
ylen
4-eth
m
S) is
S
nopti
o
:P
T
EDO
y
e
l
s
r
u
e
a
und
bec
stem
s
o
c
ic
触媒反応から、表面構造、自己組織分子集合体、さらに粗視化に基づくマクロ連 the s
organ
aics
t
l
studie
o
v
oto
続体にわたる理論・モデリング技術をフルに活用し、新規な分子ナノシステムの
c
ta
i
r
t
impor
elec
ermo
r
e
a
h
開発を先導・具体化することを目指します。具体的な研究対象は、有機分子触媒、
t
ing
fur
] Add
3 nm
o
c
10
1 nm
l
SrTiO3 表面 STM 像、錯体超分子、イオン液体電解質、高機能ゴム・ゲル、液晶スカー PSS u
methy
d
y
l
stable
ical
ミオン格子(図反時計 り)等です。
amat
102 nm
m
e
l
b
pro
ゲル相
液体相
lished
Our goal is to lead the research and development of novel molecular nano-systemstranspo
the
,
S
S
:P
10 nm
DOT
ow
towards their materialization. Our theory and modeling techniques ranging from carries
ood h
derst
収縮
molecular to macroscopic continuum scales allow addressing diverse problems. PEDOT:
logy
orpho
The figures illustrate our research subjects: organocatalysts, STM imaging of SrTiO3 co-solv
ly
itical
u
g
surface, supramolecular complexes, ionic liquid electrolytes, high-function
struct
plorin
膨潤
e
h
t
fi
f
i
ess o
rubbers/gels, and liquid crystalline Skyrmion lattices (in a counter-clockwise order). sign
n exc
te
ake a
m
repor
o
t
der
a
s
r
e
t
t
c
ea
spe
PSS cr
e
g
n
cha
rrier
o
and
当グループでは、
産業技術に資する機能性材料として、
新規ソフトマテリアル(ス
s
akan
u
T
o
h
Irradiated
area
morp
Damages
e
v
r
e
マートマテリアル)の研究開発を行っています。例えば、ゲルや液晶、あるいは obs
istine
f
lid fi
o
n
o
i
高分子等を化学的手法を用いて高機能化・複合化することにより、新規な光相変 so pho
ddit
e
h
t
in
mor
ange
化材料や自己修復材料を開発することに成功しました。さらに、これらの材料の PEDOT:
ty is
i
v
i
t
c
ndu
ho
環境分野および情報技術分野への応用に取り組んでいます。
et al.
morp
yang
gh
u
an
thro
Our group aims at exploitation of functional soft-materials contributing to
e Ram
o
t
]
d
5
e
1
ut
11–
attrib
industrial technology. For instance, we successfully developed functional
c
a
]
r
[ 5
diff
DOT.
materials such as photo-responsive liquid crystals, phase change compounds,
r
n to
o
tructu
i
s
t
c
ffra
光により損傷が修復するゲル
and
self-healing
gels,
by
means
of
chemical
synthesis
and
composite
fabrication.
n
i
m
s
r
l
e
sta
det
nocry
Light-induced
self-healing of
,
We also work toward the practical use of these functional materials in the fields
wever
o
rienta
H
o
.
a functional gel
dded
v
of
environmental
and
information
technologies.
ive
Moreo
nduct
t
y
l
n
d
e
fer
har
d dif
h
nt
e
f the
m
o
p
o
vel
r
e
[
v
.
n
hes
is i
proac
有機分子や生体由来材料が持つやわらかな構造特性と自己組織化や界面での物質
o
heref
t
y
レーザー照射部
a
X-r
m
n
l
輸送・固定化などの省エネ型液体プロセスを活用した「やわらかい」デバイスの
e
l
l
fi
SS
cha
DOT:P
c
e
Calcium
phosphate
l
e
開発に取り組んでいます。具体的には、液晶性有機半導体材料、省エネ型コロイ the
for
ethod
a
c
i
r
fab
lar
ド光学素子、高機能バイオメディカル素子の開発を進めています。
olecu
.
h
scale
r
amas
e
t
Y
e
nom
図:レーザー援用バイオミメティック法によるリン酸カルシウムのパターン形成
V
U
ave
IR–
lms h
se
We work on the development of soft-devices in which the structural properties of soft
becau
arrier
c
y
l
b
oba
e 非照射部
g
a
t
l
materials (e.g. organic and biological molecules) and the energy-efficient liquid processes models
l vo
e Hal
;
d
y
t
i
s
Substrate
(e.g. self-organization and material transportation at the interface) are utilized. Specifically, the ad
den
rrier
is
t
s
c
a
e
e
f
incr
l ef
we are developing liquid crystalline organic semiconductors, energy-saving optical
e Hal
s
:P
creen
s
EDOT
S
P
S
devices based on colloidal particles, and highly-functional biomedical devices.
OT:P
g
r
n
o
i
f
z
le
gra
suitab
Figure: Calcium phosphate pattern formation by a laser-assisted biomimetic process.
X
.
s
A
r
W
o
(GI
nsist
m tra
s
d
y
n
X-ra
tz a
raher
t
the
e
roper
n
p
i
term
t
s
i
s
当グループでは、生体システム等自然界で実現されている柔らかくしなやかな動 tran
ical
eoret
y
h
o
r
w
t
c
sons
き・構造形成やそれらのシステムデザインを意識した新機能・材料研究を展開し spe it
e rea
tly
pac
n
a
a
c
c
gnifi
ています。特に、ゲル、高分子、コロイド、弾性不安定性、表面・界面、自己組 arge
of
ivity
ch
nduct
g
織化、非線形・非平衡現象などをキーワードに国際的視野に立ち研究を推進して
n
i
s
dded
u
a
s
udie
ic
electr
tion
います。 図:柔軟で伸縮可能な電子伝導性高強度ハイドロゲル
ffrac
G
E
e
the
angl
Interests of this group include soft mechanics of soft materials and their
mallt
s
nspor
a
ecrea
r
t
d
r
rrie
u
systems,
e.g.,
gels;
elastomers;
biomimetic
materials
design;
colloids;
polymer
o
i
prev
n-gel
R
nano-composites;
responsive
materials
and
surfaces;
elastic
instabilities;
I
he EG
N
t
–
s
–vi
t o
effec
c
self-organization; non-linear and non-equilibrium systems.
ecifi
of
y
th
t
i
s
w
sho
den
Figure: Flexible
and Stretchable
Electro-Conductive
Polymer Hydrogel.
gher
h
t
il
n
n
i
e
G
e
a
s
o
h
w
E
t
h
g
t
A
y
t of
1 a,b
stent
ly. De
and t
hod.
tand
asurin
ctivit
moun
igure
consi
− 1 ,
e met
nders
ective
ondu
F
by me
b
p
c
u
e
.
s
m
r
o
a
t
l
d
r
e
e
c
o
u
m
r
e
a
p
w
T
r
S
z
c
EG,
timi
Info
four830
ectri
ried o
vent.
tions
as op
rting
e car
a sol
the el
serva
ional
ith 3%
− 1 to
r
t
o
b
w
f
e
y
p
n
o
l
a
o
p
w
e
m
d
h
n
u
e
v
c
t
s
e
n
S
o
s
G a
sted
denc
1.2 S
a con
tudie
. The
G is
n the
ing 07 Nanosystem
out E
sugge
from
Research
2014
depen
use E
re S1)Institute October,
SAXS s
e S2 i
r
s with
Å − 1
d GI
t the
, beca
, Figu
Figur
m
eased
a
n
y
l
n
r
5
d to
h
a
g
n
c
o
t
i
i
.8
o
fi
n
t
D
l
t
1
i
SS
AX
=
wn
ho
signe
ma
pec
%, σ
morp
as as
DOT:P
nd q
Infor
, GIW
re sho
to ex
ソフトシステム SOFT SYSTEM
ソフトマターモデリンググループ グループ長 : 米谷 慎 / Soft Matter Modeling Group Leader : Dr. Makoto YONEYA
スマートマテリアルグループ グループ長 : 木原秀元 / Smart Materials Group Leader : Dr. Hideyuki KIHARA
ソフトデバイスグループ グループ長 : 古屋 武 ( 兼 ) / Soft Devices Group Leader : Dr. Takeshi FURUYA(Acting)
ソフトメカニクスグループ グループ長 : 古屋 武 ( 兼 ) / Soft Mechanics Group Leader : Dr. Takeshi FURUYA(Acting)
t
ti
d
not
ycol
duct
r mo
dies
OT:PS
t elec
oping
ne gl
l con
and
, it is
carrie
f PED
us stu
paren
and d
ethyle
cally
ctrica
T:PSS,
mero
t the
ion o
e
y
s
s
c
u
l
t
fi
trans
r
i
a
e
i
e
D
n
l
e
f
c
i
E
p
f
h
e
h
b
e
s
P O
c
a
h
g
i
p
o
t
u
S
f
u
d
s
s
m
o
o
e
u
]
,
s
h
devi
v
h
r
t
t
u
y
t
6
l
t
ven
ctric
and
impro
carrie
[ 5 ,
aqueo
uctivi
4 ] A
d sol
moele
f the
ns to
lear.
ology
cond
.[3 ,
r
to an
o
o
c
h
y
e
i
t
p
t
)
h
s
t
i
e
r
i
OT s
t
t
v
O
o
h
o
d
D
i
S
n
t
r
n
M
lm m
reme
ving
in PE
s con
nduct
as fo
till ide (D
roces
used
such
cal o
impro
measu
the fi
are s
i
p
r
t
er,
c
e
e
el
How v
ce its
olo
e
h
h
p
t
g
mor
mizin
sms
i
e
n
s
a
u
h
ec
beca
ying
nge
a
tu
s
h
c
y
nts
Earl
solve
e
l
o
b
h
a
i
p
l
r
当グループでは、ナノテクノロジーとバイオテクノロジーを融合させた革新的スマートセ
re
amo
s and
a
ンシングに関する研究開発を行っています。ヘルスケア産業、安全安心な社会の実現に貢only sm
ant in
ns,
o
i
t
a
献するバイオセンサー、バイオチップ、生化学分析システムの実用化研究を重点的に行っalthough
lic
r app
s
i
ていますが、センシングに必要な高性能新規酵素、糖鎖などの生体関連材料に関する基礎improved
ion
unter
2
.
es i
n
o
i
rs
研究も行っています。
chang
dispe
ven
l
o
r
図1:耐熱性酵素、2:バイオセンサーチップ、3:糖鎖を用いた毒素センサー
co-s
ms fo
ma
,
r
s
o
e
di
conf
Our group s interest is in research and development of innovative smart sensing based
ortstu
rge.
tr
a
o
h
r
c
h
ess
sync
on the newly established nanosystem that includes both nanotechnology and
s exc
re
T
a
O
s
D
m
E
l
P
:PSS fi
biotechnology. We work on fundamental research on highly functional enzymes and of lven
s
e
s
u
o
ca
co-s
vents
glyco-chemistry as well as on applied research on biosensors, biochips and bioanalytical
s of
der,
r
o
tudie
s
l
ura
systems,
in
order
to
contribute
to
the
healthcare
industry
and
safe-and-secure
society.
ry
e
v
y
1 3
still
cantl
ha
Figure
1:
thermostable
enzyme,
2:
biosensor
chip,
3:
sugar-based
toxin
sensor.
e
s
l
h
t
e
at
mod
ed th
t
n
g
e
n
i
m
i
add
xper
a by
in
a
e
h
r
c
a
the
there
es in
d
ring
l. use
a
catte
t
s
e
o
当グループは、ナノスケールの「形」に由来する特性や機能を有するソフトマテ
tion
a
a p
m
s
r
fo
this i
e the
in
r
l
e
l
リアルの創製やその実用化を目指した研究を行っています。例えば分子の自己集
t
a
f
s a
cryst
fi lm
g
n
i
r
cal
積によって形成される有機ナノチューブやナノファイバーを用い、様々な分子や
orde
ologi
re
lity i
lms a
fi
m
S
材料を包接・放出する機能性ナノカプセルや液体の流動性を制御する材料の開発 obi d,
:PS
re
cal
explo
ologi
図:抗がん剤を徐放する有機ナノチューブ
に取り組んでいます。
t
n
y in
e
t
er
densi
h diff
y,
l
g
nal
n
o
i
i
s
Our group is aiming at research and development of soft-materials with functional
ri
oport
] Surp
b
d
o
an
nanoscale structures. Our research includes organic nanotubes and nanofibers the m ili
ction
h
g
u
r de
o
lth
formed by self-assembly of rationally designed molecules. These are applicable to
carrie
ure, a
lm
fi
mak
e
h
g t
functional nanocapsules that capture and release various molecules and materials.
which
minin
tion
d
n
n
, a
rs
conve
their
can
control the fluidity of a liquid.
ause
ation
ducto
,high-axial-ratio morphology
becFurther,
n
t
e
rier
t
s
l
o
ate
r
s
b
o
c
r
i
e
a
i
t
r
x
c
m
s
e
e
in
oly for sustained
he
ic sem
emon
is therelease of
se int
drugs.
ayer
1 ] P
ver, t
ally fl Organic
of its
g a
Organ
. [nanotubes
nicFigure:
ng lanticancer
:PSS)
inten
n
e
s
i
i
a
se
T
s
t
e
h
d
r
d
u
O
u
c
c
e
i
o
d
D
a
t
e
e
v
p
c
2 ] A
d be
ic de
trans
can b
e) (PE
attrac
e in m
been
ctron
holeV), an
fonat
des. [
have
xide
e
r
ial us
P
o
r
t
l
l
o
t
r
e
O
e
n
f
u
e
t
i
(
n
l
s
a
r
h
c
e
e
t
u
t
e
s
r
t
e
a
hyl s
ensiv
ir po
nt el
impor
tting
oltaic
styren
high c
inexp
dimet
spare
of the
S can
is an
hotov
n
:poly
,
S
r
d
p
)
r
a
t
o
n
i
e
r
:P
e
c
t
a
p
n
)
i
e
T
e
,
a
rgan
l (EG
nd in
eight
PEDO
ecaus
this p
thioph
rsely
and o
n of
glyco
tem b
ices a
lgightw
ioxy
ect
s
o
)
v
l
n
i
e
g
s
y
i
e
e
s
s
n
D
r
r
d
e
d
e
s
E
u
e
e
r
l
n
t
s
L
p
c
i
ea
dis
ylen
s (O
s ethy
olyme
ethyle
lectri
ance
ore m
h -eth
diode
ueous
ing p
uch a
rmoe
i3g,4
y enh
cal
an aq
itting
nduct
ent, s
in the
The h
ticall
v
o
o
m
a
l
.
t
c
e
e
g
o
s
m
)
s
lectri
n
u
t
d
a
O
i
e
h
l
ie
dr
ng
(DMS
ic lig
econd
entia
, stud
s
t
n
d
o
a
l
orp
p
g
e
r
m
o
fi
basis
ctric
gle
n
a
wide
ating
.
l
g
a
n in
t
grazi
hita e
y
p
o
c
s
XS). T
o
(GISA
pectr
fi
y
b
y
d by
t
i
studie
mobil
n
I
n situ
6 ]
with i
s. [ 1
f
el sho
o
ion g
dition
intro
could
se the
e
h
t
ansist
on
the tr
:PSS,
s
e
c
n
e
T:PSS
id
PEDO
g-inc
t
i
v
i
t
c
u
nd
cond
XD) a
f
ng
i
ased
r
e
e
r
t
c
t
in
sca
c
n
o
c
e
r
er
highe
ties w
ed
3
n
i
[
b
.
m
s
o
result
tors c
since
sed b
,
u
y
a
p
c
o
is
osc
n
h
c
i
h
ion o
w
addit
tance
f
n
o
i
s
s
r
rn
patte
carrie
the q
g
e
h
n
t
o
l
a
to
s
ction
diffra
cal 0
c
ion
t
a
r
a
f
r
t
if
cen
The d
G on
at
ction
ightly
a
l
r
s
f
f
i
d
d
se
s
d
e
t
r
o
hain
ep
interc
usly r
y
ion
r
t
c
a
r
t
e
h
cen
that t
G on
y
sed b
a
e
G
r
E
c
in
of
f
XD
l
A
a
W
t
I
a
G
width
he 2D
n
ns
y Riv
e sca
b
n
i
l
d
※他の受賞はこちら。
Click
here
for
more
awards.(https://unit.aist.go.jp/nri/result/result2.html)
e
t
d
le
ned
repor
esting
s
ll
n
ne.
– π
i
g
fi
a
s
r
u
o
l
e
g
l
f
a
a
l
w
π
u
d
a
e
a
,
s
e
(
l
e
t
s
l
h
s
. C
ered
l siz
stals
gnal,
ction
e cry
e wel
rom t
ation
ly ord
crysta
T cry
s wer
ger si
ion f
nd th
refl e
weak
PEDO
fi lm
at PE
stron
culat
020)
erage
s
PSS, a
h
l
(
e
i
v
t
h
a
h
a
t
a
d
e
t
c
g
m
o
s
e
d
e
f
t
b
e
n
n
e
u
at
inte
ion o
s syst
oduce
mplyi
itativ
ted th
t
e
i
istrib
i
r
t
a
r
c
h
p
d
,
n
t
c
e
o
s
i
a
i
y
at th
e
m
d
u
G
l
x
s
fl
n
m
xy a
wed Institute October,
nd th
ith E
the q
Nanosystem
Research
2014 08
becau
eak i
20) re
rando
the q
ing, a
lms w
G sho
per p
hough
he (0
k
iable
E
h
r
t
t
f
l
c
fi
t
l
a
i
e
h
a
a
h
t
r
S
m
w
p
i
s
S
s
,
o
t
o
ne o
fr
ed
he
s w
on
T:P
ion
rose
d pla
mpar
fi lm
ed. T
PEDO
y be n
solut
face-
ソフトシステム SOFT SYSTEM
スマートセンシンググループ グループ長 : 横山憲二 / Smart Sensing Group Leader : Dr. Kenji YOKOYAMA
形態機能ナノシステムグループ グループ長 : 増田光俊 / Morphofunctional Nanosystem Group Leader: Dr. Mitsutoshi MASUDA
受 賞 Awards
2014 年度高分子学会日立化成賞
2014 SPSJ Hitachi Chemical Award, The Society of Polymer Science, Japan
タイトル: 高分子粗視化モデルを用いた半導体リソグラフィープロセスシミュレー ショ ン研究
Study on the Simulation of Semiconductor Lithography Processes Using Coarse-Grained Polymer Models
受 賞 者: 森田裕史
Hiroshi MORITA
受 賞 日: 2014 . 9 . 17
第 35 回本多記念研究奨励賞
The 35th Honda Memorial Young Researcher Award
タイトル: ゲルを用いたカーボンナノチューブの新規分離法の開発
Development of New Separation Technologies for Carbon Nanotubes Using Gel
受 賞 者: 田中 丈士(ナノ炭素材料研究グループ長)
Takeshi TANAKA (Group Leader, Carbon Nanomaterials Research Group)
受 賞 日: 2014 . 5 . 29
o
poly
porti
s. [
) an
tenti
ul fo
erest
exibl
semic
evice
trans
cting
renes
its po
OLEDs
ly fl
se int
ganic
nic d
holeondu
e of
des (
nical
ly sty
inten
o
c
s
t
o
a
r
o
i
u
n
t
h
d
d
a
:p
d
c
a
c
e
e
)
c
t
t
e
e
i
in tr
e
g
l
d
trac
nd be
impor
ophen
sive e
e in m
mittin
s and
st stu
ve at
is an
PV), a
evice
e mo
ght-e
xy thi
expen
ial us
O
i
t
h
t
d
o
(
n
l
i
t
d
i
i
n
e
t
o
po
sec n
their
d
id
n
x
a
o
,
ght
sulf
htwei
e
c
d
n
e
a
enh
ylen
4-eth
m
i
s
t
i
p
)
ono
:PSS 2014.09.25
EDOT
y
ause
c
nderl
e
u
b
stem
o
自動車用の小型コネクターの評価装置を開発
s
o
c
ic
the
organ
s
e
s
i
c
i
lta −電気接点で電気が流れるメカニズムを解明−
stud
otovo
ta
ctric
e
mpor
l
i
e
o
Development of the Performance Evaluation
erm
r
e
a
h
t
ing
fur
] Add
Apparatus
for
Small
Connectors
Equipped
in
Vehicles
u
o
c
l
PSS
methy
d
e
y
l
l
stab
ical - Elucidated the mechanism of a current flow through an
amat
m
e
l
b
pro
electric contact lished
o
the
,
S
ransp
S
t
:P
DOT
w
s
o
e
h
i
r
car
ood
derst
:P
y 2014.05.23
g
EDOT
o
P
l
o
rph
v
l
o
s
y
co厚さ数ナノメートルの有機半導体材料の板状ナノ粒子を製造
ticall
r
u
t
c
g
stru
plorin
e
−有機薄膜デバイスに使うナノ粒子をマイクロミキサーで連続製造−
h
t
fi
f
i
s o
sign
exces
e
ke a
aOrganic
m
Semiconducting
Material
Made
into
Plate-like
eport
r
o
t
der
a
s
r
e
t
t
c
ea
spe
Nanoparticles as Thin as a Few Nanometers
PSS cr
s
hange
c
r
rrie
Micro-mixer
continuously
produces
nanoparticles
for
organic
d
o
n
n
a
a
Tak
hous
morp
e
thin
film
devices
bserv
o
e
stin
fi
d
f
o
soli
dition
the
orpho
n
i
m
e
ang
2014.05.19
s
i
T:P
y
t
ivi
PEDO
nduct
.
ho
l
p
a
et 分子間や原子間で働く弱い凝集力を光の照射で増強
mor
yang
gh
u
an −有機デバイス材料などの作成・改良技術への応用に期待−
thro
e Ram
o
t
]
d
5
e
1
ut
11–
attrib
t
Strengthening
Weak
Cohesive
Forces
among
Molecules/Atoms
c
a
]
r
[ 5
diff
DOT.
r
u
o
t
t
c
stru
tion by Light
ffrac
i
ls in
a
t
eterm
s
d
y
r
- Potential
application to fabrication and refinement of materials for
noc
,
r
e
a
t
v
e
n
How
orie
ded.
e
organic devices e
oreov
v
i
M
t
c
ndu
t
y
l
n
d
e
fer
har
d dif
h
nt
e
f the
m
o
p
o
2014.05.15
vel
r
e
[
v
.
n
hes
is i
proac
単層カーボンナノチューブを効率的に分散できる分散剤
or
heref
t
y
a
X-r
m
n
l
e
l
l
fi
SS −光で簡単に外せて単層カーボンナノチューブ精製プロセスに応用可能−
cha
DOT:P
c
e
l
e
for Efficient Dispersant for Single-walled Carbon Nanotubes
the
ethod
t
a
c
i
r
fab
lar
olecu
le.
Easily
photodetachable
dispersant
applicable
to
purification
of
h
a
s
c
a
s
ter
Yam
nome
e single-walled carbon nanotubes v
R–UV
a
I
h
lms
e
s
u
r
a
c
carrie
y be
obabl
e
g
s.
a
l
t
e
l
l vo
mod
e Hal
;
2014.05.14
d
y
t
d
i
s
a
den
the
rrier
is
e
t
s
c
a
e
e
f
incr
l ef 赤外線カラー暗視カメラ用の撮像素子を開発
e Hal
s
n
:P
e
e
T
r
O
S sc −手のひらサイズの小型カメラでカラー暗視撮影−
PED
OT:PS
g
for
e
razin
l
g
b
a
t
sui
Development
of
an
Imaging
Device
for
an
Infrared
Color
X
.
s
A
r
W
o
ist
(GI
trans
c
s
d
y
n
X-ra
tz a Night-vision Camera
raher
i
t
r
e
e
h
t
p
ne - Palm-sized camera for color night-vision imaging pro
termi
t
s
i
s
tran
ical
eoret
os
s why
n
pectr
o
s
s
a
e re
ta
i
y
c
l
t
a
an 2014.05.01
cap
nifi c
f
o
e
g
y
r
t
ivi 液晶を用いた気体分子のキラリティの簡便な検出法
cha
nduct
t
ng
i
s
dded
u
a
s
udie
−気体試料を吹き付けるだけで分子の機能を左右する利き手を可視化−
c
i
r
t
elec
tion
ffrac
leSimple Method to Detect the Chirality of Gas Molecules
g
he EG
n
t
a
all
rt
o
as
p
s
n
tra Using Liquid Crystals
decre
rrier
u
o
i
prev
n-gel
Chiral
handedness
dictating
the
functions
of
molecules
can
be
G
E
IR
the
–vis–N
o
visualized
simply
by
blowing
gas
onto
the
liquid
crystal
ffect
e
c
ecifi
of
h
y
t
t
i
s
w
sho
den
gher
il
on
with
g
the
As
then
y
t
n
,b
f EG
.
t
i
d
n
i
a
o
r
d
d
. Deta
e
v
n
u
n
i
t
t
o
1
y
a
s
t
s
l
a
h
n
t
a
c
mou
igure
consi
− 1 ,
e met
nders
ective
ondu
F
by me
b
p
c
u
e
.
s
m
r
o
a
t
l
d
r
e
e
c
o
u
m
r
e
a
p
w
T
r
S
z
c
mi
EG,
Info
four830
ectri
ried o
vent.
tions
s opti
rting
e car
a sol
the el
serva
ional
ith 3%
− 1 to
r
t
o
b
w
t
f
e
y
p
n
o
l
a
o
p
w
e
m
d
h
n
u
e
v
c
t
s
e
n
S
o
s
sted
denc
1.2 S
a con
tudie
. The
EG a
G is
n the
ng 09 Nanosystem
sugge
from
Research
2014
depen
use E
re S1)Institute October,
SAXS s
thout
e S2 i
a
I
u
i
1
r
e
d
r
c
g
w
u
h
−
i
e
G
e
t
s
g
o
b
F
s
i
t
a
Å
d
t
F
n
y,
lm
n,
5
d
ha
cre
SS fi
AXD a
= 1.8
wn in
holog
signe
matio
pect t
, σ in
morp
r
as as
DOT:P
nd q
Infor
, GIW
re sho
to ex
最近の研究成果 RESEARCH RESULTS
Location of NRI in the world
Bu
r
車 Ca 桜土浦 IC
Sakuratsuthiura IC
産総研 つくば
AIST Tsukuba
バ
ス
Bu
s
JR荒川沖駅
JR Arakawaoki Stn.
ス
バ
速
Ai
rp
or
tB
us
速
バ
ス
Ai
rp
or
t
JR東京駅
JR Tokyo Stn.
成田空港
Narita Airport
Bu
s
TX Akihabara Stn.
TX Tsukuba Stn.
高
TX秋葉原駅
ss
re
バス
高
速
バ
ス
Hi
gh
wa
yB
us
(7)
TXつくば駅
つくばエ
クスプ
レス
T
suk
ub
aE
xp
in^2∂ b
= (1/2)Wls
E anchoring
/2)Wl∂ b^2.
= (1
(6)
us
城空港
ort B
irp
A
Ibaraki Airport
ス
バ
速
高
s
-∂ )/d}^2,
/2)K22A{(∂ b
E twist = (1
f
e bottom o
between th
ce
n
ta
is
d
the
the
n (6), d is
ation and
In equatio
gthe disclin
in
in
ta
n
co
n
rical regio
istortion is
the cylind
the twist d
ch
hi
w
t
u
ho
strength,
om, throug
anchoring
e
groove bott
th
s
ie
pl
), W im
n
the solutio
equation (7
bstituting
present. In
su
By
1.
t |∂ b| <<
to
ssumed tha
n for ∂ b in
and it is a
an equatio
s
a
0
=
)/∂ b
d obtain
+E
oring
ate ∂ b, an
of ∂(E twist anch
can elimin
e
n
o
),
(7
(6) and
equations
高
交通アクセス
‒ Access ‒
羽田空港
ng
E twist + E anchori
Haneda Airport
,
= (1/2)r∂^2
(8)
ナノシステム研究部門のロゴは、「蜂 : Megaphragma caribea 」と「虫メガネ ( 電子顕微鏡 )」をデザインしています。
この蜂は飛行能力をもつ地上最小の昆虫 ( 寄生バチ ) です。翅 ( はね ) の色分けは、当研究部門の4つの研究の柱に対応
しています。青が情報通信・エレクトロニクス対応(IT システム)、緑が環境・エネルギー対応(グリーンシステム)、
ピンクがライフサイエンス対応(ソフトシステム)、そして黄が、上記3つを結び付けるテクノロジーブリッジです。
The logo of our research institute symbolizes a bee and a magnifier (electron microscope). The bee is called
Megaphragma caribea , which is known as the smallest animal in the world that can fly high by itself. The
four colors of its wings correspond to the four main pillars of our research activity: blue represents
information technology and electronics (IT System), green the environment and energy (Green System), pink
life science (Soft System), and yellow the Technology Bridge that connects the above three categories.
★お問合せ★
独立行政法人 産業技術総合研究所 ナノシステム研究部門
〒305-8565 茨城県つくば市東 1-1-1 中央第5事業所
Fax:029-861-6236 Mail:nri_web-ml@aist.go.jp
Web:http://unit.aist.go.jp/nri/index_ j.html
ツイッター:http://twitter.com/AIST_NRI
★CONTACT★
Manager Office, Nanosystem Research Institute
Address:Central 5, Higashi, Tsukuba, Ibaraki 305-8565 Japan
Fax:+81-29-861-6236 Mail:nri_web-ml@aist.go.jp
Web:http://unit.aist.go.jp/nri/
twitter:http://twitter.com/AIST_NRI
De
en
ge
d
l
e
b