290-283 16 14 1393 mme.modares.ac.ir *2 1 - -1 -2 * javareshkian@um.ac.ir 9177948974 . . 1392 04 : 1392 02 : 1393 20 : . . BEM . . - Comparison of aeroelastic performance base and optimized blades of horizontal axis wind turbine Mohamad Reza Saber1 Mohamad Hassan Djavareshkian2* 1- Department of Aerospace Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 2- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran P.O.B. 91775-1111 Mashhad, Iran, javareshkian@um.ac.ir ARTICLE INFORMATION ABSTRACT Original Research Paper Received 25 December 2013 Accepted 22 January 2014 Available Online 11 November 2014 In this study, the results of two optimized and base blades of horizontal axis wind turbine with aerodynamic point of view and analysis of the stresses and strains are compared. The aerodynamic forces are obtained by solving the viscous flow and the optimization is done by genetic algorithm and neural network. By applying the aerodynamic loads, the stress and strain are analyzed. For optimization, the chord length and the twist angle of the blade at various radiuses have been calculated by BEM. The Navier Stokes equations are solved to simulate both two and three dimensional lows. The results which are obtained from 2D Computational Fluid Dynamics (CFD) have been utilized to train Neural Network (NN). In the process of airfoil optimization, Genetic Algorithm (GA) is coupled with trained NN to attain the best airfoil shape at each angle of the attack. First, the results of both optimized and base wing are compared then the aerodynamic forces on the blades are applied for stress analysis. The results of the analysis of the stress strain showed that optimized wing improves the wing performance. Keywords: BEM Genetic Algorithm Neural Network Optimization -1 . . . Please cite this article using: [1] 33 . . . . : M.R. Saber, M.H. Djavareshkian, Comparison of aeroelastic performance base and optimized blades of horizontal axis wind turbine, Modares Mechanical Engineering Vol. 14, No. 16, pp. 283-290, 2015 (In Persian) [ 2] -2 [ 3] . . [4 . . . . . . [ 5] - . . [11] . 2 , 1 [ 7] . . [6] . . . .[12] 1 + + + =0 + + + =0 + + [8] [ 9] =0 (1) w 2 v ,u 1 = + =2 =2 =2 = , + + + , = = = = = + . , , = 3 . + - (2) (3) -1 : -3 [10] . . = . -2 -4 . ) ( . 1 . 1- Equilibrium 2- Compatibility 16 14 1393 284 20 . 3 8/235 . . 6 (6) { } =[ ] { } {d}e [K]e {f}e 8 7 [ ]= [ ] ,{ } = { } ,{ } = { } = [ ]{ } . . { } 8 2 (7) (8 ) [K] {f} {d} . 3 - . di di - - ( . 15 [11] . E387 5 %50 4 S809 . %50 .[11] %95 7 ) , 1 G 2 . . 0/02 . 9 . . 6 . 8 . [11] . . 3 . . 3 2 (4 ) (5 ) + . 6/17 20/4 -2/5 . 4500000 [14] NREL 11 10 285 )( . .[13] -3 17 + 1- Lame constants 2- Dilatation 3- solid work 16 14 1393 %22 .[11] 4 7 16 14 20 %95 8 20 %50 9 1393 5 50 6 286 2 1500kg/m^3 1/2 10 5 1/ 434 J/kg.c 60/5 w/m.c 7 1/7 10 ohm.m 0/3 11 1/9 10 11 1/5833 10 10 7/3077 10 8 3/7 10 10 8 3/5 10 8 4/6 10 . . 0/2 10 12 " = ( ) ( = = ) ( ) . , . . 0/5 11 (9) (10) (0) = 0 , (0) = 0 6666.66 + 1000 x 3.3333 x 1 " [ 6666.66 + 500 = = = 1 [ 3333.333 = 0.00044 m + 166.66 0.8333 0.1666 ] ] (11) (12) 1 m/s kW kW 15 20 25 35 725 1363 1883 2418 1597 906 1684 2285 2902 1944 1 . = . %17/83 100 -1-3 12 287 2 16 14 1393 . . 35 15 14 13 15 77 , 42 16 13 17 17 16 %53 16 14 1393 . 14 288 19 18 . , [15] . % 6/75 21 20 . 18 19 21 22 20 -1 -2 -3 . 12 1500 17 %29 %53 23 289 16 14 1393 . . . -5 [1] M.S. Jeonga, S. W. Kima, I. Leea, S. J. Yoob and K.C. Parkc, The impact of yaw error on aeroelastic characteristics of horizontal axis wind turbine blade. 2013. [2] J. W. Leea, J. S. Leea and J. H. Han, Aeroelastic analysis of wind turbine blades based on modified strip theory. 2012. 13 [1/2(( . 1/9 [3] D. Cárdenasa, H. Elizaldeb, P. Marzoccac and S. Gallegos, coupled aeroelastic damage progression model for wind turbine blades, 2012. [4] E. Hoogedoorna and G. B. Jacobs, Aero-elastic behavior of flexible blade for wind turbine application: 2D computational study 2008. ( sy ) .[16] . ) +( (n ) ) +( ) )] (13) / 23 22 2/4 %19/7 [5] C.A. Baxevanoua, P.K. Chaviaropoulosb, S.G. Voutsinasc and N. S. Vlachos, Evaluation study of Navier-Stokes CFD aero-elastic model of wind turbine airfoils in classical flutter, 2008. [6] B.A. Freno and P.G.A. Cizmas, model, 2011. -4 computationally efficient non-linear beam [7] M. Puterbaugh and A. Beyene, Parametric dependence of wind turbine blade on material elasticity, 2011. . morphing [8] A. Dal Monte M. R. Castelli and E.Benini, Multi-objective structural optimization of HAWT composite blade, 2013. -1 [9] J. Chena, Q. Wanga, W. Z. Shenb, X.Panga and S. Li,Structural optimization study of composite wind turbine blade, 2013. [10] N. Buckney, A.Pirrera, S. D. Green and P. M. Weaver, Structural efficiency of wind turbine blade, 2013. 22 17/83 -4 [12] O. C. Zienkiewicz, The Finite Element Method in Engineering Science, New York, McGraw Hill, 1971; W Weaver, Jr. and .R. Johnston, Finite Elements for Structural Analysis, Englewood Cliffs,NJ:Prentice-Hall,1984. -5 . [13] Martin H. Sadd, Theory applications and numeric’s Burlington, MA 01803, USA, Linacre House, Jordan Hill ,Oxford OX2 8DP UK,2009. [14] P. Giguere, and M. S, Selig, Design of Tapared and Twisted Blade for the NREL Combined Experiment Rotor, Nrel/sr-500-26173, NREL, April 1999. [16] Shigley, Mischke. Budynas, Mechanical Engineering Design, 7th.ed. 1927, Tehran, Iran. (In Persian) 16 14 1393 -2 . -3 . [11] M.H. Djavareshkian, A. LatifiBidarouni and M.R. Saber, New Approach to High-Fidelity Aerodynamic Design Optimization of Wind Turbine Blade, International Journal of Renewable Energy Research Vol. 3, No. 3, pp. 725-734, 2013. [15] P. B. Ferdinand and E.R. Johnston, Mechanics of Materials, McGraw-Hill, 1992(second edition) Tehran, Iran. (In Persian) . . 53 -6 -7 290
© Copyright 2024 Paperzz