Robust and Optimal Control, 2014, 03rd. Glory of LQG Control LQG (Linear Quadratic Gaussian) Control Special Issue on Linear-Quadratic-Gaussian Problem IEEE TAC Special Issue,16 - 6, 1971 (About 340 pages) 3. Robustness and Uncertainty 3.1 Why Robustness? [SP05, Sec. 4.1.1, 7.1, 9.2] 3.2 Representing Uncertainty [SP05, Sec. 7.2~7.4] 3.3 Uncertain Systems [SP05, Sec. 8.1~8.3] 3.4 Systems with Structured Uncertainty [SP05, Sec. 8.2] M.Athans Linear System Cost Function Reference: [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005. 2 Glory and Drawback of LQG Control Optimal Control Theory LQG Gain [dB] L.S.Pontryagin H.H.Rosenbrock (UMIST), IEEE TAC Special Issue, 16 - 6, 1971 R.E.Kalman Stability Theory A.M.Lyapunov “Gap between Theory and Practice” (1890) R.Bellman Feedback Theory Phase [°] Linear System Theory Drawback of LQG Control Stability Margin in Multivariable Systems Good, Bad, or Optimal? Frequency [rad/s] essential requirement … that changes of loop gains … in all combinations, should leave the system with an adequate stability margin. H.W.Bode H.Nyquist 3 Catastrophe of LQG Applications of LQG Control 4 Blind Spot of LQG Control Stability Margin of LQ Control 1964 Circle Criterion Inverse Problem A.E.Bryson. Jr., IEEE TAC, 22 - 5, 1977 In the frequency domain, the vector locus of the open loop transfer function never enters the circle centered at with radius 1 F-8C Crusader Aircraft (i) Gain Margin: (ii) Phase Margin: More than or equal 60° (iii) Allowable Range of Gain Decrease:Until 50% (1/2) Trident Submarine (1975) Stability Margin in Multivariable Systems When is a Linear Control System Optimal? Multivariable LQ Discussions … very limited success … … not very practical … 5 R.E. Kalman, ASME, 86 - D, 1964 Nyquist Plot of M.Safonov 6 1 Robust and Optimal Control, 2014, 03rd. Blind Spot of LQG Control Stability Margin of LQG Control (Robustness) Blind Spot of LQG Control Nyquist Plot of (i) 状態フィードバックという現実的で はない制御則が金科玉条であり,そ れを補う観測器も次数の点で実用性 に乏しい. (ii) 定常特性がほとんど無視されてい た.たとえば,最適レギュレータはイン パルス上の外乱しか処理できない. J.Doyle, G.Stein, IEEE TAC, 24 - 4, 1979 LQG Regulator Phase Margin: 15°Oops… 木村, “多変数制御系の理論と応用-I,” システムと制御, Vol. 22, No. 5, pp. 293-301, 1978 Nyquist plot for the resulting observer-based controller is shown in Fig. 2. Oops… less than 15°phase margin. 7 Representing Uncertainty Weaker as controller in order to weaken high freq. 8 伊藤, 木村, 細江, “線形制御系の設計理論,” 計測自動制御学会編, コロナ社, 1978 Uncertainty Regions [SP05, Ex., p. 265] Idealization Simplification Integrator (-20dB/dec) Representing Uncertainty in SISO Systems System and Model Real Physical System Phase Delay -90° (high frequencies) フィードバック制御系では高周波雑音 を抑制するため,開ループ伝達関数 の高周波特性は減衰の大きい方がよ く, 実際の制御系では,必ずしも円条 件を満足させないのが普通である.と はいっても,最適レギュレータの重要 性は,少しも減ぜられていない. Observation [SP05, p. 265] First Order Plant Model Case 1: Uncertain Gain Nominal Value Uncertainty [Ex.] for for Uncertainty any Average Case 2: Uncertain Gain/Time Constant Mathematical Model Analysis Model vs. System Multiplicative Uncertainty 9 10 Obtaining Weight [SP05, p. 267] [SP05, p. 268] : Perturbed Plant Model : Nominal Plant Model Step 1. Select a nominal model Step 2. At each frequency, find the smallest radius : Uncertainty Weight any includes the possible plants which : A Set of Plant Models ボード線図 ボード線図 20 20 10 10 0 -10 振幅(dB) (dB) 振幅 to cover the set: Magnitude [dB] Step 3. Choose a weight Disc Uncertainty Center: Radius: -20 -20 -30 -30 -40 -40 -50 -50 -60 -60 -70 -70 -80 -2 -80 10 -2 10 11 -1 10 -1 10 0 10 0 10 1 10 1 10 周波数 (rad/sec) 周波数 (rad/sec) 2 10 2 10 Frequency [rad/s] 3 10 3 10 4 10 4 10 12 2 Robust and Optimal Control, 2014, 03rd. Uncertainty Weight [SP05, Ex. 7.6] Time-delay Variations [SP05, p. 273] : (Approximately) the frequency at which the relative uncertainty reaches 100%. : Magnitude of at high frequency : Relative uncertainty at steady-state (p. 269) Step 1. Nominal Model: Step 2. 20 Step 3. 10 Magnitude [dB] Frequency at which the relative uncertainty exceeds 100% ? × 0 -10 -20 -30 -40 -50 -60 -3 10 Phase Information: Lost -2 10 10 -1 0 10 10 1 10 2 Frequency [rad/s] 13 14 Representing Uncertainty in MIMO Systems Report Multiplicative (Output) Uncertainty MATLAB: Robust Control Toolbox ver. 5.0 Robust Control Toolbox - Analysis and Synthesis Toolbox Uncertainty Weight LMI Control Toolbox Computer Access: You can use MATLAB 2013a at GSIC. If you want to know how to use, ask Learning Assistants (Wasa, Sugimoto, Funada). Place: S5-303A e-mail: ta@fl.ctrl.titech.ac.jp 15 [Ex.] Spinning Satellite: Uncertainty Weight [SP05, p. 295] Uncertain Plant Model (Real System) 16 [Ex.] Spinning Satellite: Uncertainty Weight [SP05, p. 295] Step 2. MATLAB Command k1 = ureal('k1',1,'Per',[-40 40]); k2 = ureal('k2',1,'Per',[-40 40]); L1 = ureal('L1',0,'Range',[0 0.04]); L2 = ureal('L2',0,'Range',[0 0.04]); f1 = k1*tf([-L1/2 1],[L1/2 1]); f2 = k2*tf([-L2/2 1],[L2/2 1]); f = [f1 0;0 f2]; farray = usample(f,100); Uncertain Gain: Time Delay Variation: 100 randomly generated parameters Multiplicative (Output) Uncertainty Parray=farray*Pnom; Parray=frd(Parray,logspace(0,4,100)); Eo=(Parray-Pnom)*inv(Pnom); figure sigma(Eo,'b-'); hold on; grid on; Step 1. Nominal Model: 17 18 3 Robust and Optimal Control, 2014, 03rd. [Ex.] Spinning Satellite: Uncertainty Weight [SP05, p. 295] [Ex.] Spinning Satellite: Time Response for Uncertain Plant Step 3. ? MATLAB Command time = 0:0.01:3; step_ref = ones(1,length(time)); Filter = tf(1,[0.1 1]); step_ref_filt = lsim(Filter,step_ref,time); ref = [step_ref_filt'; zeros(1,length(time))]; 〇 Manual Fitting MATLAB Command Auto Fitting MATLAB Command r0 = 0.4; rinf = 2.5; tau = 0.04; wM = tf([tau r0], [tau/rinf 1]); WM = eye(2)*wM; sigma(WM,'r'); [Usys,uInfo] = ucover(Parray,Pnom,1,’InputMult'); wM = uInfo.W1; WM = eye(2)*wM; sigma(WM,'r'); Order of [yhi1,t] = lsim(Pnom,ref,time); plot(t,yhi1,'r-'); plot(time,ref,'g-.'); For nominal model 19 Uncertain Systems Unstructured Uncertainty [SP05, p. 293] Unstructured Uncertainty figure hold on; grid on; Parray=farray*Pnom; for i = 1 : 100 [yhi,t] = lsim(Parray(:,:,i),ref,time); plot(t,yhi(:,1),'b-'); plot(t,yhi(:,2),’g-'); end 20 [SP05, pp. 113, 543] Perturbed Model Set Multiplicative (Output) Multiplicative (Input) Inverse Multiplicative (Output) Inverse Multiplicative (Input) Additive Upper Linear Fractional Transformation (LFT) Inverse Additive 21 Systems with Structured Uncertainty Input Multiplicative/Diagonal Uncertainty [SP05, p. 296] [Ex.] Additive, Input and Output Multiplicative Uncertainty [Ex.] noise Input external disturbances Actuators System 22 Aileron Canard Flap noise Sensors Rudder Output Elevator Process Elevon NASA HIMAT X-29 Aircraft × Block Diagonal Stability Margin in Multivariable Systems Block Diagonal 23 A.E.Bryson. Jr., IEEE TAC, 22 - 5, 1977 24 4 Robust and Optimal Control, 2014, 03rd. Structured Uncertainty Big Picture [SP05, p. 296] [SP05, pp. 12, 289] Structured Uncertainty Unstructured Block Diagonal LQG : Generalized Plant : Controller 25 3. Robustness and Uncertainty 26 Next Class 4. Robust Stability and Loop Shaping 3.1 Why Robustness? [SP05, Sec. 4.1.1, 7.1, 9.2] 3.2 Representing Uncertainty [SP05, Sec. 7.2~7.4] 4.1 Robust Stability [SP05, Sec. 7.5, 8.4, 8.5] 3.3 Uncertain Systems [SP05, Sec. 8.1~8.3] 4.2 Robust Stabilization [SP05, Sec. 7.5, 8.4, 8.5] 4.3 Mixed Sensitivity and Loop Shaping 3.4 Systems with Structured Uncertainty [SP05, Sec. 2.6, 2.8, 9.1] [SP05, Sec. 8.2] 1st Report Reference: Reference: [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005. [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005. Coprime Factor Uncertainty [SP05, p. 304] Parametric Uncertainty: State Space [Ex.] [SP05, p. 292] [Ex.] Loop Shaping 29 30 5 Robust and Optimal Control, 2014, 03rd. Parametric Uncertainty: State Space (Cont.) Diagonal Uncertainty [SP05, p. 292] [SP05, pp. 289, 296, 300] Allowed Structure Parametric Uncertainties Nonparametric Uncertainties Allowed Perturbations cf. Linear parameter varying (LPV) system Polytopic-type system Affine parameter-dependent system Gain Scheduled Problem 31 32 6
© Copyright 2024 Paperzz