ハタニサ ョフソZーサ |»

290-283
16
14
1393
mme.modares.ac.ir
*2
1
-
-1
-2
*
javareshkian@um.ac.ir 9177948974
.
.
1392 04 :
1392
02 :
1393
20 :
.
.
BEM
.
.
-
Comparison of aeroelastic performance base and optimized blades of
horizontal axis wind turbine
Mohamad Reza Saber1 Mohamad Hassan Djavareshkian2*
1- Department of Aerospace Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
P.O.B. 91775-1111 Mashhad, Iran, javareshkian@um.ac.ir
ARTICLE INFORMATION
ABSTRACT
Original Research Paper
Received 25 December 2013
Accepted 22 January 2014
Available Online 11 November 2014
In this study, the results of two optimized and base blades of horizontal axis wind turbine with
aerodynamic point of view and analysis of the stresses and strains are compared. The
aerodynamic forces are obtained by solving the viscous flow and the optimization is done by
genetic algorithm and neural network. By applying the aerodynamic loads, the stress and strain
are analyzed. For optimization, the chord length and the twist angle of the blade at various
radiuses have been calculated by BEM. The Navier Stokes equations are solved to simulate both
two and three dimensional lows. The results which are obtained from 2D Computational Fluid
Dynamics (CFD) have been utilized to train Neural Network (NN). In the process of airfoil
optimization, Genetic Algorithm (GA) is coupled with trained NN to attain the best airfoil shape at
each angle of the attack. First, the results of both optimized and base wing are compared then the
aerodynamic forces on the blades are applied for stress analysis. The results of the analysis of the
stress strain showed that optimized wing improves the wing performance.
Keywords:
BEM
Genetic Algorithm
Neural Network
Optimization
-1
.
.
.
Please cite this article using:
[1]
33
.
.
.
.
:
M.R. Saber, M.H. Djavareshkian, Comparison of aeroelastic performance base and optimized blades of horizontal axis wind turbine, Modares Mechanical Engineering Vol. 14,
No. 16, pp. 283-290, 2015 (In Persian)
[ 2]
-2
[ 3]
.
.
[4
.
.
.
.
.
.
[ 5]
-
.
.
[11]
.
2
,
1
[ 7]
.
.
[6]
.
.
.
.[12]
1
+
+
+
=0
+
+
+
=0
+
+
[8]
[ 9]
=0
(1)
w
2
v ,u
1
=
+
=2
=2
=2
=
,
+
+
+
,
=
=
=
=
=
+
.
,
,
=
3
.
+
-
(2)
(3)
-1 :
-3
[10]
.
.
=
.
-2
-4
.
)
(
.
1
.
1- Equilibrium
2- Compatibility
16
14
1393
284
20
.
3
8/235
.
.
6
(6)
{ } =[ ] { }
{d}e
[K]e
{f}e
8 7
[ ]=
[ ] ,{ } =
{ } ,{ } =
{ } = [ ]{ }
.
.
{ }
8
2
(7)
(8 )
[K]
{f}
{d}
.
3
-
.
di
di
-
-
(
.
15
[11]
.
E387
5
%50
4
S809
.
%50
.[11]
%95
7
)
,
1
G
2
.
.
0/02
.
9
.
.
6
.
8
.
[11]
.
.
3
.
.
3
2
(4 )
(5 )
+
.
6/17
20/4 -2/5
.
4500000
[14] NREL
11 10
285
)(
.
.[13]
-3
17
+
1- Lame constants
2- Dilatation
3- solid work
16
14
1393
%22
.[11]
4
7
16
14
20
%95
8
20
%50
9
1393
5
50
6
286
2
1500kg/m^3
1/2 10
5
1/
434 J/kg.c
60/5 w/m.c
7
1/7 10 ohm.m
0/3
11
1/9 10
11
1/5833 10
10
7/3077 10
8
3/7 10
10
8
3/5 10
8
4/6 10
.
.
0/2
10
12
"
=
( )
(
=
=
)
( )
.
,
.
.
0/5
11
(9)
(10)
(0) = 0 , (0) = 0
6666.66 + 1000 x 3.3333 x
1
"
[ 6666.66 + 500
=
=
=
1
[ 3333.333
= 0.00044 m
+ 166.66
0.8333
0.1666
]
]
(11)
(12)
1
m/s
kW
kW
15
20
25
35
725
1363
1883
2418
1597
906
1684
2285
2902
1944
1
.
=
.
%17/83
100
-1-3
12
287
2
16
14
1393
.
.
35
15
14 13
15
77
,
42
16
13
17
17 16
%53
16
14
1393
.
14
288
19 18
.
,
[15]
.
% 6/75
21
20
.
18
19
21
22
20
-1
-2
-3 .
12
1500
17
%29
%53
23
289
16
14
1393
.
.
.
-5
[1] M.S. Jeonga, S. W. Kima, I. Leea, S. J. Yoob and K.C. Parkc, The impact of
yaw error on aeroelastic characteristics of horizontal axis wind turbine
blade. 2013.
[2] J. W. Leea, J. S. Leea and J. H. Han, Aeroelastic analysis of wind turbine
blades based on modified strip theory. 2012.
13
[1/2((
.
1/9
[3] D. Cárdenasa, H. Elizaldeb, P. Marzoccac and S. Gallegos,
coupled
aeroelastic damage progression model for wind turbine blades, 2012.
[4] E. Hoogedoorna and G. B. Jacobs, Aero-elastic behavior of flexible blade
for wind turbine application: 2D computational study 2008.
( sy )
.[16]
.
) +(
(n )
) +(
) )]
(13)
/
23 22
2/4
%19/7
[5] C.A. Baxevanoua, P.K. Chaviaropoulosb, S.G. Voutsinasc and N. S. Vlachos,
Evaluation study of
Navier-Stokes CFD aero-elastic model of wind
turbine airfoils in classical flutter, 2008.
[6] B.A. Freno and P.G.A. Cizmas,
model, 2011.
-4
computationally efficient non-linear beam
[7] M. Puterbaugh and A. Beyene, Parametric dependence of
wind turbine blade on material elasticity, 2011.
.
morphing
[8] A. Dal Monte M. R. Castelli and E.Benini, Multi-objective structural
optimization of HAWT composite blade, 2013.
-1
[9] J. Chena, Q. Wanga, W. Z. Shenb, X.Panga and S. Li,Structural optimization
study of composite wind turbine blade, 2013.
[10] N. Buckney, A.Pirrera, S. D. Green and P. M. Weaver, Structural efficiency
of wind turbine blade, 2013.
22 17/83
-4
[12] O. C. Zienkiewicz, The Finite Element Method in Engineering Science,
New York, McGraw Hill, 1971; W Weaver, Jr. and .R. Johnston, Finite
Elements for Structural Analysis, Englewood Cliffs,NJ:Prentice-Hall,1984.
-5 .
[13] Martin H. Sadd, Theory applications and numeric’s Burlington, MA
01803, USA, Linacre House, Jordan Hill ,Oxford OX2 8DP UK,2009.
[14] P. Giguere, and M. S, Selig, Design of Tapared and Twisted Blade for the
NREL Combined Experiment Rotor, Nrel/sr-500-26173, NREL, April
1999.
[16] Shigley, Mischke. Budynas, Mechanical Engineering Design, 7th.ed. 1927,
Tehran, Iran. (In Persian)
16
14
1393
-2 .
-3 .
[11] M.H. Djavareshkian, A. LatifiBidarouni and M.R. Saber, New Approach to
High-Fidelity Aerodynamic Design Optimization of
Wind Turbine
Blade, International Journal of Renewable Energy Research Vol. 3, No. 3,
pp. 725-734, 2013.
[15] P. B. Ferdinand and E.R. Johnston, Mechanics of Materials, McGraw-Hill,
1992(second edition) Tehran, Iran. (In Persian)
.
.
53
-6
-7
290