「日本獣医寄生虫学会誌」投稿規程(平成 27 年 7 月 1 日一部改正) (掲載論文の内容および区分) 察、謝辞、引用文献、連絡責任者の順に記述する。 1 .獣医寄生虫学および獣医寄生虫病学領域に関するも 材料と方法、結果、考察については、小見出しを用 ので、原著、短報、総説、解説、技術情報、施設紹 いることができる。連絡責任者は、和文および英文 介、野外調査・学会参加記などとする。 で、氏名、所属、住所、および E-mail アドレスを (投稿資格) 記述する。短報では、謝辞、引用文献、連絡責任者 2 .投稿原稿は未公刊のものとし、著者および共著者に 等の項目を除いて、上記の項目分けをしない。 は本会会員が 1 人以上参加していること。但し、編 9 .原著、短報以外の原稿の項目分けは特に設けないが、 内容の理解に繫がる合理的な区分けとする。 集委員長が必要と認めた際には、会員外からの投稿 10.図は JPG もしくは TIFF ファイルとして、個別に を認めることがある。 3 .投稿原稿は、人権の保護ならびに法令等の遵守に対 提出する。表は EXCEL ファイルとして個別に提出 応していること。また広く、研究に関する倫理を包 する。カラー写真は 4 頁以内まで均一料金(税抜き 3 万円程度)で、著者負担である。 括的に遵守していること。 11.用語は、学名はイタリック体で、度量衡の単位と略 (動物の取り扱い) 語は CGS 単位または SI 単位を用いる。数字および 4 .投稿原稿における症例および実験動物の取り扱いは、 英語は半角文字を用いる。 「動物の愛護及び管理に関する法律」(平成 11 年法 律第 221 号改正)に基づき、動物愛護の精神に則っ 12.引用文献の記載方法を含む、その他の詳細について は、The Journal of Veterinary Medical Science の て行われていること。 投稿規定に準ずる。 (採否の決定) 5 .原著論文ならびに短報論文は、編集委員会(以下、 13.総説、解説、技術情報等において、他の文献から図 「委員会」)の委嘱した審査委員の意見をもとに、委 表を引用する場合には、その転載許可は著者の責任 において行う。 員会の議を経て編集委員長(以下、「委員長」)が決 14.カラー印刷料、別刷り作成料、PDF ファイル版作 定する。 成料などは著者の負担とする。 (執筆要領) 6 .原稿の長さは、原則的に、図表などすべてを含み、 15.投稿原稿の送付先および照会先は編集委員長とし 原著、総説では刷り上り枚数 10 頁以内、その他の て、基本的に電子メール等を介して行う。本会誌は 区分の原稿では 5 頁以内とするが、委員会が長さの 年 2 回(6 月および 12 月)発刊されるので、査読 調整(増・減)を求める場合がある。 および編集委員会での審議を考慮して、時間的余裕 をもって投稿する。 7 .原稿は和文または英文で記述する。和文原稿には英 文要約を附し、英文原稿には和文要約を附す。英文 は十分に推敲し、英文習熟者の校閲を受けたものを [投稿原稿送付および編集に関する照会先] 投稿する。原稿は A4 版に横書きとし、MS Word 〒 753-8515 文書(1 段組)として作成する。原稿の用紙設定 山口県山口市吉田 1677-1 では上下左右に 30mm ずつ余白をもたせて記述す 山口大学共同獣医学部寄生虫学教室内 る。原稿は、和文は MS 明朝か平成明朝、英文は 日本獣医寄生虫学会編集委員会 Century か Times と し、1 行 38 字、 1 頁 36 行、 文 編集委員長 佐藤 宏 字サイズは 10.5P で記述する。 Phone:083-933-5902 8 .原稿の第 1 頁は、論文題目、著者名、所属機関およ E-mail:sato7dp4@yamaguchi-u.ac.jp び所在地(または自宅住所)を記述する。第 2 頁以 降は、英文原稿においても和文原稿においても、英 (附則) 文要約(250 語)と Key words(5 語)および和文 この規定は、平成 14 年 4 月 1 日から施行する。 要約(600 字)とキーワード(5 語)をそれぞれ記 本改訂規定は、平成 27 年 7 月 1 日から施行する。 述する。続けて、緒言、材料および方法、結果、考 ― i ― − 編 集 委 員 会 − 編 集 委 員 長 佐藤 宏(山 口 大 学) 編 集 委 員 加藤 大智(自治医科大学) 編 集 委 員 西川 義文(帯広畜産大学) 編 集 委 員 松林 誠(大阪府立大学) 日本獣医寄生虫学会誌(ISSN 1347-961X) 第 15 巻第 1 号(平成 28 年 7 月 31 日発行) 発行者 日本獣医寄生虫学会 理事長 板垣 匡(岩手大学) 印刷者 杜陵高速印刷株式会社 岩手県盛岡市川目町 23 − 2 盛岡中央工業団地 TEL:019−651−2110 ㈹ FAX:019−654−1084 ― ii ― The Japanese Journal of Veterinary Parasitology (Publication by the Japanese Society of Veterinary Parasitologists) − Guide for Authors − 1. Unpublished Full papers, Notes, Review articles, enough margin spaces(30mm)on the four sides. and Essays, related in principle to veterinary 9. The proper noun should begin with a capital parasitology science are accepted. Texts must letter. The scientific terms of animals, plants and be written in proper Japanese or English. The microorganisms must be italicized. manuscript of Full papers and Notes are reviewed 10. Abbreviations except those listed in Item 11 by the referees. Manuscripts are selected for should be written in parentheses after the full publication according to editorial assessment term at their first appearance in the manuscript. of their suitability and reports from individual 11. In the manuscript Arabic numerals should be referees. Papers will be rejected if the ethics in the used for quantum. As a rule, the units and abb- care and use of animals as well as that in research reviations should conform to the following exam- itself have not been followed. ples:M, mM, μM, N, % , m, cm, mm, μm, nm, pm, 2. Submission of digital files of manuscripts should be 2 cm , l, ml, kg, g, mg, μg, ng, pg, hr, min, sec, msec, done by e-mail or other network services to the rpm, Hz, Bq, mBq, μBq, kBq, cpm, dpm, ppm, ℃ , J, KJ, lux, CPE, LD. Editor-in-Chief of the journal. 3. The upper half of the first page should notify an 12. References should be arranged in the alphabetical indication of either Full paper, Note, Review article, order of the authors’ surname and numbered or Essay, title, authors’ names and affiliation where consecutively. In the text they should be cited the work was done, and the corresponding author by numbers, e.g.[1, 3-5, 7]. The following are with his postal address, phone number and e-mail examples of Reference. 1.Bloom, W. and Faweett, D. W. 1969. A Text Book address. The lower half of the page should be left of Histology, 9th ed., B. W. Saunders, Philadelphia. blank. 4. The second page of each Full paper, Note and 2.Canpen, C. C. 1978. Tumors of the endocrine Review article should contain an abstract(250 glands. pp.372-429. In:Tumors in Domestic . words or less)and Key words(5 or less) , Univ. Animals, 2 nd ed. (Moulton, J. E. ed.) California Press, Berkley. 5. The description on and after the third page of Full paper should be made in principle in the 3.Nakayama, A. 1978. Rhythm of the body tempe- following order:INTRODUCTION, MATERIALS rature. pp.140-145. In:Biorhythm and its Mecha- AND METHODS, RESULTS, DISCUSSION, nisms(Suda, M., Hayashi, O. and Nakagawa, H. ACKNOWLEDGMENTS and REFERENCES. For , Kodansha. Tokyo(in Japanese) . eds.) Note, such captions as Abstract and Introduction 4.Pedersen, N. C., Ho, E. W., Brown, M. L. and should not be given and References should follow Yamamoto, J. K. 1987. Isolation of a T-lymphotr the text. opic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790-793. 6. The length of papers, including tables and figures, should not exceed 10 printed pages for Full paper 13. On Table, no vertical line is used and each term and Review article, and 5 for Note and other or phrase should begin with a capital letter. Any articles. One printed page containing no title, explanation essential to the understanding of the tables or figures, may contain around 870 words in Table should be given as a footnote at the bottom all articles. of the Table. Reference to the footnote should be designated by symbols in the order a) , b),c). 7. A summary in Japanese(600 letters for all articles) should be attached, if the authors include Japanese 14. Figures-Data should be drawn on a white paper co-author(s). It should include the title, authors by using a line less than 1 mm wide. Figuresphotographs are preferred to be printed in the and the affiliation where the work was done. 8. The manuscript should be typed at double spaces original size and should be 7.7 cm or 16 cm in (ca. 24-26 lines per page and approx. 70 spaces per horizontal width by less than 9 cm length. For line)on A4(215 x 280mm)typewriting paper with printing any signs(scales, arrows, etc.)on the ― iii ― photographs should be directly marked. All the Dr. Hiroshi Sato Figures should be numbered through those of data Editor-in-Chief and photographs in consecutive order, and their Laboratory of Parasitology, Joint Faculty of title and legends must be typewritten following Veterinary Medicine, Yamaguchi University, the Reference section in the text. 1677-1 Yoshida, 753-8515 Yamaguchi, Japan 15. The author will be charged the reprints, color printing Tel&Fax:+81-83-933-5902, and requested PDF file. E-mail:sato7dp4@yamaguchi-u.ac.jp 16. The journal is to be issued every six months(June 18. The copyright for articles which appeared in this and December). Journal is held by the Japanese Society of Vete- 17. All papers and inquiries only in writing should be rinary Parasitologists. sent to the following address: − EDITORIAL BOARD − Editor-in-chief:Hiroshi Sato(Yamaguchi University) Editor:Hirotomo Kato(Jichi Medical University) Editor:Yoshifumi Nishikawa(Obihiro University of Agriculture and Veterinary Medicine) Editor:Makoto Matsubayashi(Osaka Prefecture University) The Japanese Journal of Veterinary Parasitology(ISSN 1347-961X)is published semiannually by the Japanese Society of Veterinary Parasitologists (President Prof. Tadashi Itagaki, Iwate University) . ― iv ― 目 次 投稿規定 ………………………………………………… i 総 説 Guide for authors ……………………………………… iii Brief review on atypical human trypanosomiasis of Trypanosoma lewisi 原 著 Prevalence of Eimeria infection in cattle in Japan (Trypanosoma lewisi による非定型的人体トリパノソー マ症) (日本のウシにおける Eimeria 属原虫の検出状況) Eliakunda MAFIE, Fatema Hashem RUPA, Taihei KAWANISHI, Yuki KURAUCHI, Aogu SETSUDA, Atsuko SAITO-ITO, and Mikiko AOKI, and Tadashi ITAGAKI ………… 1 Hiroshi SATO……………………………………… 24 Eimeria zuernii 胞子未形成オーシストの形態学的同定 Endoparasites of Vietnamese lizards recorded in the 基準についての検討 last 50 years(1966-2015) (A preliminary study on re-evaluation of the characteristics for morphological identification of Eimeria zuernii unsporulated oocysts) 谷田美和子、堀井洋一郎、野中成晃 …………… 5 (ベトナム産トカゲの内部寄生虫:過去 50 年間(19662015)の記録) Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Molecular phylogenetic relationship of Dicrocoelium and Hiroshi SATO………………………………… 34 dendriticum from Japan and China based on nucleotide sequences of the mitochondrial nad1 (日本および中国産 Dicrocoelium dendriticum の分子系 統解析) 解説 Veterinary Education in Nepal (ネパール国の獣医学教育の現況) Kei HAYASHI, Maiko OHTORI, Yuma OHARI, Gokarna GAUTAM, and Uday Kumar MOHANTA, WenQiang TANG, Ishwari Prasad DHAKAL ……………………… 59 and Tadashi ITAGAKI…………………………… 12 施設紹介 短 報 大原研究所から馬原アカリ医学研究所へ ―ダニ媒介性 Molecular identification of Cryptosporidium isolates 感染症研究の断片― from pet birds in Japan (遺伝子解析による小鳥由来 Cryptosporidium 株の同定) Niichiro ABE, Ikuko MAKINO, Atsushi KOJIMA ………………………………… 19 (Brief histories of Ohara Research Laboratoy and Mahara Institute of Medical Acarology) 藤田博己 …………………………………………… 65 Original Paper Prevalence of Eimeria infection in cattle in Japan Taihei KAWANISHI, Yuki KURAUCHI, Mikiko AOKI and Tadashi ITAGAKI Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University ABSTRACT This study was designed to survey the prevalence of Eimeria spp. in cattle in Japan. Feces were collected from 382 cattle aged 9 day to 24 month in 71 farms of eight prefectures, Japan, and examined for Eimeria oocysts using a standard sucrose flotation technique. Oocyst-positive samples were allowed to determine oocysts per gram(OPG) using a modification of the McMaster technique. Eimeria species detected were E. alabamensis, E. auburnensis, E. bovis, E. canadensis, E. cylindrica, E. ellipsoidalis, E. illinoiensis, E. subspherica and E. zuernii. Eimeria bovis and E. alabamensis were detected in relatively high rates, 22.8% and 21.1%, respectively. One to six month-old cattle showed the highest oocyst detection rates and OPG values compared to the other age cattle. Multiple Eimeria species were detected from 68.8% of oocyst-positive feces. Key words:Eimeria, oocysts, cattle, Japan, prevalence. 1.INTRODUCTION 2.MATERIALS AND METHODS Bovine coccidiosis is one of the most important Fresh fecal samples of 382 cattle(9-day-old to 24- parasitic diseases of calves occurring worldwide and month-old)were collected at random from 71 farms mainly causes diarrhea. Although more than 20 Eimeria of eight prefectures(Hokkaido, Iwate, Tochigi, Aichi, species have been known to be causative of bovine Hyogo, Kagawa, Ehime and Nagasaki), Japan between coccidiosis[6], E. zuernii and E. bovis are highly April and November 2009: briefly, 10 cattle of one farm pathogenic to calves and young cattle and predominantly in Hokkaido, 106 cattle of 34 farms in Iwate, 27 cattle detected in severe clinical cases characterized by of three farms in Tochigi, 31 cattle of three farms in hemorrhagic diarrhea with sometimes fetal outcome[1] . Aichi, 14 cattle of one farm in Hyogo, 66 cattle of eight However, other Eimeria species such as E. alabamensis farms in Kagawa, 54 cattle of five farms in Ehime, and and E. auburnnensis have been also reported to cause 74 cattle of 16 farms in Nagasaki. Fecal samples were diarrhea[5, 13]. Economic losses due to clinical and examined for Eimeria oocysts using a standard sucrose sub-clinical coccidiosis in cattle and bufferlo have been flotation technique and oocyst-positive samples were annually estimated at 731 million US dollars[3]. allowed to determine oocysts per gram(OPG)using a Although bovine eimeriosis has also been severe modification of the McMaster technique[14]. Briefly, problems in Japan, there are only two reports on the 0.1g of each sample was mixed thoroughly with 1.7ml prevalence in 1985[15]and 1990[9] . The present of sucrose solution(specific gravity 1.21) . The mixture study was designated to clarify recent prevalence of was strained through a mesh to remove coarse plant coccidiosis with identification of Eimeria species in debris and then poured in 2 chambers with capacity calves in Japan. of 0.09 ml cube. Oocysts in the two chambers were counted, summed and multiplied by the dilution factor (100)to estimate the number of OPG. For species identification of oocysts, 1g of positive samples was ― 1 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Prevalence of Eimeria infection in cattle in Japan mixed with 10ml of 2.5% potassium dichromate solution the highest detection rates and OPG values compared in Petri dishes and kept at 26 ℃ for several days. to the other age cattle (Figs. 1 and 2), and the After sporulation an aliquot of the mixtures was used relation between oocyst detection rates and four age for microscopic observation, and species identification groups was confirmed in X-squared=8.3058, df=3, and of oocysts was carried out based on their sizes and p-value=0.0401. Although no relation of OPG values morphological characteristics such as shape, color, to fecal properties(normal, soft and diarrheal)was micropyle, sporocyst size, residual, polar and stieda observed, fecal samples in which over 1 x104 oocysts of . Results were shown as average ± standard body[6, 7] E. zuernii, E. bovis, E. alabamensis, E. illinoiensis and . The data obtained were statistically analyzed error(SE) E. ellipsoidalis were detected tended to be diarrheal. using Pearson’s chi-squared test(Statistical computing Eimeria species detected were E. alabamensis, E. software, R ver.3.2.2)[10], X-squared=8.3058, df=3, auburnensis, E. bovis, E. canadensis, E. cylindrica, p-value=0.0401, and P< 0.05 was considered significant. E. ellipsoidalis, E. illinoiensis, E. subspherica and E. zuernii. Detection rates of each species were high in E. bovis(22.2%)and E. alabamensis(21.1%), whereas 3.RESULTS were low in E. canadensis(2.6%)and E. illinoiensis Eimeria oocysts were detected in eight prefectures (1.0%) (Fig. 3). Eimeria species detected from single (100%), 41 farms (54.6%) and 93 fecal samples feces were plural(68.8%)and single(31.2%) (Fig. 4). (24.3%)and the OPG value was 1403.5 ± 380.5. In OPG values differed in Eimeria species and were high relationships between cattle age and oocyst detection in E. zuernii and E. subspherica(Fig. 5). or OPG value, 1-month to 6-month-old cattle showed Fig. 1.Relation between detection rates of Eimeria oocysts and cattle age(month) . *Each bar shows oocyst-positive feces/examined feces. Fig. 2.Relation between Eimeria OPG and cattle age (month) . *OPG is shown in mean ± standard error(SE) . Fig. 3. Detection rates of Eimeria species oocysts. Fig. 4.The rates of Eimeria species detected from single feces. ― 2 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Taihei KAWANISHI, Yuki KURAUCHI, Mikiko AOKI and Tadashi ITAGAKI . Fig. 5. Eimeria species detected and its OPG values. OPG is shown in mean ± standard error(SE) for smaller sample size. However, the reason why E. 4.DISCUSSION illinoiensis was detected and E. brasiliansis was not This study revealed that bovine Eimeria infections detected in this study could not be clarified. The oocysts occur throughout Japan, although the detection rates of E. bovis and E. zuernii, which are thought to be (24.3%)were low compared to that(59.0%)of the highly pathogenic species and to cause diarrhea and previous report[9]. Difference in these rates may be bloody feces to calves, have been detected with high caused by the differences in sample size, localities and OPG values from normal feces of cattle[2, 4, 8, 9]. cattle age for sampling, as well as improved prevention From these and the present findings, the fecal properties measures of bovine eimeriosis. of oocyst-positive cattle will not be connected with Detection rates of Eimeria oocysts are the highest Eimeria species detected and their OPG values. in 6-month to 11-month-old calves and in 6-month to 8-month-old and thereafter, decrease with advancing age[3, 9]. The present study also reconfirmed the ACKNOWLEDGMENT similar relation of cattle age to oocyst detection. On the We sincerely thank Dr. Hiromitsu Ooba, NOSAI other hand, no oocyst detection was observed in less Aichi, Dr. Takehiro Hara, NOSAI Ohotsuku, Dr. Naoshi than 1-month-old calves and low detection in the age Yamamoto, NOSAI Hyogo, Dr. Rie Hirota, NOSAI has been reported in Japan[9] . These findings may Kagawa, Dr. Taisuke Tominaga, Nagasaki, Dr. Mieko suggest that Eimeria infection and development in the Sugiyama, NOSAI Ehime, Dr. Youko Oku, NOSAI host are related to feeding system of calves including Iwate and Dr. Hideo Iso, Tochigi for providing fecal supply of breast and artificial milk, because the highest samples of cattle. We also thank Mr. Yuma Ohari for oocyst detection rates were observed in 26-day to helpful supports of statistical analyses. 30-day-old calves among 15-day to 2-month-old calves in Argentine where weaning age of calves is 72 hours after birth[11]. This study showed the prevalence REFERENCES of nine Eimeria species in calves in Japan, although 1. Daugschies, A. and Najdrowski, M. 2005. Eimeriosis 11 Eimeria species were found in the previous study in cattle: current understanding. J. Vet. Med. B 52:417-427. [9]. Eimeria brasiliansis, E. bukidnonensis and E. wyomingesis could not be found and E. illinoiensis was 2. Ernst, J., V. Ciordia, H. and Stuedeman, J. A. 1984. newly detected in this study. The detection rates of E. Coccidia in cows and calves on pasture in North bukidnonensis and E. wyomingesis were conspicuously Georgia(U.S.A).Vet. Parasitol. 15:213-221. low(4.5% and 5.4%, respectively), and therefore, these 3. Fitzgerald, R. P. 1962. Coccidiosis in Hereford calves species seem not to be detected in this study examined on summer and winter ranges and in feedlots in ― 3 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Prevalence of Eimeria infection in cattle in Japan Utha. J. Parasitol. 48:347-351. org/. 4. Hatice, C., Feride, S., Esma, K., Mustafa, K., Mustafa, 11. Sanchez, R. O., Romero, J. R. and Founroge, R. E. and Nurhan, D. 2007. Prevalence of coccidia in D. 2008. Dynamics of Eimeria oocysts excretion beef cattle in western Turkey. Parasitol Res. 101: in dairy calves in the Province of Buenos Aires 1239-1243. , during their first 2 months of age. (Argentina) 5. Hooshmand-Rad, P., Svensson, C. and Uggla, A. 1994. Experimental Eimeria alabamensis infection Vet. Parasitol. 151:133-138. 12. Stockdale, P. H., Bainborough, A. R., Bailey, C. B. in calves. Vet. Parasitol. 53:23-32. and Niilo, L. 1981. Some pathophysiological changes 6. Levine, N. D. 1985. Apicomplexa: the coccidia associated with infection of Eimeria zuernii in proper. pp.130-232. In: Veterinary Protozoology. The Iowa State University Press, Ames, Iowa. calves. Can. J. Comp. Med. 45:34-37. 13. Svensson, C., Uggla, A. and Pehrson, B. 1994. Eimeria 7. Levine, N. D. and Ivens, V. 1970. The Coccidian alabamensis infection as a cause of diarrhoea in parasites(Protozoa, Sporozoa)of ruminants. Illinois Biology Monograph No.44. University of Illinois calves at pasture. Vet. Parasitol. 53:33-43. 14. Taira, N. 1997. [O-ring method.]pp. 95-96. Press, London. [Examination Manual for Veterinary Parasitology], 8. Neyberg, P. A., Helfer, D, H. and Knapp, S. E. 1967. Incidence of bovine coccidian in Western Oregon. Buneido-shuppan, Tokyo. 15. Watanabe, S. and Iwata, S. 1956. Studies on bovine Proc. Helminthol. Soc. Wash. 34:13-14. coccidiosis: distribution of oocysts among healthy 9. Oda, K. and Nishida, Y. 1990. Prevalence and cattle. J. Jpn. Vet. Med. Assoc. 9:260-263. distribution of bovine coccidian in Japan. Nippon Juigaku Zasshi 52:71-77. 10. R Core Team. 2014. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, http//www. R-project. Correspondence:Tadashi ITAGAKI, Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka 020-8550, Japan. E-mail:address: itagaki@iwate-u.ac.jp 日本のウシにおける Eimeria 属原虫の検出状況 川西 泰平、倉内 ゆき、青木 美樹子、板垣 匡 岩手大学農学部獣医寄生虫学研究室 要 約 ウシのコクシジウム症は下痢を主徴とした疾病で 20 種以上の Eimeria 属原虫が原因となる。Eimeria 種により病 原性に違いがあることが知られ、E. bovis および E. zuernii は高病原性の種として認識されている。本研究では、日 本のウシにおける Eimeria spp. 汚染状況を調査することを目的とした。8 道県の 71 農場で飼養されている 9 日齢か ら 24 ヶ月齢のウシ 382 頭から糞便を採取し、ショ糖遠心浮遊法でオーシストの有無を検査した。オーシストが検出 された糞便は、スポロゾイト形成オーシストとして種を同定するとともにマックマスター法の変法(O リング法)に より OPG(oocyst per gram)を計数した。その結果、9 種の Eimeria 属、すなわち E. alabamensis、E. auburnensis、E. bovis、E. canadensis、E. cylindrica、E. ellipsoidalis、E. illinoiensis、E. subspherica、E. zuernii のオーシストが 確認された。Eimeria bovis および E. alabamensis の検出率はそれぞれ 22.8%、21.1% と高かった。また 1 ヶ月齢か ら 6 ヶ月齢のウシはそれ以外の月齢ウシに比較してオーシスト検出率および OPG 共に高い値を示した。さらに、オー シスト陽性の糞便では、その 68.8%から 2 種以上の Eimeria 種オーシストが検出された。 Key words:Eimeria 属、オーシスト、ウシ、日本、感染状況 ― 4 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 原 著 Eimeria zuernii 胞子未形成オーシストの 形態学的同定基準についての検討 谷 田 美和子 1、堀 井 洋一郎 1,2、野 中 成 晃 1,2 1 宮崎大学農学部獣医学科獣医寄生虫病学研究室 2 宮崎大学産業動物防疫リサーチセンター 要 約 牛のコクシジウム症に対して、臨床現場では未成熟オーシストの大きさや形状の違いによって感染種の診断を行 うことが一般的であるが、教科書の記載に違いがあり混乱を招いている。そこで、牛に対する病原性が高い Eimeria zuernii を対象として、2 農場の牛 2 頭の糞便から、大きさ 15.0 〜 25.0μm × 12.0 〜 20.0μm のオーシストを採取し、 個別にオーシストの形態を計測した後、ITS-1 領域の塩基配列の解読または同領域の種特異的プライマーを用いた PCR により種同定を行い、E. zuernii 未成熟オーシストの大きさと形状を評価した。その結果、解析に供した 156 検 体のうち、53 検体のオーシストが遺伝的に E. zuernii と同定され、それらの大きさは 15.0 ~ 21.3μm × 12.5 ~ 17.5 μm であり、その形状は 53% が類円形、47% が楕円形であった。オーシストの大きさは 18 個のオーシストが示した 17.5μm × 15.0μm を中心に分布しており、16.0 ~ 20.0μm × 13.5 ~ 16.5μm に 41 個(77%)が分布していた。この 結果を既存の汎用教科書(日本語)の記載と比較したところ、どの教科書の記載にも合致しないものが認められた。 今後は、本研究のようなアプローチを用い、各種 Eimeria 未成熟オーシストの形態学的特徴を再評価する必要があ ると考えられる。 Key words:牛、コクシジウム症、診断、Eimeria zuernii、未成熟オーシスト 行われているが、臨床現場ではオーシストを胞子形成さ 1.はじめに せることはほとんどなく、未成熟オーシストの形態学的 牛のコクシジウム症は消化管原虫である Eimeria 属 特徴のみで同定される場合が多い。しかしながら、オー 原虫によって引き起こされる疾患であり、特に若齢牛(6 シストの大きさや形状には種内多様性が認められ、その ~ 11 カ月齢)での感染が多い[10]。コクシジウム症は 重なりから種の同定が困難となることがある。種同定の 重症の場合、水様性や出血性下痢、体重減少、また時に 参考書として用いられる汎用教科書をみても、形態の記 死亡する個体も現れることから経済的損失が大きく畜産 載に違いがみられ(表1、例:Eimeria zuernii) 、混乱 業において重要な疾患の一つである[1]。 を招く一要因となっている。これは、オーシストの大き コクシジウム症の診断は一般的に感染牛の糞便中に排 さや形状に対する計測値や判定結果の分布パターン(度 出されたオーシストを検出することで行われる。牛にお 数分布)を示した報告がなく、そのため種の大部分が含 いて日本国内では 13 種の Eimeria 属原虫が確認されて まれる標準形態を判断できないことが原因と考えられ いる[5]。牛のコクシジウム感染は複数種の混合感染が る。オーシストの形態学的特徴については 1967 年出版 一般的であり、また種によって牛に対する病原性が異な の Levine and Ivens[9] が詳細に報告しているが、それ るため、コクシジウム症診断時にはオーシストの検出と 以降はオーシストの形態についての詳細な検討はなく、 合わせて種同定を行うことが重要である。 彼らの観察結果の有効性についても不明なままである。 種同定は、オーシストの形状と色、大きさ(長径と短 本 邦 で 見 つ か る 牛 の Eimeria 種 の う ち、E. zuernii 径)、ミクロパイルの有無などの形態学的特徴と好適培 (Ez)は小腸から大腸にかけて寄生し牛に対する病原性 養条件下での胞子形成時間および胞子形成後のスポロシ が高く、重度感染で出血性下痢が観察される。しかしな ストの形態学的特徴や内・外残体の有無などに基づいて がら Ez のオーシストの形態は、E. alabamensis(Eal) ― 5 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Eimeria zuernii 胞子未形成オーシストの形態学的同定基準についての検討 表1.教科書および文献に記載の Eimeria zuernii のオーシストの大きさと形状 教科書・文献 オーシストの大きさ(長径×短径) (μm) 形 状 新版 獣医臨床寄生虫学(産業動物編)[11] 16~20×15~18(平均 18×17) 類円形 最新 家畜寄生虫病学[3] 16~20×15~18 類円形 図説 獣医寄生虫学 改訂第 2 版[12] 平均 18×17 類円形 改訂 獣医寄生虫学・寄生虫病学1(総論・原虫1)[2] 12~29×10~21(平均 17~20×14~17) 類円形、類卵円形 Protozoan Parasites of Domestic Animals and of Man[7] 15~22×13~18(平均 17.8×15.6) 類円形、丸まった楕円形 Veterinary Protozoology[8] 12~29×10~21 類円形、類卵円形、卵円形、まれに楕円形 Levine and Ivens(1967)[9] 18~23×13~19(平均 20.2×16.1) 類円形、類卵円形、卵円形、しばしば楕円形 や E. ellipsoidalis(Ee)のものと近似しており、その大 円形、短径軸と長径軸の直角の交点がいずれかの軸の中 きさと形状に重なりを持つ。本研究は、Ez のオーシス 心から外れ、かつ卵形を示すものを卵円形として判断し トの大きさおよび形状の度数分布を観察して Ez の持つ た。 形態学的多様性を検討し、形態学的近似種(Eal および Ee)のものと比較することで、Ez の同定の有効性と限 2-3.DNA 抽出法 界を考察することを目的とする。なお、本研究では、我 Lalonde and Gajadhar[6]が Cyclospora cayetanensis が国で広く使用されている教科書、新版獣医臨床寄生虫 のオーシストに用いた方法を適用した。すなわち、 学(産業動物編)および最新家畜寄生虫病学の記載値を オーシスト 1 個を含む 1.5ml チューブに QIAamp DNA 参考基準として扱い、本研究で得られた Ez の計測結果 micro kit(QIAGEN, Hilden, Germany)の Buffer ATL との乖離を評価するとともに、他の教科書の記載値との を 300μl 加 え、 − 70 ℃ で 5 ~ 10 分 間 と 95 ℃ で 1 ~ 2 乖離についても考察した。 分間の凍結融解を 8 回繰り返した。次に proteinase K を 20μl 加 え 56 ℃ で 3 時 間 加 熱 し た 後、Buffer AL を 300μl 加え 70℃で 10 分間加熱した。その後、Kit のプ 2.材料と方法 ロトコールに従い DNA 抽出を行った。なお、カラムか 2-1.オーシストの収集 らの DNA 抽出は buffer AE 30μl で行った。 2 農場(A, B 農場)で飼育されていた牛 2 頭の糞便各 5g に対してウイスコンシン変法を実施して、上清中 2 2-4.PCR ml 中に含まれる長径 15.0 〜 25.0μm ×短径 12.0 〜 20.0 プライマーは Kawahara et al.[4]の報告にある ITS-1 μm で、類円形、楕円形または卵円形の形状(形状の定 領 域 の Eimeria genus common primer を 使 用 し た 義は 2-2 参照)と思われるオーシストを採取した。水で (Forward : 5’-GCA AAA GTC GTA ACA CGG TTT 洗浄後、次亜塩素酸ナトリウム溶液を加えて室温で 40 CCG -3’、Reverse: 5’-CTG CAA TTC ACA ATG CGT 分間~ 1 時間静置し、蒸留水を加えて再度洗浄後、胞子 ATC GC -3’) 。 PCR 反応液は TaKaRa Ex Taq (TAKARA 形成による DNA 抽出効率の低下を避けるため− 30℃ BIO、滋賀県草津)を用いて、10 × Ex Taq Buffer 2.0 で保存した。 μl、dNTP Mix 1.6μl、Taq 0.1μl、プライマー(10μM) 各 0.5μl、DDW 10.3μl、サンプル 5μl にて作成した。 2-2.オーシストの形態記録 サーマルサイクラーで 94℃ 30 秒加熱した後、94℃ 10 オーシスト液を氷上で融解した後、実体顕微鏡下で 秒、55℃ 30 秒、72℃ 30 秒のサイクルを 35 回繰り返し、 オーシスト 1 個を 3μl の液量と共に吸引し、スライド 72℃で 2 分間最終反応させた。 グラスに滴下して光学顕微鏡下でオーシストの長径、短 径、形状を記録した。その後オーシストを 1.5 ml チュー 2-5.電 気泳動およびアガロースゲルからの PCR 産物 の抽出 ブに回収して遺伝子解析の材料とした。なお、オーシス トの形状については、便宜上、短径軸と長径軸が各軸の PCR 産 物 を 電 気 泳 動 し 目 的 の バ ン ド を 確 認 し た 中心で直角に交差し、かつ短径と長径の比が 1.0 〜 1.2 後、バンドを切り出して QIAquick Gel Extraction Kit のものを類円形、短径軸と長径軸が各軸の中心で直角に (QIAGEN)を用いて DNA 抽出を行った。Nano Drop 交差し、かつ短径と長径の比が 1.2 より大きいものを楕 1000(Thermo Scientific, Wilmington, Delaware, USA) ― 6 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 谷 田 美和子、堀 井 洋一郎、野 中 成 晃 を用いて DNA 濃度を測定した。 価を行った。 A 農場からは 15.0 ~ 20.0μm × 12.5 ~ 17.5μm、B 農 2-6.TA クローニングおよび塩基配列の決定 場 か ら は 15.0 ~ 22.5μm × 12.5 ~ 18.8μm の 大 き さ の ゲルより抽出した PCR 産物に対して、pGEM-T Easy オーシストが検出された。また形状を見ると A 農場で Vector System Ⅰ(Promega, Madison, Wisconsin, USA) は類円形および楕円形のオーシストが、B 農場ではそれ および E. coli DH5α Competent Cells(TAKARA BIO) に加え卵円形のオーシストが検出された。 を用いてプロトコール通りに TA クローニングを行った。 TA クローニングによる遺伝子解析は A 農場の 66 検 コロニーを 5 個選択し、アンピシリン加 LB 培地(nacalai 体と B 農場の 55 検体の合計 121 検体について行った tesque、京都市中京区)で培養した後、QIAprep Spin が、A 農場 41 検体と B 農場 9 検体の合計 50 検体にお Miniprep Kit(QIAGEN)を用いプラスミドを精製し、 い て 塩 基 配 列( 塩 基 数 301 〜 485 base pairs) が 解 読 DNA 濃度を測定した。次に、得られた産物に対し kit で き た。A 農 場 か ら 7 つ の ハ プ ロ タ イ プ(haplotype 付属の T7(5’-TAA TAC GAC TCA CTA TAG GG -3’) 1 〜 7: 塩 基 数 483 〜 485 base pairs)、B 農 場 か ら は または SP6(5’-ATT TAG GTG ACA CTA TAG -3’) 5 つ の ハ プ ロ タ イ プ(haplotype 8 お よ び 9: 塩 基 数 プライマーを用いてサイクルシークエンスを行い、 301 base pairs、haplotype 10 〜 12:塩基数 450 ~ 452 ® (Applied BigDye Terminator v3.1 Cycle Sequencing Kit base pairs)が検出された。これらのハプロタイプを、 Biosystems, Waltham, Massachusetts, USA)および 3130 Eimeria tenella(Accession No. AF026388)をアウトグ Genetic Analyzer(Applied Biosystems)を用いて塩基 ループとして、Kawahara et al.[4]および Kokuzawa 配列を決定した。 et al.(unpublished)が GenBank に登録した牛 Eimeria の ITS-1 領域の塩基配列と系統樹で比較したところ、A 2-7.系統樹解析 農場のオーシスト 41 検体から得られたハプロタイプは 得 ら れ た 塩 基 配 列 と GenBank に 登 録 さ れ て い る 全て Ez のクレードに位置し、Ez と同定できた(図 1)。 牛 の Eimeria ITS-1 領 域 の 塩 基 配 列 に つ い て、CLC haplotype 2 の塩基配列は GenBank の登録配列である Sequence Vierwer 6、および MEGA7 を用いて NJ 法に Accession No. AB557622 と 100% 一 致 し た。B 農 場 の よる系統樹を作成した。 オーシスト 9 検体から得られたハプロタイプのうち、 301 base pairs のもの 2 つ(3 検体)は Eal のクレード 2-8.種特異的プライマーを用いた PCR 内に、450 ~ 452 base pairs のもの 3 つ(6 検体)は Ee Eimeria genus common primer で PCR 反 応 陽 性 で のクレード内に位置し、それぞれ Eal および Ee と同定 あ っ た 一 部 の サ ン プ ル に つ い て は、Kawahara et al. できた。ただし、Ee は 2 つの異なるクレード、すなわち、 [4]の報告した Ez(Forward: 5’-AAC ATG TTT CTA Kawahara et al.[4] が報告した塩基配列で構成されるク CCC ACT AC-3’; Reverse: 5’-CGA TAA GGA GGA レードと、Kokuzawa et al. が 2013 年に GenBank に登 GGA CAA C-3’)、Eal(Forward: 5’-CAT TCA CAC 録した配列で構成されるクレードに分かれるが、今回検 ATT GTT CTT TCA G-3’; Reverse: 5’-GCT TCC AAA 出したものは後者に属した。したがって、Ee について CTA ATG TTC TG-3’)および Ee(Forward: 5’-CAA は今後の分類学的検証を要すると考えられる。 CGT TTT TGG TTT TGG TAT CA-3’; Reverse: 5’-ACT これに加え、B 農場のオーシストについて種特異的プ GCG ATG AGA GAG AGC G-3’)種特異的プライマー ライマーを用いて Ez、Eal、Ee の種同定を行ったところ、 を用いて種同定を行った。PCR 反応液は 2-4 と同様に作 35 検体中 12 検体が Ez と判定できた。その他の検体で 成し、94℃ 30 秒加熱した後、94℃ 10 秒、55℃ 20 秒、 は PCR 増幅産物が得られず種同定を行えなかった。 72℃ 20 秒のサイクルを 35 回繰り返し、72℃で 2 分間 最後に、TA クローニングおよび種特異的プライマー 最終反応させた。 を用いた PCR により、A 農場および B 農場で種が同定 できた Ez 53 検体、Ee 6 検体および Eal 3 検体のオー シストの形態を図 2 および表 2 に示した。Ez のオーシ 3.結 果 ストの大きさは 15.0 ~ 21.3μm × 12.5 ~ 17.5μm であっ A 農場の牛糞便から 83 個、B 農場の牛糞便から 103 た。長径で最も度数が高かったものは 17.5μm で 23 検 個の未成熟オーシストを採取し、オーシストの形態の評 体が、短径で最も度数が高かったものは 15.0μm で 39 ― 7 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Eimeria zuernii 胞子未形成オーシストの形態学的同定基準についての検討 図1.A および B 農場のオーシストから得られた塩基配列(haplotypes 1 ~ 12)と既報告の牛 Eimeria ITS-1 領域の塩基配列の比較系統樹. 検体がこれらの値を示した。オーシストの大きさは 18 個のオーシストが示した 17.5μm × 15.0μm を中心に分 4.考 察 布 し て お り、16.0 ~ 20.0μm × 13.5 ~ 16.5μm に 41 個 本研究は 2 農場で飼育されていた 2 頭の牛の糞便に含 (77%)が分布していた。また形状についても 53% が類 まれる小型オーシストを対象として行ったが、A および 円形を、47% が楕円形を示した。卵円形は検出されな B 両農場において様々な大きさと形状のオーシストが検 かった。 出された。両農場で検出されたオーシストの形態を、新 版獣医臨床寄生虫学(産業動物編)[11]と最新家畜寄生 ― 8 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 谷 田 美和子、堀 井 洋一郎、野 中 成 晃 表 2.Eimeria zuernii, E. alabamensis および E. ellipsoidalis のオーシストの大きさと形状 Eimeria 種 E. zuernii E. alabamensis E. ellipsoidalis 参考基準* 改訂獣医寄生虫学・寄生虫病学1 オーシストの形態 本研究 大きさ(長径×短径 ;μm) 15.0~21.3 × 12.5~17.5(n=53) 16~20 × 15~18 12~29 × 10~21 形状 類円形、楕円形 類円形 類円形、類卵円形 大きさ(長径×短径 ;μm) 18.8~22.5 × 15.0(n=3) 17~24 × 12~16 形状 卵円形 卵円形 大きさ(長径×短径 ;μm) 21.3~22.5 × 15.0~16.3(n=6) 20~25 × 14~20 12~32 × 10~29 形状 楕円形 楕円形 長卵円形 (総論/原虫)[2] 記載無し * 新版獣医臨床寄生虫学(産業動物編) [11]および最新家畜寄生虫病学[3]の記載値 図2.遺 伝学的に同定できた E. zuernii オーシスト 53 検体,E. ellipsoidalis オーシスト6検体および E. alabamensis オーシスト 3 検体の形態分布.シストの大きさを長径(横軸)および短径(縦軸)の 分布図で示し,円の色により種を区別して示した.円の大きさは同じ計測値をもつオーシストの数に 比例させて示した.また E. zuernii,E. alabamensis および E. ellipsoidalis について,参考基準にお けるオーシストの大きさをそれぞれ橙色,紫色,水色の図形によって示した. 虫病学[3]の掲載形態(参考基準)と比較すると、両農 かになった(表 2,図 2)。また形状も類円形(53%)と 場のオーシストには Ez の参考基準(16 ~ 20μm × 15 楕円形(47%)がほぼ半数の割合で検出された。参考基 ~ 18μm、類円形)に合致するもの、および Ee の参考 準の形態に合致する Ez は遺伝学的に同定されたものの 基準(20 ~ 25μm × 14 ~ 20μm、楕円形)に合致する 43%(23 検体)にすぎず、残りの 57% は参考基準から外 ものが存在した。Eal の参考基準(17 ~ 24μm × 12 ~ れたものであった。遺伝学的に Ez と同定されたオーシ 16μm、卵円形)に合致するものは B 農場でのみ検出さ ストのうち、Eal および Ee の参考基準の大きさを持つ れたが、両農場には形状が楕円形であるものの Eal の大 オーシストの割合は 79% および 19% であった。ただし、 きさに合致するものが存在した。また両農場で Ez、Eal Eal のオーシストと同じ大きさを持った Ez の形状は類 または Ee のどの参考基準にも合致しないオーシストが 円形または楕円形であり、Eal の参考基準の形状である 検出された(それぞれ 11% と 10%)。 卵円形とは異なっていたため、卵円形と規定される Eal 遺伝学的に Ez と同定された 53 検体のオーシストの のオーシストとは形状での鑑別が可能とも考えられる。 形態を評価したところ、オーシストの大きさは 15.0 ~ しかし、今回塩基配列が明らかになった Eal の 1 検体は 21.3μm × 12.5 ~ 17.5μm で、参考基準の大きさ 16 ~ 楕円形を示しており、形状による厳密な鑑別は不可能で 20μm × 15 ~ 18μm よりも広い範囲であることが明ら あることも示唆された。このオーシストの大きさは Ee ― 9 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Eimeria zuernii 胞子未形成オーシストの形態学的同定基準についての検討 の参考基準にも含まれていたため、Ee との鑑別も必要 となる。Ez と同定されたオーシストの 9%は Ez、Eal、 井壮一編),講談社,東京. 3. 今井壮一.2007.コクシジウム症.pp. 10-19. In; 最 Ee のどの種の参考基準にも含まれないものであった。 新 家畜寄生虫病学(今井壮一,板垣匡,藤崎幸蔵 一 方、 別 の 汎用 教 科 書 で あ る 改 訂 獣 医 寄 生虫学・ 編),朝倉書店,東京. 寄生虫病学1(総論・原虫)[2]では、Ez の大きさは 4. Kawahara, F., Zhang, G., Mingala, C. N., Tamura, Veterinary Protozoology[8]と同じく 12 ~ 29μm × 10 Y., Koiwa, M., Onuma, M. and Nunoya, T. 2010. ~ 21μm(平均:17 ~ 20μm × 14 ~ 17μm)と記載さ Genetic analysis and development of species- れており、今回参照した教科書の中では長径、短径とも specific PCR assays based on ITS-1 region of に最も広範囲の記載である。今回検出した Ez の大きさ rRNA in bovine Eimeria parasites. Vet. Parasitol. はこの教科書の記載値内に含まれる。したがって、これ 174:49-57. らの教科書の掲載情報の方がより正確な情報であるとい 5. 小岩政照,安藤貴朗,鈴木一由,田口 清,川原史 えるかもしれないが、これらの教科書の記載にある様な 也.2009.子牛と育成牛のコクシジウム症.臨床獣 極端に小さなあるいは大きな長径や短径を持つオーシス 医 27:44-50. トは今回検出されなかった。検査対象が限られていたこ 6. Lalonde, L. F. and Gajadhar, A. A. 2008. Highly とに起因する可能性は否めないが、本研究と同様の検討 sensitive and specific PCR assay for reliable を広く実施することにより、より正確な情報が得られる detection of Cyclospora cayetanensis oocysts. Appl. ものと思われる。 Environ. Microbiol. 74:4354-4358. また、形状については、改訂獣医寄生虫学・寄生虫病 7. Levine, N. D. 1961. Genus Eimeria Schineider, 1875. 学1(総論・原虫) [2]の記載は類円形と類卵円形であ pp. 166-177. In: Protozoan Parasites of Domestic り、今回同定した約半数の Ez オーシストが示した楕円 Animals and of Man, Burgess Pub, Minneapolis, 形は含まれていない。Veterinary Protozoology[8]では、 Minnesota, USA. 類円形および類卵円形の他に、卵円形、まれに楕円形と 8. Levine, N. D. 1985. Genus Eimeria Schineider, 1875. の記載があり、「まれに」との注釈があるものの楕円形 pp. 142-148. In: Veterinary Protozoology, Iowa が含まれている。 State University Press, Ames, USA. 本研究では遺伝学的同定によって主に Ez が多く検出 9. Levine, N. D. and Ivens, V. 1967. The sporulated され、Eal および Ee の形態情報はあまり得られていな oocysts of Eimeria illinoisensis n. sp. and of other い。本研究で対象とした種を含めて、未成熟オーシスト species of Eimeria of the ox. J. Prorozool. 14:351- の形態学的同定の有効性と限界を明らかにするために 360. は、Eimeria 各種に対して本研究のようなアプローチを 10. Oda, K. and Nishida, Y. 1990. Prevalence and 行い、Eimeria 種の形態学的特徴を再評価する必要があ distribution of bovine coccidia in Japan. Jpn. J. Vet. ると考えられる。 Sci. 52:71-77. 11. 新版獣医臨床寄生虫学編集委員会.1995.コクシジ ウム.pp. 45-51. In: 新版 獣医臨床寄生虫学(産業 謝 辞 動物編) ,文永堂,東京. 本研究の実施にあたり、快く材料をご提供いただいた 12. 内田明彦,野上貞雄,黄鴻堅.2008.アイメリア. 本川和幸氏に深謝します。 メディ pp. 35-37. In: 図説 獣医寄生虫学 改訂第 2 版, カグローブ,弘前. 引用文献 1. Fitzgeralad, P. R. 1980. The economic impact of coccidiosis in domestic animals. Adv. Vet. Sci. Comp. Med. 24:121-142. 2. 石井俊雄.2007.牛のコクシジウム.pp. 63-65. In: 改訂獣医寄生虫学・寄生虫病学1(総論・原虫) (今 連絡責任者:野中成晃、宮崎大学農学部獣医学科獣医寄生虫病 学研究室、〒 889-2192 宮崎市学園木花台西 1-1 Correspondence:Nariaki NONAKA, Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-Kibanadai Nishi 1-1, Miyazaki 889-2192, Japan. E-mail:nnonaka@cc.miyazaki-u.ac.jp ― 10 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 谷 田 美和子、堀 井 洋一郎、野 中 成 晃 A preliminary study on re-evaluation of the characteristics for morphological identification of Eimeria zuernii unsporulated oocysts Miwako TANIDA 1, Yoichiro HORII 1,2, Nariaki NONAKA 1,2 1 Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, and 2 Center for Animal Disease Control, University of Miyazaki. ABSTRACT In clinical situation, determination of infected species in bovine coccidiosis relys on the size and shape of unsporulated oocysts. However, different description of the morphology among reference textbooks incurs confusion. In this study, we collected Eimeria oocysts with size of 5.0 to 25.0μm × 12.0 〜 20.0μm from two cattle raised at two farms, recorded their size and shape, and identified their species molecularly by sequencing matching or species-specific PCR assay. In result, 53 oocysts were identified as E. zuernii. The size of oocysts were within range of 15.0 ~ 21.3μm × 12.5 ~ 17.5μm, and the shape of 53% were spherical but the rest were ellipsoidal. Most frequent size observed was 17.5μm × 15.0μm that was recognized in 18 oocysts, and 41 oocysts(77%)showed their size within 16.0 ~ 20.0μm × 13.5 ~ 16.5μm. When the results were checked using the Japanese wide-use textbooks, the morphology of some oocysts were recognized not being matched to the description in any textbooks. Considering those preliminary results, further studies using similar approach like this study should be necessary conducted to re-evaluate the morphological characteristics of unsporulated oocysts of Eimeria species. Key words:cattle, coccidiosis, diagnosis, Eimeria zuernii, oocyst. ― 11 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Original Paper Molecular phylogenetic relationship of Dicrocoelium dendriticum from Japan and China based on nucleotide sequences of the mitochondrial nad1 Kei HAYASHI 1,2, Maiko OHTORI 1, Yuma OHARI 1,2, Uday Kumar MOHANTA 1,2, WenQiang TANG 3 and Tadashi ITAGAKI 1,2 1 2 Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University Department of Pathogenic Veterinary Science, United Graduate School of Veterinary Science, Gifu University 3 Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences ABSTRACT The aim of this study was to analyze the phylogenetic relationship between Dicrocoelium dendriticum populations in Japan and China based on molecular markers. Fourteen lancet flukes collected from Japan and China were identified as D. dendriticum based on their testes orientation and nucleotide sequences of ribosomal ITS2. The flukes were then analyzed phylogenetically by the nucleotide sequences of a mitochondrial nad1 gene. In the resultant phylogenetic tree, the nad1 haplotypes from Japan and China were divided into two separated clades, and the nucleotide variations between the clades were extremely high, hypothesizing that the D. dendriticum populations from Japan and China have conspicuously differed in genetic characters. This study provides the nucleotide sequences of nad1 gene of D. dendriticum in Japan for the first time, and may provide useful information for elucidating phylogenetic relationship of the species between Japan and China. Key words:China, Dicrocoelium dendriticum, ITS2, Japan, nad1. and D. chinensis have been distinguished on the basis 1.INTRODUCTION of the testes orientation[10, 19]. However, it is quite Lancet flukes of the genus Dicrocoelium include difficult to identify the morphologically ambiguous flukes three species, D. dendriticum, D. chinensis and D. hospes with diagonal orientation of the testes. Therefore, which are well-known causative agents of dicrocoeliasis molecular methods based on the nucleotide sequence in domestic and wild ruminants. The disease causes of the ribosomal internal transcribed spacer 2(ITS2) occasional economic loss in the livestock industry have recently been developed for precise identification by reducing productivity due to liver disorder[11]. of Dicrocoelium spp.[9, 10] . In addition, the nucleotide Dicrocoelium dendriticum is distributed in Europe, sequence of mitochondrial NADH dehydrogenase Asia, North and South America, Australia and northern subunit 1 (nad1) has been used for intraspecific Africa[12, 13], whereas D. chinensis is distributed in phylogenetic analysis in many helminth species, due Eastern Asia and Europe[11, 14] , and D. hospes in to its rapid evolutionary and mutation rates[2, 5]. Africa[13]. Dicrocoelium dendriticum infection has However, information about the molecular markers been reported mainly in wild ruminants, sika deer of D. dendriticum was limited to date. In this study, (Cervus nippon)and Japanese serow(Capricornis we identified lancet flukes from Japan and China as crispus)in Japan[8, 9, 18, 19] , whereas the species D. dendriticum based on the morphological features occurs in domestic sheep and goat in China[17, 22]. and nucleotide sequence of ITS2, and analyzed the Dicrocoelium dendriticum(synonym for D. lanceatum) intraspecific variation and phylogenetic relationship ― 12 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Kei HAYASHI, Maiko OHTORI, Yuma OHARI, Uday Kumar MOHANTA, WenQiang TANG, Tadashi ITAGAKI between the populations from Japan and China on the including partial 5.8S and 28S, and partial nad1 basis of nad1 sequences. fragment were amplified by PCR in a final volume of 50μL, containing 1μL of template DNA, 0.2 pM of primers, 1.25 U of Tks Gflex DNA Polymerase(TaKaRa 2.MATERIALS AND METHODS Bio Inc., Otsu, Japan)and the manufacturer-supplied 2-1.Lancet fluke collections and morphological reaction buffer. The following primer sets were used: identification ITS2-F and ITS2-R for ITS2[3]and Dicro-nad1-F(5’- Eight lancet flukes were collected from the bile ducts GGAGTGTGGTGTTTTGGTTT-3’)and Dicro-nad1-R of three Japanese serows in Iwate, Japan from October, (5’-AACAACGAACTAACCCAAGC-3’) for nad1, 2003 to March, 2005, and 6 flukes were recovered from which were designed based on complete mitochondrial a yellow cattle(Bos taurus)in Dingxi and a yak(Bos sequences of D. dendriticum(GenBank accession no. grunniens)in Yushu, China from August to September, KF318787)and D. chinensis(KF318786) [6] . The thermal 2013(Table 1). The flukes were fixed in 70% ethanol cycling conditions for the amplification consisted of an and transported to the laboratory for further studies. initial denaturation step at 94 ℃ for 1 min; followed by The anterior part of each fluke was removed for 30 cycles at 98 ℃ for 10 sec, 55 ℃ for 15 sec, and 68 DNA extraction[7]. Then, the testes orientation of ℃ for 30 sec. The amplicons were directly sequenced the flukes from China were observed after staining in both directions on an ABI 3500 Genetic Analyzer with hematoxylin–carmine solution and morpho- (Applied Biosystems, Foster City, CA, USA)with a metric studies were conducted[4, 20, 21]. The testes BigDye Terminator v3.1 Cycle Sequence Kit(Applied orientation of the flukes from Japan has been analyzed Biosystems)using the same primers as those for PCR. previously[9]. The resultant sequences were initially assembled using ATGC ver. 6.0.3(Genetyx Co., Tokyo, Japan), 2-2.DNA analyses and the haplotypes were distinguished by GENETYX Total DNA was extracted using High Pure PCR ver. 10(Genetyx Co.). Multiple sequence alignment of Template Preparation Kit(Roche, Mannheim, the ITS2 sequences(239 bp)along with those of D. Germany)according to the manufacturer’s instructions chinensis(AB367790)and D. hospes(EF102026)was and stored at -20 ℃ until use. The ITS2 region performed using GENETYX ver. 10. Table 1. The molecular characters of D. dendriticum analyzed in this study. Country Locality Host code Japan Iwate Japanese serow #1 China Dingxi Yushu Fluke code Nuclear ITS2 genotype Mitochondrial nad1 haplotype Code Code Accession no. Accession no. fluke #1 ITS2-DD-1 AB367789 ND-DD-J1 LC159517 fluke #2 ITS2-DD-1 AB367789 ND-DD-J2 LC159518 fluke #3 ITS2-DD-1 AB367789 ND-DD-J3 LC159519 fluke #4 ITS2-DD-1 AB367789 ND-DD-J3 LC159519 fluke #5 ITS2-DD-1 AB367789 ND-DD-J3 LC159519 fluke #6 ITS2-DD-2 LC159512 ND-DD-J2 LC159518 Japanese serow #2 fluke #7 ITS2-DD-3 LC159513 ND-DD-J2 LC159518 Japanese serow #3 fluke #8 ITS2-DD-1 AB367789 ND-DD-J4 LC159520 Yellow cattle #4 Yak #5 fluke #9 ITS2-DD-4 LC159514 ND-DD-C1 LC159521 fluke #10 ITS2-DD-5 LC159515 ND-DD-C2 LC159522 fluke #11 ITS2-DD-5 LC159515 ND-DD-C2 LC159522 fluke #12 ITS2-DD-4 LC159514 ND-DD-C4 LC159524 fluke #13 ITS2-DD-5 LC159515 ND-DD-C3 LC159523 fluke #14 ITS2-DD-6 LC159516 ND-DD-C5 LC159525 ― 13 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Molecular phylogenetic relationship of Dicrocoelium dendriticum from Japan and China based on nucleotide sequences of the mitochondrial nad1 2-3.Molecular phylogenetic analyses similarity was 99.2–99.6% within the genotypes from Phylogenic tree of the nad1 sequences(659 bp) Japan and China, while that was 98.3–99.6% between was constructed with the Neighbor-joining method genotypes from Japan and China. On the other hand, in MEGA version 6.06[16]using the Tamura and the genotypes showed a relatively low level of similarity Nei model with gamma distribution[15], which was to other Dicrocoelium species; 95.4–95.8% to D. chinensis selected with the maximum likelihood test based and 86.6-87.9% to D. hospes, suggesting that all the on A.I.C criteria. Node support was assessed with 14 flukes analyzed in this study were identified as D. 1,000 bootstrap replicates. The nad1 sequences of D. dendriticum based on the molecular marker(Table 1 chinensis(LC164821)and Eurytrema pancreaticum and Fig. 1). (KP241855)were used as reference sequences in the The partial nucleotide sequences of nad1(659 bp) phylogeny construction. The median-joining network yielded 75 substitution sites, and 9 haplotypes were inferred from the nad1 haplotypes was generated with distinguished: ND-DD-J1 to ND-DD-J4 (LC159517– Network 4.6.1.2 software[1]. LC159520)from Japan and ND-DD-C1 to ND-DD-C5 (LC159521–LC159524)from China(Table 1) . In the phylogenetic tree, the nad1 haplotypes from Japan 3.RESULTS and China were clearly divided into two separated All the 14 flukes were morphologically identified as clades with 89% support value(Fig. 2) . The median- D. dendriticum on the basis of the testes orientation joining network showed that ND-DD-J2 and ND-DD-J3 [4, 21]. The nucleotide sequences of ITS2(239 bp) might be main haplotypes in Japan. The haplotypes yielded 5 substitution sites, and 6 genotypes were detected from Japan have only one to three nucleotide distinguished: ITS2-DD-1 to ITS2-DD-3(AB367789, substitutions among them. On the other hand, the LC159512 and LC159513)from Japan and ITS2-DD-4 haplotypes detected from China have 2–35 substitutions to ITS2-DD-6(LC159514–LC159516)from China. ITS2- among them: 2–35 substitutions within haplotypes DD-6 was identical to a genotype(DQ379986)which from Dingxi, and 27–35 substitutions between those has been detected from Germany and Italy[10]. The from Dingxi and Yushu. The nucleotide substitutions Fig. 1.A multiple sequence alignment of the ITS2 genotypes(239 bp)detected in Dicrocoelium dendriticum from Japan and China with Dicrocoelium chinensis(AB367790)and Dicrocoelium hospes(EF102026). ― 14 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Kei HAYASHI, Maiko OHTORI, Yuma OHARI, Uday Kumar MOHANTA, WenQiang TANG, Tadashi ITAGAKI between the haplotypes from Japan and China were These results hypothesized that the D. dendriticum 48–70. populations in Japan and China have been genetically differentiated. In addition, the nad1 haplotypes detected from China showed extremely higher variation than 4.DISCUSSION the haplotypes from Japan, hypothesizing that the In this study, the lancet flukes were identified as D. dendriticum population in China is more ancient D. dendriticum based on the morphology of testes population than that in Japan(Fig. 3). However, the orientation[4, 21]and the nucleotide sequences of numbers of localities, hosts and flukes analyzed in this ITS2[9, 10] . The genetic variation in ITS2 seemed study were not enough to confirm those hypotheses. to be intraspecific in comparison to the interspecific Again, no fluke from sika deer was analyzed in this level with D. chinensis and D. hospes. In addition, the study, although the ruminant also can be a definitive genotypes from Japan and China were identical or very host of D. dendriticum along with Japanese serow in similar to D. dendriticum from Germany and Italy Japan[19] . Therefore, further studies using additional [10]. Therefore, the nucleotide sequence of ITS2 is lancet flukes are required to elucidate the phylogenetic considered to be a suitable marker for discriminating D. relationship of D. dendriticum populations between dendriticum from other Dicrocoelium species(Fig. 1). Japan and China, and to unveil their genetic history. In the nad1 phylogenetic tree, D. dendriticum This study provided the nucleotide sequences of nad1 haplotypes from Japan and China were clearly divided gene of D. dendriticum in Japan for the first time, and into two separated clades(Fig. 2) , and the variation the molecular features may provide useful information between the haplotypes was extremely high(Fig. 3). for further phylogenetic studies on the species. Fig. 2.Phylogenetic tree of Dicrocoelium dendriticum with Dicrocoelium chinensis(LC164821)and Eurytrema pancreaticum(KP241855)based on the partial sequence(659 bp)of the nad1 region. The tree was constructed with the Neighbor-joining method and the Tamura and Nei model with gamma distribution. The node support was calculated with 1,000 bootstrap replicates. ― 15 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Molecular phylogenetic relationship of Dicrocoelium dendriticum from Japan and China based on nucleotide sequences of the mitochondrial nad1 Fig. 3.A median-joining network based on the mitochondrial nad1 haplotypes of Dicrocoelium dendriticum. Each haplotype from Iwate, Dingxi and Yushu are shown in white, stripe and gray circle, respectively. The haplotype codes are shown adjacent to the circles, and number on each circle and node indicates the number of flukes and the number of substitutions, respectively. No label means only one substitution. Small, dark circles on the node represent median vectors. 5. Lavikainen, A., Haukisalmi, V., Lehtinen, M. J., ACKNOWLEDGMENT Henttonen, H., Oksanen, A. and Meri, S. 2008. A This study was supported in part by the Grants-in-Aid phylogeny of members of the family Taeniidae for Science Research(B)and(C) (grant nos. 23405044 based on the mitochondrial cox1 and nad1 gene and 24580420)from the Ministry of Education, Culture, data. Parasitology 135:1457-1467. Sports, Science and Technology of Japan. 6. Liu, G. H., Yan, H. B., Otranto, D., Wang, X. Y., Zhao, G. H., Jia, W. Z. and Zhu, X. Q. 2014. Dicrocoelium chinensis and Dicrocoelium dendriticum(Trematoda: REFERENCES Digenea)are distinct lancet fluke species based on 1. Bandelt, H. J., Forster, P. and Rohl, A. 1999. mitochondrial and nuclear ribosomal DNA sequences. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16:37-48. Mol. Phylogenet. Evol. 79:325-331. 7. Mohanta, U. K., Ichikawa-Seki, M., Hayashi, K. 2. Hayashi, K., Ichikawa-Seki, M., Mohanta, U. K., and Itagaki, T. 2015. Morphological and molecular Singh, T. S., Shoriki, T., Sugiyama, H. and Itagaki, T. characterization of Eurytrema cladorchis parasitizing 2015. Molecular phylogenetic analysis of Fasciola cattle(Bos indicus)in Bangladesh. Parasitol. Res. flukes from the eastern India. Parasitol. Int. 64: 114:2099-2105. 334-338. 8. Nakamura, T., Nakahari, J., Machida, N., Kiryu, K. 3. Itagaki, T. and Tsutsumi, K. 1998. Triploid form of and Machida, M. 1984. Dicroceliasis in the wild Fasciola in Japan: genetic relationships between Japanese serow, Capricornis crispus. Jpn. J. Vet. Fasciola hepatica and Fasciola gigantica determined Sci. 46:405-408. by ITS-2 sequence of nuclear rDNA. Int. J. Parasitol. 9. Ohtori, M., Aoki, M. and Itagaki, T. 2014. Distinct 28:777-781. distribution of Dicrocoelium dendriticum and D. 4. Lapage, G. 1962. Mönnig’s veterinary helminthology chinensis in Iwate prefecture, Japan, and a new and entomology, 5th ed., Bailliere Tindall and Cox, final host record for D. chinensis. J. Vet. Med. Sci. London. 76:1415-1417. ― 16 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Kei HAYASHI, Maiko OHTORI, Yuma OHARI, Uday Kumar MOHANTA, WenQiang TANG, Tadashi ITAGAKI 10. Otranto, D., Rehbein, S., Weigl, S., Cantacessi, C., 2725-2729. Parisi, A., Lia, R. P. and Olson, P. D. 2007. Morphological 17. Tang, C. and Tang, L. 1985. Investigation on the and molecular differentiation between Dicrocoelium biology of a few Dicrocoelium species from sheep dendriticum(Rudolphi, 1819)and Dicrocoelium on Qinghai plateau. Acta Zool. Sin. 31:254-262.(in chinensis(Sudarikov and Ryjikov, 1951)Tang and Chinese) Tang, 1978(Platyhelminthes: Digenea). Acta Trop. 18. Yagisawa, M. 1978. Studies on zoonotic helminthes 104:91-98. from mammals in northern Honshu, Japan. Hirosaki 11. Otranto, D. and Traversa, D. 2002. A review of Med. J. 30:239-284. dicrocoeliosis of ruminants including recent advances 19. Yamaguti, S. 1933. Studies on the helminth fauna in the diagnosis and treatment. Vet. Parasitol. of Japan. Part1. Trematodes of birds, reptiles and 107:317-335. mammals. Jpn. J. Zool. 5:1-134. 12. Otranto, D. and Traversa, D. 2003. Dicrocoeliosis 20. Yamaguti, S. 1958. Digenea of mammals. pp. 800- of ruminants: a little known fluke disease. Trends 979. In: Systema helminthum, Vol. 1. The digenetic Parasitol. 19:12-15. trematodes of vertebrates. Interscience Publishers 13. Soulsby, E. J. L. 1968. Helminths, arthropods and protozoa of domesticated animals, 6th ed. Bailliere, Inc., New York. 21. Yamaguti, S. 1971. Synopsis of digenetic trematodes London. of vertebrates, Keigaku publishing Ltd, Tokyo. 14. Taira, K., Shirasaka, S., Taira, N., Ando, Y. and 22. Zhao, G. H., Bian, Q. Q., Ren, W. X., Jia, Y. Q., Adachi, Y. 2006. Morphometry on lancet flukes Cheng, W. Y., Fang, Y. Q., Song, J. K. and Lin, found in Japanese sika deer(Cervus nippon centralis) Q. 2013. Genetic variability among Dicrocoelium captured in Iwate prefecture. J. Vet. Med. Sci. dendriticum isolates from different regions in 68:375-377. Shaanxi province, China revealed by sequences 15. Tamura, K and Nei, M. 1993. Estimation of the of three mitochondrial genes. Mitochondrial DNA number of nucleotide substitutions in the control 24:683-688. region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512-526. 16. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: Correspondence:Tadashi ITAGAKI, Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka 020-8550, Japan. E-mail:address: itagaki@iwate-u.ac.jp ― 17 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Molecular phylogenetic relationship of Dicrocoelium dendriticum from Japan and China based on nucleotide sequences of the mitochondrial nad1 日本および中国産 Dicrocoelium dendriticum の分子系統解析 林 慶 1,2、鳳 麻衣子 1、尾針 由真 1,2、モハンタ・ウドイ・クマル 1,2、唐 文强 3、板垣 匡 1,2 1 2 岩手大学 農学部 獣医寄生虫学研究室、 岐阜大学大学院 連合獣医学研究科、3 チベット農牧科学院 要 約 日本および中国間における槍形吸虫 Dicrocoelium dendriticum の分子遺伝学的関係について解析を行った。解析 には日本のニホンカモシカ 3 頭および中国のヤク 1 頭、黄牛 1 頭から得られた槍形吸虫 14 隻を用いた。まず、精巣 の位置およびリボソーム DNA の ITS2 領域(239 bp)の塩基配列に基づき、全虫体の種同定を行った。その結果、 解析に用いた 14 隻はいずれも D. dendriticum と同定された。次に、ミトコンドリア DNA の nad1 領域(659 bp) を用いた系統樹およびネットワークを作製した。その結果、日本および中国の D. dendriticum は系統樹において 異なるクレードを形成した。また、各クレード間の塩基置換率は非常に大きく、日本および中国の間において D. dendriticum は遺伝的に分化している可能性があると考えられた。本研究は日本の D. dendriticum における nad1 領 域の塩基配列を初めて報告した。 Key words:槍形吸虫、Dicrocoelium dendriticum、中国、日本、ITS2、nad1 ― 18 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Note Molecular identification of Cryptosporidium isolates from pet birds in Japan Niichiro ABE 1, Ikuko MAKINO 2, Atsushi KOJIMA 3 1 Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences 2 3 Fujisawa Avian Clinic, Fujisawa, Kanagawa Little Animal and Bird Clinic Little Bird, Setagaya-ku, Tokyo ABSTRACT Cryptosporidium spp. are important pathogens for humans and animals. Cases of infection by C. parvum, C. hominis, C. meleagridis, C. andersoni, and C. muris with zoonotic potential have also been reported in domestic and wild birds. Recent studies have revealed the presence of at least 13 host-adapted genotypes in birds. It is generally difficult to discern their oocysts accurately by morphology among Cryptosporidium species and genotypes. In Japan, 2 species(C. baileyi and C. meleagridis)and 2 genotypes(avian genotypes Ⅲ and Ⅴ)have been identified molecularly in pet(cockatiels and peach-faced lovebirds)and domestic(chickens)birds, but the presence of other species and/or genotypes in birds remains unclear. In this study, we attempted to identify 7 isolates from 3 cockatiels, 1 budgerigar, 1 masked lovebird, 1 Pacific parrotlet, and 1 Java sparrow, which were raised by individual owners, using sequence analysis of Cryptosporidium actin locus. Analysis identified avian genotype V in cockatiels and a budgerigar, avian genotype Ⅲ in a masked lovebird, C. galli in a Pacific parrotlet, and C. baileyi in a Java sparrow. This report is the first of a study identifying the presence of avian genotype Ⅴ and C. baileyi in budgerigar and Java sparrow in Japan, respectively. This study also demonstrated Pacific parrotlet(Forpus coelestis)as a new host record of C. galli. Key words:Cryptosporidium, avian genotype Ⅴ, avian genotype Ⅲ, C. baileyi, C. galli. Seven species of Cryptosporidium, an important renal or cloacal illness[7, 13, 17].It is generally difficult pathogen in humans and animals, have been reported to discriminate accurately among Cryptosporidium in domestic birds: C. meleagridis, C. baileyi, C. galli, species and genotypes using light microscopy because C. parvum, C. hominis, C. muris, and C. andersoni of the morphological similarity of their oocysts. The [17].The five species aside from C. baileyi and C. galli host specificity of Cryptosporidium genotypes found have also been recognized as zoonotic Cryptosporidium in birds remains unclear. Moreover, it is important [21]. In addition to these valid species, the following to identify the avian isolates accurately, particularly 13 genotypes are known: avian genotypes Ⅰ-Ⅵ pet birds that are in close contact with humans in (identified in many avian species), goose genotypes everyday life and which could be a source of human (Branta canadensis)Ⅰ-Ⅴ, black duck(Anas rubripes) infection. Cryptosporidium parasite was first isolated genotype, and Eurasian woodcock(Scolopax rusticola) from chickens in domestic birds[10].Later, this isolate genotype[6, 17]. Among these species and genotypes, was identified as C. baileyi using multilocus sequence C. meleagridis, C. baileyi, C. galli, avian genotype analysis[11]. Cryptosporidium parasites were also Ⅲ , and possibly avian genotype V are recognized as , but found histopathologically in Japanese quail[14] important pathogens associated with mortality, weight they have not been identified. Recently, several isolates loss, diarrhea, respiratory illness, chronic vomiting, and from pet birds in Japan were identified molecularly. ― 19 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Molecular identification of Cryptosporidium isolates from pet birds in Japan Infection of C. baileyi, C. meleagridis, avian genotype using a QIAamp DNA Stool Mini Kit and DNeasy Ⅲ or Ⅴ in cockatiels and peach-faced lovebirds has Blood and Tissue Kit(Qiagen GmbH, Hilden, Germany) , been reported[1-3, 13] . This study identified seven respectively, according to the manufacturer’s instructions. isolates from five species of pet birds using sequence The Cryptosporidium actin gene fragment(approximately analysis of Cryptosporidium actin locus. 1100 bp) was amplified following the nested PCR Fecal samples from seven pet birds(three cockatiels, protocol[23]. PCR amplification was performed in a one budgerigar, one masked lovebird, one Pacific volume of 50μl containing 1× PCR buffer, 2 mM MgCl2, parrotlet, and one Java sparrow)were collected during 250μM of each dNTP, 0.5μM of each primer, 1.25 2012–2014 at Little Animal and Bird Clinic Little Bird units of TaKaRa Ex Taq Hot Start Version(Takara and Fujisawa Avian Clinic(Table 1). They were found Shuzo Co. Ltd., Otsu, Shiga, Japan), and 5μl of DNA to be positive for Cryptosporidium infection by light sample. Reactions were performed using a GeneAmp microscopy using sucrose centrifugal flotation. All PCR System 9700 thermocycler(Applied Biosystems, birds had been kept at separate households. The two CA, U.S.A.) . The PCR products were purified using the cockatiels(original hosts of isolate codes 0306-01 and QIAquick Gel Extraction or QIAquick PCR Purification 120420-1)died during treatment. One cockatiel(0306- Kit(QIAGEN GmbH, Hilden, Mettmann, Germany), 01)was provided for autopsy. Small pieces of each and were sequenced in both directions on an automated internal organ(crop, proventriculus, small intestine, sequencer(ABI 3130; Applied Biosystems, Foster City, cloaca, trachea, kidney, liver)collected using disposable . Sequence chromatograms Carlsbad, California, U.S.A.) tweezers were put into individual 1.5-ml tubes from each strand were inspected using the SEQUENCHER containing 70% ethanol. These samples were provided Version 4.1(Gene Codes Corp., Ann Arbor, MI, U.S.A.). for identification of the location of Cryptosporidium Nucleotide similarity searching of the obtained partial found in a fecal sample of this cockatiel by PCR sequence gene sequences was performed using the FASTA analysis, as reported previously [3]. DNAs were program(EMBL; http://www.ebi.ac.uk/ Tools/fasta33/ extracted and purified from fecal and tissue samples nucleotide.html) . Table 1. Cryptosporidium isolates from pet birds identified in the present study Isolate code 0306-01 0016-01 120420-1 3503-58 733-3 0018-03 0224-01 a Host detailsa Nymphicus hollandicus; cockatiel; 2 months; emaciation, diarrhea and death Nymphicus hollandicus; cockatiel; 3 months; dispepsia Nymphicus hollandicus; cockatiel; 2 months; emaciation, diarrhea and death Melopsittacus undulatus; budgerigar; 2 months; diarrhea and vomiting Agapornis personata; masked lovebird; 6 years; no symptom Forpus coelestis; Pacific parrotlet; >2 years; diabetes and proventriculus distension Padda oryzivora; Java sparrow; 2 months; diarrehea Identification at actin locus avian genotype Ⅴ avian genotype Ⅴ avian genotype Ⅴ avian genotype Ⅴ avian genotype Ⅲ 100% identity(978/978 bp)to those from avian genotype Ⅴ(AB471660, AB471661, JQ320301) 100% identity(978/978 bp)to those from avian genotype Ⅴ(AB471660, AB471661, JQ320301) 100% identity(978/978 bp)to those from avian genotype Ⅴ(AB471660, AB471661, JQ320301) 100% identity(978/978 bp)to those from avian genotype Ⅴ(AB471660, AB471661, JQ320301) 100% identity(1000/1000 bp)to those from avian genotype Ⅲ(AB471655-AB471659) 100%(987/987 bp, 921/921 bp)or 99.9%(961/962 C. galli bp, 927/928 bp)identity to those from C. galli (AY163901, EU53265-EU543267, EU543265) C. baileyi Descibed in order of scientific name, common name, age of the bird, and clinical symptoms. ― 20 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Most highest nucleotide sequence identity 100% identity(990/990 bp)to those from C. baileyi (AF382346, EU741840-EU741852) Niichiro ABE, Ikuko MAKINO, Atsushi KOJIMA Partial actin gene nucleotide sequences(978–1000 resulted from an infection of avian genotype V because bp) were obtained from all isolates examined in we were unable to examine other pathogens such as this study. Sequences from four isolates from three Candida spp., Escherichia coli, Salmonella spp., and cockatiels and one budgerigar were identical among various viruses that are recognized as concurrent those isolates and were also identical to those of pathogens of intestinal cryptosporidiosis [5, 12]. Cryptosporidium avian genotype V(Table 1).The PCR The site of infection in avian hosts of this genotype was positive in six samples(crop, proventriculus, small has been found by scanning electron microscopical intestine, cloaca, trachea, kidney)except for the liver. or histopathological examination to be the ileum, The sequences from those amplicons were mutually cecum, ureter, and cloaca[7, 9]. In the present study, identical and also identical to that of avian genotype Cryptosporidium DNA was detected in the trachea, . The sequence of the isolate from a V(AB471660) crop, proventriculus, small intestine, cloaca, and kidney masked lovebird was identical to that of avian genotype collected from a dead cockatiel(0306-01). Recently, we Ⅲ. The sequences of the two isolates from a Pacific also identified the trachea and cloaca as the possible parrotlet and a Java sparrow were also identical to location of this genotype in avian hosts by PCR for those of C. galli and C. baileyi, respectively(Table 1). actin and 18S ribosomal DNA loci using the tissue Results demonstrated that intragenotype or intraspecies DNA samples from a severely emaciated dead cockatiel variations are low or absent at the actin locus in [3]. Considering both the present and the previous[3] Cryptosporidium[23]. Therefore, we identified the PCR data, we strongly presume the possible location present isolates as Cryptosporidium avian genotypes Ⅲ, of this genotype as the trachea, which is true also for V, C. galli, and C. baileyi. C. baileyi. Further histological examination of trachea Cryptosporidium avian genotype V, recently proposed in birds infected with avian genotype V must be , was as a new Cryptosporidium species(C. avium) [9] conducted to examine this possibility. first found in fecal samples from two cockatiels caged In Japan, C. baileyi has been identified only in at the same pet shop in Japan[2]. Subsequently, it has domestic chickens and pet cockatiels [1, 11]. In been identified in cockatiels and a budgerigar in China addition, the avian genotype V has been identified only [19, 24]and in a blue-fronted parrot in Brazil[16], in in pet cockatiels[2, 3]. Therefore this report is the a pet Major Mitchell’s cockatoo in U.S.A.[7]. Recently, first of a study identifying the presence of C. baileyi we also identified this genotype in a cockatiel[3]. In and avian genotype V in Java sparrow and budgerigar, the present study, the infection with this genotype was respectively in Japan. Reports of the literature show confirmed in the three cockatiels. Although we were that C. galli has been identified in at least 32 avian unable to perform a follow-up survey of the origin, avian , but it has not been species[4, 6, 8, 15, 16, 18-20, 22] genotype V might be widely distributed throughout found in the Pacific parrotlet (Forpus coelestis). the cockatiel population of Japan. The pathogenicity Therefore, the present report also identified a new host of this genotype in avian hosts has remained unclear of C. galli. because of a lack of clinical reports associated with About 5,000 psittaciform birds have been introduced this genotype infection[2, 9, 16, 19, 24]. All birds annually into Japan during the most recent five years infected with this genotype examined in the present (2011–2015). These birds are mainly imported from study showed mainly digestive symptoms(Table 1). A Belgium, the United States of America, the Philippines, recent report has also described a fatal case with renal and Singapore(This information is available at the and cloacal cryptosporidiosis caused by this genotype following URLS, but all descriptions at these sites are in in a Major Mitchell’s cockatoo(Cacatua leadbeteri) [7], Japanese: http://www.mhlw.go.jp/stf/ seisakunitsuite/ suggesting possible pathogenicity of avian genotype bunya/0000069864.html). In addition, a few birds are V. However, it was not possible to ascertain whether bred in households or breeder farms in Japan. Because the digestive symptoms found in the present study no survey of Cryptosporidium infection in birds has ― 21 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Molecular identification of Cryptosporidium isolates from pet birds in Japan been performed in exporting countries and/or in Japan, Mitchell’s cockatoo(Lophochroa leadbeateri). J. the origins of Cryptosporidium- parasite-infected pet Zoo. Wildl. Med. 46:934-937. birds in Japan remain unclear. Global epizootiological 8. da Silva, D. C., Homem, C. G., Nakamura, A. A., studies of Cryptosporidium infection in pet birds must Teixeira, W. F. P., Perri, S. H. V. and Meireles, M. be undertaken to control Cryptosporidium infection V. 2010. Physical, epidemiological, and molecular among pet bird populations, and to clarify the infection evaluation of infection by Cryptosporidium galli in sources and routes of transmission. Passeriformes. Parasitol. Res. 107:271-277. 9. Holubová, N., Sak, B., Horčičková, M., Hlásková, L., Kvĕtoňová, D., Menchaca, S., McEvoy, J. and Kváč REFERENCES M. 2016. Cryptosporidium avium n. sp.(Apicomplexa: 1. Abe, N. and Iseki, M. 2004. Identification of Cryptosporidiidae)in birds. Parasitol. Res. 115: Cryptosporidium isolates from cockatiels by direct sequencing of the PCR-amplified small subunit 2243-2251. 10. Itakura, C., Goryo, M. and Uemura, T. 1984. ribosomal RNA gene. Parasitol. Res. 92:523-526. Cryptosporidial infection in chickens. Avian Pathol. 2. Abe, N. and Makino, I. 2010. Multilocus genotypic analysis of Cryptosporidium isolates from cockatiels, 13:487-499. 11. Kimura, A., Suzuki, Y. and Matsui, T. 2004. Japan. Parasitol. Res. 106:1491-1497. Identification of the Cryptosporidium isolates from 3. Abe, N., Matsuo, K. and Makino, I. 2015. Ascaridia chickens in Japan by sequence analyses. J. Vet. nymphii n. sp.(Nematoda: Ascaridida)from the Med. Sci. 66:879-881. alimentary tract of a severely emaciated dead 12. Lindsay, D. S., Blagburn, B. L., Hoerr, F. J. and cockatiel Nymphicus hollandicus. Parasitol. Res. Smith, P. C. 1991. Cryptosporidiosis in zoo and pet 114:4281-4288. birds. J. Protozool. 38:180S-181S. 4. Antunes, R. G., Simoes, D. C., Nakamura, A. A. 13. Makino, I., Abe, N. and Reavill, D. R. 2010. and Meireles, M. V. 2008. Natural infection with Cryptosporidium avian genotype Ⅲ as a possible Cryptosporidium galli in canaries(Serinus canaria) , causative agent of chronic vomiting in peach-faced in a cockatiel(Nymphicus hollandicus) , and in lesser lovebirds(Agapornis roseicollis). Avian Dis. 54: seed-finches(Oryzoborus angolensis)from Brazil. 1102-1107. Avian Dis. 52:702-705. 14. Murakami, S., Miyama, M., Ogawa, A., Shimada, J. 5. Blagburn, B. L., Lindsay, D. S., Hoerr, F. J., Atlas, A. and Nakane, T. 2002. Occurrence of conjunctivitis, L. and Toivio-Kinnucan, M. 1990. Cryptosporidium sinusitis and upper region tracheitis in Japanese sp. infection in the proventriculus of an Australian quail(Coturnix coturnix japonica), possibly caused diamond firetail finch (Staganoplura bella: by Mycoplasma gallisepticum accompanied by Passeriformes, Estrilgidae) . Avian Dis. 34:1027- Cryptosporidium sp. infection. Avian Pathol. 31: 1030. 363-370. 6. Chelladurai, J. J., Clark, M. E., Kváč, M., Holubová, 15. Nakamura, A. A., Simões, D. C., Antunes, R. G., da N., Khan, E., Stenger, B. L., Giddings, C. W. and Silva, D. C. and Meireles, M. V. 2009. Molecular McEvoy, J. 2016. Cryptosporidium galli and novel characterization of Cryptosporidium spp. from fecal Cryptosporidium avian genotype VI in North samples of birds kept in captivity in Brazil. Vet. American red-winged blackbirds (Agelaius Parasitol. 166:47-51. phoeniceus) . Parasitol. Res. 115:1901-1906. 16. Nakamura, A. A., Homem, C. G., da Silva, A. M. 7. Curtiss, J. B., Leone, A. M., Wellehan, J. F. X., J. and Meireles, M. V. 2014. Diagnosis of gastric Emerson, J. A., Howerth, E. W. and Farina, L. cryptosporidiosis in birds using a duplex real-time L. 2015. Renal and cloacal cryptosporidiosis PCR assay. Vet. Parasitol. 205:7-13. (Cryptosporidium avian genotype V)in a major 17. Nakamura, A. A. and Meireles, M. V. 2015. ― 22 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Niichiro ABE, Ikuko MAKINO, Atsushi KOJIMA Cryptosporidium infections in birds - a review. Guimarães, M. B., Souza, S. O., Allegretti, L., Braz. J. Vet. Parasitol. 24:253-267. Sinhorini, J. A., Duarte, V. V. and Soares, R. M. 18. Ng, J., Pavlasek, I. and Ryan, U. 2006. Identification 2011. Genotyping of Cryptosporidium spp. from of novel Cryptosporidium genotypes from avian free-living wild birds from Brazil. Vet. Parasitol. hosts. Appl. Environ. Microbiol. 72:7548-7553. 175:27-32. 19. Qi, M., Wang, R., Ning, C., Li, X., Zhang, L., Jian, 23. Sulaiman, I. M., Lal, A. A. and Xiao, L. 2002. F., Sun, Y. and Xiao, L. 2011. Cryptosporidium spp. Molecular phylogeny and evolutionary relationships in pet birds: genetic diversity and potential public of Cryptosporidium parasites at the actin locus. J. health significance. Exp. Parasitol. 128:336-340. Parasitol. 88:388-394. 20. Ryan, U. M., Xiao, L., Read, C., Sulaiman, I. M., 24. Zhang, X. X., Zhang, N. Z., Zhao, G. H., Zhao, Q. Monis, P., Lal, A. A., Fayer, R. and Pavlasek, I. and Zhu, X. Q. 2015. Prevalence and genotyping of 2003. A redescription of Cryptosporidium galli Cryptosporidium infection in pet parrots in North Pavlasek, 1999(Apicomplexa: Cryptosporidiidae) China. BioMed. Res. Int. 2015:1-6. from birds. J. Parasitol. 89:809-813. 21. Ryan, U., Fayer, R. and Xiao, L. 2014. Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology 141:1667-1685. 22. Sevá, A. P., Funada, M. R., Richtzenhain, L., Correspondence:Niichiro ABE, Osaka City Institute of Public Health and Environmental Sciences, Tennoji–ku, Osaka 5430026, Japan. E-mail:niichiro@gmail.com 遺伝子解析による小鳥由来 Cryptosporidium 株の同定 阿部 仁一郎 1、牧野 幾子 2、小嶋 篤史 3 1 2 大阪市立環境科学研究所微生物保健グループ、 ふじさわアビアンクリニック、3 鳥と小動物の病院リトル・バード 要 約 クリプトスポリジウムはヒトと動物に寄生する原虫で、鳥類では人獣共通寄生性 5 種と少なくとも 13 の遺伝子型 の報告がある。日本では、C. baileyi(オカメインコ、鶏)、C. meleagridis(オカメインコ)、avian genotype Ⅲ(コ ザクラインコ) 、Ⅴ(オカメインコ)が確認されていたが他種寄生状況は不明であった。今回、本原虫の actin 遺伝子 領域における塩基配列の相同性検索により鳥類由来 7 株の同定を試みたところ、オカメインコ由来 3 株とセキセイイ ンコ由来 1 株を avian genotype Ⅴ、キエリクロボタンインコ由来 1 株を avian genotype Ⅲ、 マメルリハ由来 1 株を C. galli、文鳥由来 1 株を C. baileyi と同定した。国内のセキセイインコと文鳥に avian genotype V と C. baileyi が各々 寄生していることを初めて確認し、マメルリハを C. galli の新宿主として報告した。 Key words:Cryptosporidium、avian genotype Ⅴ、avian genotype Ⅲ、C. baileyi、C. galli ― 23 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Review Brief review on atypical human trypanosomiasis of Trypanosoma lewisi Eliakunda MAFIE 1, Fatema Hashem RUPA 1, Aogu SETSUDA 1, Atsuko SAITO-ITO 2, Hiroshi SATO 1 1 Laboratory of Parasitology, United Graduate School of Veterinary Science, Yamaguchi University 2 Section of Microbiology, School of Pharmacy, Hyogo University of Health Sciences ABSTRACT Trypanosomes(Kinetoplastea: Trypanosomatida: Trypanosomatidae), particularly salivarian trypanosome species as well as stercorarian Trypanosoma cruzi, are important parasites of humans and other animals that cause often fatal diseases. Stercorarian T. lewisi is known as a rat-specific species of the subgenus Herpetosoma. Rodent trypanosomes cause latent infections, and T. lewisi infection beyond the genus border, e.g. infection in mice, is considered to be virtually impossible. Nevertheless, nine human cases of T. lewisi infection have been reported in recent decades, with an increased incidence(five cases)in the last two decades. In the present review, we summarize the records of atypical human trypanosomiasis ascribed to T. lewisi infection and provide information on the background of disease incidences and possible PCR-based diagnostic approaches. Key words:Trypanosoma lewisi, atypical human trypanosomiasis, Herpetosoma, rodent trypanosome, rDNA. rodents(ca. 50 nominal species)[7] . Members of 1.INTRODUCTION Herpetosoma exhibit an almost identical morphology Hemoflagellates of the genus Trypanosoma of bloodstream trypomastigote forms. However, they (Kinetoplastea: Trypanosomatida: Trypanosomatidae) usually have a strict host specificity, so no infection have a wide range of hosts(fish, amphibians, reptiles, occurs beyond the families, subfamilies, or genera of birds, and mammals)and are transmitted by blood- host rodents[7]. By use of special rodent hosts such feeding invertebrates. Members of the genus are as Mongolian jirds(Meriones unguiculatus)treated conveniently divided into two major groups, i.e. Salivaria with immunosuppressants, the partial host barrier and Stercoraria, based on their mode of transmission to Herpetosoma infection can be overcome. This was [7]. Salivarian trypanosomes are transmitted to the demonstrated by the successful experimental infection recipient via the saliva of vectors, whereas stercorarian of T. grosi and T. lewisi, which take Apodemus trypanosomes are transmitted via vector feces or spp. or Rattus spp. as natural hosts, respectively, in vectors themselves. The former group of trypanosomes immunosuppressed Mongolian jirds[23-25] . (e.g. Trypanosoma brucei, T. vivax, and T. congolense) , transmitted by tsetse flies, is of medical and/or veterinary importance. The diseases caused by the latter group(stercorarians) , with the exception of T. 2.HUMAN CASES OF T. lewisi INFECTION cruzi, are latent. Human cases of T. lewisi infection have been reported Trypanosoma lewisi with a cosmopolitan distribution in different parts of the world. The first noted infection is the type species of the subgenus Herpetosoma, was in 1933 in a four-month-old infant living in Malaysia which includes a variety of trypanosome species of (Table 1) [10, 31, 33]. More than 40 years later, two ― 24 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Eliakunda MAFIE, Fatema Hashem RUPA, Aogu SETSUDA, Atsuko SAITO-ITO, Hiroshi SATO Table 1. Human cases of Trypanosoma lewisi or T. lewisi-like trypanosome infection * Case No. Country Age and sex of patient Trypanosome species Year of notice Method of species identification Symptom Prognosis Reference 1 Malaysia 4-month-old infant T. lewisi 1933 Morphology Fever Self cure [10] 2 India(Madhya Pradesh) One of a married couple T. lewisi 1974 Morphology Fever Self cure [30] 3 India(Madhya Pradesh) One of a married couple T. lewisi 1974 Morphology Fever Self cure [30] 4 Gambia a baby T. lewisi-like 2003 Genetic(ITS1) Fever Cure [8] 5 Thailand 45-day-old infant T. lewisi-like 2003 Genetic Fever Cure [22] 6 India(Mumbai) 1.5-month-old girl T. lewisi 2006 Morphology Fever Self cure [13, 28] 7 India(Pune) 57-year-old man T. lewisi 2007 Genetic Fever Death [5] 8 India(Bagpat) 37-day-old infant T. lewisi 2010 Genetic Fever Cure [37] 9 India(Madhya Pradesh) 40-year-old man ** T. lewisi 2014 Morphology Fever Cure [38] * Modified after Truc et al.[33]. ** Immunocompromised person with HIV infection and intermittent febrile episodes for 12 months due to chronic malaria. other cases of T. lewisi infection were reported – a that the actual prevalence is probably underestimated married couple living in a village in Madhya Pradesh, based on the following study. From a seroepidemiological India[30]. In these three cases, the trypanosomes in survey conducted in a village where a patient with T. blood films were identified morphologically, and all evansi infection was identified, 22.7% of the residents the cases were spontaneously cured. After another (410/1,806)were found to be antibody-positive by a extensive time period, six more human cases of T. card agglutination test for T. evansi(CATT/T. evansi; lewisi infection were reported(Gambia, one case in Institute of Tropical Medicine, Antwerp, Belgium)with 2003; Thailand, one case in 2003; and India, four cases a 1:4 dilution of whole blood. Positive residents were in 2006, 2007, 2010, and 2014) [5, 8, 13, 22, 28, 37, 38]. subsequently subjected to serosurvey using serum Major symptoms of these T. lewisi-infected patients samples and a card agglutination test for trypanosomiasis included fever, coughing, anorexia, and depression[12, . The prevalence (CATT; Institute of Tropical Medicine) 22, 28, 37]. In the most recent cases, anti-trypanosome of confirmed sero-positive residents was reduced to 4.5% drugs were effectively used with a good prognosis[33, (81/1,806)and no trypanosomes were microscopically 38]. detected in them[29], suggesting substantial exposure In addition to these nine human cases of T. lewisi occasions of human residents to T. evansi in the infection, atypical human trypanosomiasis has been surveyed area. Considering the recent geographical caused by T. brucei brucei(four cases in 1930, 1947, expansion of T. evansi in North Africa, Middle East, 1987, and 2003), T. congolense(one case in 1998), southern Eurasia, South Asia, and South America[4, and T. evansi(five cases in 1977, 1999, 2004, 2005, 15],it is highly possible that human exposure occasions and 2010) [11, 33]. The five human cases of T. evansi to the trypanosomes might be increased in the near infection were reported in India(three cases), Sri future, as is the case with domestic and wild animals at Lanka(one case), and Egypt(one case), and other present. human cases of salivarian animal trypanosomes have In India, epidemiological surveys of T. lewisi in been reported in the Sub-Saharan region[33]. Patients rats, conducted in areas surrounding patients’ houses, infected with salivarian animal trypanosomes had a showed prevalences of around 20%[5, 37]. These fluctuating trypanosome parasitemia associated with values are similar to those from other field studies febrile episodes for a long time period, e.g. five months in other areas in different countries such as Brazil, [12]. Ecuador, Cambodia, Lao PDR, Thailand, and China[9, Due to an increasing number of reports of patients 14, 20, 21, 32]. Maia de Silva et al.[17]reported T. with atypical trypanosomiasis in the last two decades, lewisi infection in Brazilian monkeys in captivity at a T. evansi and T. lewisi are now regarded as emerging rate of 3/160(two Callithrix jacchus and one Alouatta protozoan pathogens in humans. Truc et al.[33]proposed fusca). ― 25 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Brief review on atypical human trypanosomiasis of Trypanosoma lewisi brucei could not survive in 0.0001% NHS or 0.1 μg/ml 3.FACTOR(S)RESPONSIBLE FOR HOST SPECIFICITY OF TRYPANOSOMES rhapoL-I. Furthermore, their in vivo experiments using T. lewisi- and T. brucei brucei- infected rats and NHS injections supported their in vitro results, revealing Trypanosoma lewisi and other rodent trypanosomes, that T. lewisi might be fully resistant to NHS[16]. often referred to as T. lewisi-like due to their similar Apart from this finding, it is thought that the inability morphology, are transmitted by fleas whereby rats of T. lewisi to infect a range of mammals is associated are infected by either licking flea feces on their fur with the trypanolytic activity of both the complement or ingesting infected fleas[1, 7]. Human infection . Consequently, immature and granulocytes [1, 6] requires an infestation of fleas or flea feces, with most or depressed immune systems allow the host to be human cases being associated with patients living in infected with rat trypanosomes as an opportunistic non-hygienic houses with potential exposure to rat parasite. Therefore, considering that five out of the fleas and/or their feces. Once infected, human innate nine aforementioned human cases of T. lewisi infection immunity against atypical trypanosomes must work to were reported in unweaned babies between 1.5 and eliminate the hemoflagellates. 4 months of age(Table 1), it appears that atypical Typical human trypanosomiasis is caused by T. brucei human trypanosomiasis requires not only exposure gambiense which causes chronic sleeping sickness in chances to infected fleas but also a defective innate West Africa, T. brucei rhodesiense which causes acute immunity in hosts. sleeping sickness in East Africa, and T. cruzi which causes Chagas disease in South America. These human trypanosomes are capable of infecting humans because they are resistant to normal human serum(NHS), 4.MOLECULAR DIAGNOSIS OF ATYPICAL TRYPANOSOMIASIS i.e. trypanolysis induced by human serum protein The levels of parasitemia in atypical trypanosomiasis apolipoprotein L-1(apoL-I), while animal trypanosomes are usually too low to provide sufficient numbers of are susceptible to this protein and cannot survive bloodstream trypomastigotes for a specific diagnosis in human blood [19, 34]. A lack of apoL-I was based on morphology. In addition, as mentioned above, demonstrated in patients with clinical manifestation of rodent trypanosomes of the subgenus Herpetosoma atypical trypanosomiasis due to T. evansi[35]. show an almost identical morphology, making specific The apoL-I protein contains an ionic pore-forming identification difficult. Hence, molecular diagnosis of domain and an adjacent pH-sensitive membrane- atypical trypanosomiasis is essentially necessary for all addressing domain[19]. After endocytosis, the protein cases[33] . Cases of atypical trypanosomiasis caused triggers the formation of anion-selective pores in the by T. lewisi or T. lewisi-like trypanosomes in human lysosomal membrane, inducing osmotic swelling of the patients and non-human primates have been diagnosed lysosomes and subsequent trypanolysis[19, 34, 36] . by molecular technologies using PCR amplification and/ Human trypanosomes such as T. brucei rhodesiense or nucleotide sequencing of the ribosomal RNA gene inhibit apoL-I activity by expressing a truncated form (rDNA) [17, 22]. of the variant surface glycoprotein, termed serum As illustrated in Figures 3 and 5 of Sato et al.[26], resistance-associated protein, which is a lysosomal almost the full length of the 18S rDNA has been . protein[34] sequenced and deposited for only a portion of the rodent Lun et al.[16]recently reported that T. lewisi is trypanosomes. Out of approximately 50 nominal species resistant to NHS containing trypanolytic apoL-I. This of the subgenus Herpetosoma[7], at present just eight perception is based on their findings that T. lewisi of them are contained in the database provided by the could resist up to 90% NHS or 30μg/ml recombinant National Center for Biotechnology Information(NCBI; human apoL-I(rhapoL-I)in vitro. In contrast, T. brucei http://www.ncbi.nlm. nih.gov/taxonomy) . However, a few ― 26 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Eliakunda MAFIE, Fatema Hashem RUPA, Aogu SETSUDA, Atsuko SAITO-ITO, Hiroshi SATO Fig. 1. Maximum likelihood(ML)phylogenetic tree based on the 18S rDNA sequences. The nucleotide sequences of rodent trypanosomes(the subgenus Herpetosoma)were retrieved from the DDBJ/ EMBL/ GenBank databases, and ML analysis was performed as described in one of our previous studies[27]. Regions judged to be poorly aligned and characters with a gap in any sequences were excluded from subsequent analyses; 2,109 characters, of which 49 were variable, remained for subsequent analysis. The probability of inferred branch was assessed by the approximate likelihood-ratio test as previously described[27]. Two trypanosome species of Sciuridae(two isolates of T. otospermophili and one isolate of T. kuseli)were used as an outgroup for the construction of the ML phylogenetic tree. more sequences of other nominal rodent trypanosomes (such as T. nabiasi and T. evotomys)and multiple even more than the interspecific variations among the aforementioned Herpetosoma species. anominal species have been deposited. Previous studies The ITS1 region of T. lewisi and T. lewisi-like on the genetic characterization of the 18S rDNA trypanosomes is characterized by multiple repeats of and/or the glycosomal glyceraldehyde-3-phosphate single, double, or longer nucleotide units such as‘TA’ , dehydrogenase(gGAPDH)gene were conducted to ‘TG’ , and‘AC’. The numbers of repeats of such few clarify the interspecific relationships of mammalian nucleotide units often vary even in a single parasite trypanosomes. To improve the resolution of species individual or an isolate of some helminths[18, 27]; identification, the internal transcribed spacer 1(ITS1) however, little is known in the case of trypanosomes. region of rDNA has recently been used to discriminate Tang et al.[32]reported that 16 T. lewisi isolates T. lewisi and its isolates from atypical trypanosomiasis from Guangzhou(Southern China)had the same ITS1 in humans and non-human primates[2, 3, 17, 22]. sequence, which was slightly different from other As shown in Fig. 1 and Table 2, as far as is currently isolates from Jilin(Northern China)and Thailand. known, multiple nominal species such as T. lewisi, T. Table 3 summarizes the nucleotide differences in musculi, and T. blanchardi have an almost identical the ITS1 region among T. lewisi and T. lewisi-like 18S rDNA nucleotide sequence with few nucleotide trypanosomes(only those closest to T. lewisi, i.e. T. substitutions. Furthermore, Brazilian T. lewisi blanchardi and T. rabinowitschae). Although these isolates consistently display a nucleotide substitution sequences are only representative at present, it would in comparison to ones from other places(USA, UK, appear that ITS1 nucleotide sequences can successfully and Asia) (Table 2). Contrastingly, T. grosi isolates discriminate T. lewisi from closely related T. lewisi-like from Apodemus spp. in the Far East show substantial species such as T. blanchardi and T. rabinowitschae. intraspecific nucleotide variations, comparable to or When eliminating nucleotide unit repeats, 11 nucleotide ― 27 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 TryBiIDN203 TryRoIDN204 TryCC 34 TryCC 35 TryCC 44 TryCC 1148 Af TryCC 43 TryCC 124 T. lewisi T. lewisi T. lewisi T. lewisi T. lewisi T. lewisi T. lewisi T. lewisi T. lewisi ― 28 ― SESUJI AKHA HANTO T. grosi T. grosi T. grosi Russia Japan Russia China France China France UK Brazil Brazil Brazil Brazil Brazil Brazil Brazil Indonesia Indonesia Indonesia AB175623 AB175624 AB175622 FJ694763 AY491765 AB242274 AY491764 AJ223568 GU252214 GU252212 GU252209 GU252215 GU252213 GU252211 GU252210 AB242273 AB242273 AB242273 Sequence 2219 bp 2219 bp 2219 bp 2159 bp 2155 bp 2147 bp 2155 bp 2187 bp 2168 bp 2168 bp 2168 bp 2168 bp 2168 bp 2168 bp 2168 bp 2147 bp 2147 bp 2147 bp 2147 bp 2155 bp 2187 bp length ・ ・ ・ — ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ A 40 ・ C C C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T 135 ・ A A A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ C 186 C C C C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T 272 ・ ・ T ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ C 274 A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ C 277 C C C C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T 289 ・ ・ C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T 345 A A A A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T 501 ・ ・ ・ ・ C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ — 559 ・ ・ ・ ・ T ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ — 620 ・ C C C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T 706 C C C C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T 764 C C C C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T A A A A ・ ・ ・ ・ G G G G G G G ・ ・ ・ ・ ・ A ・ ・ ・ A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ G ・ ・ ・ ・ C C C C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T C C C C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T ・ ・ ・ ・ A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ G ・ ・ ・ ・ — ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ A ・ ・ ・ ・ A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ G ・ ・ ・ ・ ・ C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T ・ ・ ・ C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ A ・ ・ ・ A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T ・ ・ ・ C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T C C C C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T 814 1023 1085 1323 1411 1477 1503 1540 1769 1965 2016 2127 2132 18S rDNA* Twenty-one 18S rDNA nucleotide sequences of T. lewisi and T. lewisi-like trypanosomes shown above were aligned by Clustal W multiple alignment program, with subsequent manual adjustment. By this processing, nucleotide positions were settled, and Apodemus peninsulae Apodemus speciosus AJ009156 AJ223566 Accession no. Philippines AB242273 UK USA Locality which separate T. lewisi in Brazil from T. lewisi in other places are encased in a rectangle. nucleotide position is expressed relative to the 5'-terminus of T. grosi SESUJI(DDBJ/EMBL/GenBank accession no. AB175622). Dots denote an identical nucleotide to that of T. lewisi(AJ223566), and gaps are indicated by '—'. Nucleotide substitutions * Apodemus agrarius Cha1 T. grosi Apodemus agrarius Cricetus cricetus Niviventer confucianus T. rabinowitschae Eliomys quercinus TryNcCHN503 Trypanosoma sp. Mus musculus Alouatta fusca Rattus norvegicus Rattus rattus Rattus rattus Rattus rattus Rattus omanicus Bandicota indica Rattus argentiventer Rattus rattus T. blanchardi LUM 343 Callithrix jacchus TryRaIDN202 T. lewisi T. musculi Aotus sp. TryRrPHL201 T. lewisi Rattus norvegicus Rattus sp. ATCC 30085 Molteno B3 T. lewisi Host T. lewisi Isolate Species Table 2. Nucleotide variations in the18S rDNA of T. lewisi and closely related T. lewisi-like trypanosomes Brief review on atypical human trypanosomiasis of Trypanosoma lewisi lewisi lewisi lewisi lewisi lewisi lewisi lewisi lewisi lewisi T. T. T. T. T. T. T. T. T. Af TryCC 124 TryCC 34 TryCC 43 Rn02 rattus norvegicus norvegicus rattus Eliomys quercinus Cricetus cricetus Rattus norvegicus Rattus norvegicus Alouatta fusca Callithrix jacchus Rattus rattus Aotus sp. Rattus tanezumi Rattus norvegicus Homo sapiens Rattus Rattus Rattus Rattus Host France France China China Brazil Brazil Brazil Brazil Thailand China Thailand Brazil Brazil China Brazil Locality GU252223 GU252224 FJ011094 EU861192 GU252216 GU252221 GU252217 GU252219 HQ437158 FJ011095 DQ345394 GU252220 GU252222 EU599639 GU252218 Accession no. A A ・ ・ ・ ・ ・ ・ ・ ・ ・ 16 T ・ ・ ・ ・ ・ G G G G G G G G G 24 A ・ ・ ・ (TA)×5 (TA)×5 (TA)×5 (TA)×5 (TA)×5 (TA)×4 (TA)×4 (TA)×4 ・ T (TA)×1 T (TA)×1 T T T T T T T T T 33 35–44 C (TA)×3 ・ ・ ・ ・ ・ ・ C C ・ ・ ・ ・ ・ ・ ・ ・ ・ —CA —CC ・ ・ ・ —CA —CA CAC —CA ・ ・ 69 T ・ ・ ・ 47–49 — —A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 83–84 —— ・ TG TG ・ ・ A A A A A A A A A 89 G ・ ・ ・ G G G G G G G G G G G 93 T ・ ・ ・ ITS1 * G G ・ ・ ・ ・ ・ ・ ・ ・ ・ 94 A ・ ・ ・ G G ・ ・ ・ ・ ・ ・ ・ ・ ・ 101 A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ G 104 A ・ ・ ・ ・ — ・ ・ ・ ・ ・ ・ ・ ・ ・ 121 T ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ G ・ ・ 124 A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 143 C ・ T ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ C ・ 147 — ・ ・ ・ C C ・ ・ ・ ・ ・ ・ ・ ・ ・ 149 T ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ — 162 C ・ ・ ・ G G ・ ・ ・ ・ ・ ・ ・ ・ ・ 167 A ・ ・ ・ lewisi lewisi lewisi lewisi lewisi lewisi lewisi lewisi lewisi T. T. T. T. T. T. T. T. T. T. blanchardi T. rabinowitschae * See above. GU252220 GU252222 EU599639 GU252218 lewisi lewisi lewisi lewisi T. T. T. T. GU252223 GU252224 FJ011094 EU861192 GU252216 GU252221 GU252217 GU252219 HQ437158 FJ011095 DQ345394 Accession no. Species Table 3.(continued) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ — 169 C ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ C ・ 170 A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T ・ 189 G ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ G 191 A ・ ・ ・ C C ・ ・ ・ ・ ・ ・ ・ ・ ・ 193 T ・ ・ ・ A A ・ ・ ・ ・ ・ ・ ・ ・ ・ 212 G ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ C ・ ・ 218 T ・ ・ ・ ・ ・ A ・ ・ ・ ・ ・ ・ G ・ 219 — ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T ・ 223 — ・ ・ ・ C C ・ ・ ・ ・ ・ ・ ・ ・ ・ 230 A ・ ・ ・ G G ・ ・ ・ ・ ・ ・ ・ ・ ・ (TA)×3 (TA) ×3 (TA)×4 +T (TA)×5 (TA)×6 (TA)×6 (TA)×6 (TA)×7 (TA)×6 (TA)×4 +T (TA)×6 236 241–254 A (TA)×2 ・ ・ ・ (TA)×5 +T ・ (TA)×7 ——— ——— ・ ・ ・ ・ ・ ・ ・ ・ ・ ————— ————— ・ ・ ・ ・ ・ ・ ・ ・ ・ ITS1 * 255–257 260–264 CAT ATATA ・ ・ ——— ・ ・ ・ G G ・ ・ ・ ・ ・ ・ ・ ・ ・ 352 A ・ ・ ・ ・ ・ G G G G G G G G G ・ ・ (AT)×0 (AT)×0 (AT)×0 (AT)×0 (AT)×0 (AT)×0 (AT)×0 (AT)×0 (AT)×0 364 370–373 A (AT)×2 ・ ・ G (AT)×0 G (AT)×0 GT GT ・ ・ ・ ・ ・ ・ ・ ・ ・ (AT)×4 (AT)×4 (AT)×0 (AT)×0 (AT)×0 (AT)×0 (AT)×0 (AT)×0 (AT)×0 (AT)×0 (AT)×0 374–375 376–383 —— (AT)×1 ・ ・ ・ (AT)×0 ・ (AT)×0 ・ ・ ・ ・ ・ ・ ・ ・ ・ G ・ 387 A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T 412 A ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ T 414 G ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ — ・ 428 T ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ — ・ 437 G ・ ・ ・ * Fifteen ITS1 nucleotide sequences of either T. lewisi, T. blanchardi or T. rabinowitschae shown above were aligned by Clustal W multiple alignment program, with subsequent manual adjustment. By this processing, 444 nucleotide positions were settled, and nucleotide position is expressed relative to the 5'-terminus of T. lewisi(DDBJ/EMBL/GenBank accession no. GU252220). Dots denote an identical nucleotide to that of T. lewisi (GU252220),and gaps are indicated by '—'. T. blanchardi T. rabinowitschae TryCC 44 TryCC 1148 lewisi lewisi lewisi lewisi T. T. T. T. TryCC 35 Isolate Species Table 3. Nucleotide variations in the ITS1 region of T. lewisi and closely related T. lewisi-like trypanosomes(T. blanchardi and T. rabinowitschae) Eliakunda MAFIE, Fatema Hashem RUPA, Aogu SETSUDA, Atsuko SAITO-ITO, Hiroshi SATO ― 29 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Brief review on atypical human trypanosomiasis of Trypanosoma lewisi positions(16, 69, 94, 101, 149, 167, 193, 212, 230, 236, and in number in the last two decades. Considering the 352 in Table 3)are relatively significant to discriminate geographical expansion in distribution and increased T. lewisi from these two closely related species, and five prevalence of T. evansi in the Middle East, India, nucleotide positions(24, 33, 89, 93, and 364 in Table 3) Asia, and South America, and the wide spectrum of are important to discriminate major genotypes of T. vectors transmitting the trypanosomes(including the lewisi. The almost identical ITS1 nucleotide sequences genera Tabanus, Stomoxys, Haematopota, Chrysops, of T. blanchardi and T. rabinowitschae(see Table 3) and Lyperosia[4, 15] ), the chance of human exposure are in contrast to the more divergent 18S rDNA nucleotide to infective T. evansi is likely to be increased at sequences of these two species(see Table 2). Thus, the present time and in the future regardless of the collection of more ITS1 nucleotide sequences of the hygienic status of human living. In contrast, as Herpetosoma trypanosomes is required to clarify the vectors of T. lewisi are rat fleas and transmission of significance of this region in inter- and intraspecific T. lewisi occurs by human ingestion of flea feces or discrimination. Fig. 2 illustrates the relationships among fleas themselves, the hygienic status of human living T. lewisi isolates collected to date based on their ITS1 is closely related to the occurrence of atypical human nucleotide sequences. trypanosomiasis regardless of geographical location Finally, we would like to emphasize that phylogenetic because the host (rats) and parasite (T. lewisi) t r e e s us ing th e IT S re g i o n o f c l o s e l y relat ed are cosmopolitan in distribution. Little is known in Herpetosoma trypanosome species may only be valid relation to how T. lewisi is able to infect humans. if they are constructed extremely carefully. Usually it However, it is apparent that some humans and non- is not appropriate to use ITS-based phylogenetic trees human primates, particularly lactating babies, are to determine the relationships among trypanosomes in more susceptible to the infection and/or the disease general or even in limited categories. We also need to . Although can manifest itself more easily[17, 33] surmount the difficulties of sequencing the ITS1 region microscopic discrimination of T. lewisi infection with its multiple repeats of certain nucleotide units. in atypical hosts is extremely difficult, molecular approaches using the rDNA sequence are emerging. However, due to a low social interest in non-pathogenic 5.CONCLUSIVE REMARKS trypanosomes, the current number of basic studies of Records of atypical human trypanosomiasis caused rodent trypanosomes of the subgenus Herpetosoma by T. evansi and T. lewisi appear to have increased [7], particularly their genetic characterization, is not Fig. 2. Maximum likelihood(ML)phylogenetic tree of T. lewisi isolates based on the ITS1 region of rDNA sequences. The nucleotide sequences of T. lewisi and its closely related T. lewisi-like species (T. blanchardi and T. rabinowitschae) were retrieved from the DDBJ/EMBL/GenBank databases, and ML analysis was performed as stated in the legend for Fig. 1. Regions judged to be poorly aligned and characters with a gap in any sequences were excluded from subsequent analyses; 392 characters, of which 27 were variable, remained for subsequent analysis. Two trypanosome species (T. blanchardi and T. rabinowitschae) were used as an outgroup for the construction of the ML phylogenetic tree. ― 30 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Eliakunda MAFIE, Fatema Hashem RUPA, Aogu SETSUDA, Atsuko SAITO-ITO, Hiroshi SATO sufficient, and only a limited number of nucleotide 5. Doke, P. P. and Kar, A. 2011. A fatal case of sequences is available for a limited number of rodent Trypanosoma lewesi in Maharashtra, India. Ann. trypanosome species. Presently, specific discrimination Trop. Med. Public Health 4:91-95. of the subgenus Herpetosoma largely relies on the host 6. Ferrante, A. 1985. Trypanolytic activity, agglutinins, category since the morphology of trypomastigotes in and opsonins in sera from animals refractory to the bloodstream is almost identical(hence the term Trypanosoma lewisi. Infect. Immun. 49:378-382. “T. lewisi-like”)and little is known about the biology 7. Hoare, C. A. 1972. The trypanosomes of mammals: of each species. As shown in Table 2, the intraspecific A zoological monograph. Blackwell Scientific nucleotide variations of T. grosi exceed the interspecific Publications, Oxford, U.K., p.749. nucleotide variations between, for example, T. blanchardi 8. Howie, S., Guy, M., Fleming, L., Bailey, W., Noyes. and T. lewisi or T. musculi. In order to provide the H., Faye, J. A., Pepin, J., Greenwood, B., Whittle, basis for an accurate specific discrimination in atypical H., Molyneux, D. and Corrah, T. 2006. A Gambian human trypanosomiasis, greater effort in both the infant with fever and an unexpected blood film. field and laboratory needs to be directed towards the PLoS Med. 3:e355 [DOI:10.1371/ journal. collection of more rodent trypanosome isolates for pmed.0030355]. genetic and biological characterization. 9. Jittapalapong, S., Inpankaew, T., Sarataphan, N., Herbreteau, V., Hugot, J. P., Morand, S. and Stich, R. W. 2008. Molecular detection of divergent ACKNOWLEDGEMENT trypanosomes among rodents of Thailand. Infect. This study was supported in part by a Grant-in-Aid for International Collaboration Research in Asia 2016 Genet. Evol. 8:445-449. 10. Johnson, P. D. 1933. A case of infection by from the Heiwa Nakajima Foundation. Trypanosoma lewisi in a child. Trans. R. Soc. Trop. Med. Hyg. 26:467-468. 11. Joshi, P. P. 2013. Human trypanosomiasis in India: REFERENCES Is it an emerging new zoonosis? Med. Update 23: 1. Albright, J. W. and Albright, J. F. 1991. Rodent trypanosomes: their conflict with the immune 10-13. 12. Joshi, P. P., Shegokar, V. R., Powar, R. W., system of the host. Parasitol. Today 7:137-140. Herder, S., Katti, R., Salkar, H. R., Dani, V. S., 2. Desquesnes, M., Ravel, S. and Cuny, G. 2002. PCR Bhargava, A., Jannin, J. and Truc, P. 2005. Human identification of Trypanosoma lewisi, a common trypanosomiasis caused by Trypanosoma evansi parasite of laboratory rats. Kinetoplastid Biol. Dis. in India: the first case report. Am. J. Trop. Med. 1:2[DOI:10.1186/1475-9292-1-2]. Hyg. 73:491-495. 3. Desquesnes, M., Kamyingkird, K., Yangtara, S., 13. Kaur, R., Gupta, V. K., Dhariwal, A. C., Jain, D. C. Milocco, C., Ravel, S., Wang, M.-H., Lun, Z.-R., Morand, and Shiv, L. 2007. A rare case of trypanosomiasis S. and Jittapalapong, S. 2011. Specific primers for in a two month old infant in Mumbai, India. J. PCR amplification of the ITS1(ribosomal DNA)of Commun. Dis. 39:71-74. Trypanosoma lewisi. Infect. Genet. Evol. 11:1361- 14. Linardi, P. M. and Botelho, J. R. 2002. Prevalence 1367. of Trypanosoma lewisi in Rattus norvegicus from 4. Desquesnes, M., Holzmuller, P., Lai, D.-H., Dargantes, Belo Horizonte, State of Minas Gerais, Brazil. Mem. A., Lun, Z.-R. and Jittaplapong, S. 2013. Trypanosoma evansi and surra: a review and perspectives on Inst. Oswaldo Cruz 97:411-414. 15. Luckins, A. G. 1988. Trypanosoma evansi in Asia. origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. BioMed Res. Int. Parasitol. Today 4:137-142. 16. Lun, Z. R., Wen, Y. Z., Uzureau, P., Lecordier, L., 2013:321237[DOI:10.1155/2013/321237]. Lai, D. H., Lan, Y. G., Desquesnes, M., Geng, G. Q., ― 31 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Brief review on atypical human trypanosomiasis of Trypanosoma lewisi Yang, T. B., Zhou, W. L., Jannin, J. G., Simarro, and Ito, M. 2003. Persistent infection of Mongolian P. P., Truc, P., Vincendeau, P. and Pays, E. 2015. jirds with a non-pathogenic trypanosome, Resistance to normal human serum reveals Trypanosoma(Herpetosoma)grosi. Parasitology Trypanosoma lewisi as an underestimated human 127:357-363. pathogen. Mol. Biochem. Parasitol. 199:58-61. 24. Sato, H., Ishita, K., Osanai, A., Yagisawa, M., 17. Maia de Silva, F., Marcili, A., Ortiz, P. A., Kamiya, H. and Ito, M. 2004. T cell-dependent Epiphanio, S., Campaner, M., Catão-Dias, J. L., elimination of dividing Trypanosoma grosi from the Shaw, J. J., Camargo, E. P., and Teixeira, M. M. G. bloodstream of Mongolian jirds. Parasitology 128: 2010. Phylogenetic, morphological and behavioural 295-304. analyses support host switching of Trypanosoma 25. Sato, H., Osanai, A., Kamiya, H., Obara, Y., Jiang, (Herpetosoma) lewisi from domestic rats to W., Zhen, Q., Chai, J., Une, Y. and Ito, M. 2005. primates. Infect. Genet. Evol. 10:522-529. Characterization of SSU and LSU rRNA genes of 18. Makouloutou, P., Setsuda, A., Yokoyama, M., Tsuji, three Trypanosoma(Herpetosoma)grosi isolates T., Saita, E., Torii, H., Kaneshiro, Y., Sasaki, M., maintained in Mongolian jirds. Parasitology 130: Maeda, K., Une, Y., Hasegawa, H. and Sato, H. 157-167. 2013. Genetic variation of Gongylonema pulchrum 26. Sato, H., Leo, N., Katakai, Y., Takano, J., Akari, from wild animals and cattle in Japan based on H., Nakamura, S. and Une, Y. 2008. Prevalence ribosomal RNA and mitochondrial cytochrome c and molecular phylogenetic characterization of oxidase subunit I genes. J. Helminthol. 87:326-335. Trypanosoma(Megatrypanum)minasense in the 19. Pérez-Morga, D., Vanhollebeke, B., Paturiaux- peripheral blood of small Neotropical primates after Hanocq, F., Derek P. Nolan, D. P., Lins, L., Homblé, a quarantine period. J. Parasitol. 94:1128-1138. F., Vanhamme, L., Tebabi, P., Pays, A., Poelvoorde, 27. Setsuda, A., Da, N., Hasegawa, H., Behnke, J. P., Jacquet, A., Brasseur, R. and Pays, E. 2005. M., Rana, H. B., Dhakal, I. P. and Sato, H. 2016. Apolipoprotein L-I promotes trypanosome lysis by Intraspecific and interspecific genetic variation of forming pores in lysosomal membranes. Science Gongylonema pulchrum and two rodent Gongylonema 309:469-472. spp.(G. aegypti and G. neoplasticum), with the 20. Pinto, C. M., Ocaña-Mayorga, S., Lascano, M. S. and proposal of G. nepalensis n. sp. for the isolate in Grijalva, M. J.,(2006). Infection by trypanosomes water buffaloes from Nepal. Parasitol. Res. 115: in marsupials and rodents associated with human 787-795. dwellings in Ecuador. J. Parasitol. 92:1251-1255. 28. Shah, I., Ali, U. S., Andankar, P. and Joshi, R. R. 21. Pumhom, P., Pognon, D., Yangtara, S., Thaprathorn, 2011. Trypanosomiasis in an infant from India. J. N., Milocco, C., Douangboupha, B., Herder, S., Vector Borne Dis. 48:122-123. Chaval, Y., Morand, S., Jittapalapong, S. and 29. Shegokar, V. R., Powar, R. M., Joshi, P. P., Bhargava, Desquesnes, M. 2014. Molecular prevalence of A., Dani, V. S., Katti, R., Zare, V. R., Khanande, V. D., Trypanosoma spp. in wild rodents of Southeast Jannin J. and Truc, P. 2006. Short report: Human Asia: influence of human settlement habitat. trypanosomiasis caused by Trypanosoma evansi in Epidemiol. Infect. 142:1221-1230. a village in India: preliminary serologic survey of 22. Sarataphan, N., Vongpakorn, M., Nuansrichay, B., the local population. Am. J. Trop. Med. Hyg. 75: Autarkool, N., Keowkarnkah, T., Rodtian, P., Stich, 869-870. R. W. and Jittapalapong, S. 2007. Diagnosis of a 30. Shrivastava, K. K. and Shrivastava, G. P. 1974. Two Trypanosoma lewisi-like(Herpetosoma)infection cases of Trypanosoma (Herpetosoma) species in a sick infant from Thailand. J. Med. Microbiol. infection of man in India. Trans. R. Soc. Trop. 56:1118-1121. Med. Hyg. 68:143-144. 23. Sato, H., Ishita, K., Matsuo, K., Inaba, T., Kamiya, H. 31. Sousa, M. A. 2014. On opportunist infections by ― 32 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Eliakunda MAFIE, Fatema Hashem RUPA, Aogu SETSUDA, Atsuko SAITO-ITO, Hiroshi SATO Trypanosoma lewisi in humans and its differential Human Trypanosoma evansi infection linked to a diagnosis from T. cruzi and T. rangeli. Parasitol. lack of apolipoprotein L-1. N. Engl. J. Med. 355: Res. 113:4471-4475. 2752-2756. 32. Tang, H., Lan Y., Wen Y., Zhang, X., Desquesnes, M., 36. Vanwalleghem, G., Fontaine, F., Lecordier, L., Yang, T., Hide, G. and Lun, Z. 2012. Detection of Tebabi, P., Klewe, K., Nolan, D. P., Yamaryo- Trypanosoma lewisi from wild rats in Southern China Botte, Y., Botte, C., Kremer, A., Burkard, G. S., and its genetic diversity based on the ITS1 and Rassow, J., Roditi, I., Perez-Morga, D. and Pays, ITS2 sequences. Inf. Genet. Evol. 12:1046-1051. E. 2015. Coupling of lysosomal and mitochondrial 33. Truc, P., Büscher, P., Cuny, G., Gonzatti, M. I., membrane permeabilization in trypanolysis by Jannin, J., Joshi, P., Juyal, P., Lun, Z.-R., Mattioli, APOL1. Nat. Commun. 6:8078[DOI:10.1038/ R., Pays, E., Simarro, P. P., Teixeira, M. M. G., ncomms9078]. Touatier, L., Vincendeau, P. and Desquesnes, 37. Verma, A., Manchanda, S., Kumar, N., Sharma, M. 2013. Atypical human infections by animal A., Goel, M., Banerjee, P. S., Garg, R., Singh, B. P., trypanosomes. PLoS Negl. Trop. Dis. 7:e2256 Balharbi, F., Lejon, V., Deborggraeve, S., Singh . [DOI:10.1371/journal.pntd. 0002256] Rana, U. V. and Pullyel, J. 2011. Trypanosoma 34. Vanhamme, L., Paturiaux-Hanocq, F., Poelvoorde, P., lewisi or T. lewisi-like infection in a 37-day-old Nolan, D. P., Lins, L., Van Den Abbeele, J., Pays, A., Indian infant. Am. J. Trop. Med. Hyg. 85:221-224. Tebabi, P., Van Xong, H., Jacquet, A., Moguilevsky, 38. Warpe, B. M. and More, S. V. 2014. A rare Indian case N., Dieu, M., Kane, J. P., De Baetseller, P., Brasseur, of human trypanosomiasis caused by Trypanosoma R. and Pays, E. 2003. Apolipoprotein L-I is the lewisi-like parasites. J. Biosci. Technol. 5:564-567. trypanosome lytic factor of human serum. Nature 422:83-87. 35. Vanhollebeke, B., Truc, P., Poelvoorde, P., Pays, A., Joshi, P. P., Katti, R., Jannin J. G. and Pays, E. 2006. Correspondence:Hiroshi SATO, Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, 1677-1 Yoshida, Yamaguchi 753-8515, Japan. E-mail:sato7dp4@yamaguchi-u.ac.jp Trypanosoma lewisi による非定型的人体トリパノソーマ症 マフィエ・エリアクンダ 1、ルパ・ファテムハシム 1、説田 景 1、斎藤 あつ子 2、佐藤 宏 1 1 山口大学 大学院 連合獣医学研究科、2 兵庫医療大学 薬学部 微生物学分野 要 約 トリパノソーマ(Kinetoplastea: Trypanosomatida: Trypanosomatidae) 、殊にサリバリアに分類される種やクルー ズトリパノソーマは人および動物の健康を脅かし、しばしば致命的な感染を引き起こすことが知られている。ステル コリアンに区分される Trypanosoma lewisi はラット寄生の Herpetosoma 亜属トリパノソーマである。この亜属に分 類される齧歯類寄生種の感染は潜伏的で、また、齧歯類間でもその属を超えた感染はほぼ不可能と考えられている。 ところが、T. lewisi の人体感染症例は過去に 9 件報告され、そのうち 5 症例はこの 20 年間に発生していることから、 新興感染症として考える向きもある。本稿では T. lewisi による非定型的人体トリパノソーマ症についてその発生状 況と背景、および PCR を活用した分子生物学的感染診断の現況について概要を記した。 Key words:ラットトリパノソーマ(Trypanosoma lewisi) 、非定型的人体トリパノソーマ症、Herpetosoma 亜属、 齧歯類トリパノソーマ、rDNA. ― 33 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Review Endoparasites of Vietnamese lizards recorded in the last 50 years(1966−2015) Binh Thi TRAN 1, Son Truong NGUYEN 2, Tao Thien NGUYEN 3, Pham Van LUC 3, Eliakunda MAFIE 4, Fatema Hashem RUPA 4, Hiroshi SATO 4 1 Department of Parasitology, and 2 Department of Veterinary Zoology, Institute of Ecology and Biological Resources(IEBR) , and 3 Vietnam National Museum of Nature, Vietnam Academy of Science and Technology(VAST) 4 Laboratory of Parasitology, United Graduate School of Veterinary Science, Yamaguchi University ABSTRACT At present, there is a limited knowledge of amphibian and reptile parasites in Vietnam. To date, 45 species of endoparasite in Vietnamese lizards have been recorded. These species consist of 11 cestode, 12 trematode, 18 nematode, one acanthocephalan and three pentastomid species from 10 host species. As Vietnam is one of the global hot spots for herpetofauna diversity(a recent report documented 385 reptiles and 181 amphibians in the , it appears that only a fraction of the parasites of lizards in this richly biodiverse territory has been country) recorded. To facilitate the accurate taxonomical identification of parasites and clarify the taxonomic relationship of parasites from Vietnamese lizards with those from Oriental lizards or lizards of other geographical regions, parasites should be characterized both morphologically and phylogenetically. Key words:Vietnam, lizard, parasite, helminth, pentastomid, record. or lizard fauna, little is known about the parasites of 1.INTRODUCTION lizards endemic in Vietnam. To date, parasitological Vietnam is one of the global hot spots for reptilian studies have been conducted on only 10 host species, and amphibian diversity. Nguyen and Ho[90]recorded with 45 endoparasite species being found, of which 258 reptiles and 82 amphibians as the herpetofauna 80.0%(36 species)were parasites of the spiny-tailed of Vietnam in 1996. More recent active surveys house gecko Hemidactylus frenatus(Schlegel, 1836), on the herpetofauna in the country by Vietnamese clouded monitor Varanus nebulosus(Gray, 1831)and herpetologists and collaborative overseas scientists . Due water monitor Varanus salvator(Laurenti, 1768) have disclosed more and more species. Nguyen et al. to multiple records being published in Vietnamese or [92]recorded 368 reptiles and 177 amphibians in 2009, in domestic conference books in Vietnam, overseas while Ziegler and Nguyen[133]reported 385 reptiles researchers outside of Vietnam may experience and 181 amphibians in 2010. The lizard group, such as difficulties accessing them. To address this, the present the agamids, geckos and skinks, currently comprises study lists the parasite records from Vietnamese a total of more than 120 species, of which at least lizards for the benefit of researchers interested in this 57 species were described during the period 1996 to topic. 2010[81, 90-92, 133]. The major reptile families in Vietnam are Gekkonidae(42 species)and Scincidae(46 species). In contrast to the active research on herpetofauna 2. VIETNAMESE LIZARDS EXAMINED FOR THEIR ENDOPARASITES We surveyed conference records and scientific ― 34 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO Fig. 1.Map of Vietnam illustrating 61 provinces. The provinces coloured grey denote localities where parasites have been recorded in lizards. ― 35 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 ― 36 ― * Blank denotes no record. Pseudocalotes brevipes (Werner, 1904) Vietnamese false bloodsucker Leiolepis reevesii Gray, 1831 Eastern butterfly lizard Calotes versicolor (Daudin, 1802) Garden fence lizard Calotes emma Gray, 1845 Emma Gray’s forest lizard Acanthosaura lepidogaster Cuvier, 1829 Scale-bellied tree lizard Agamidae Eutropis longicaudata Hallowell, 1856 Long-tailed mabuya Scincidae Hemidactylus frenatus Schlegel, 1836 Spiny-tailed house gecko Gekko badenii Szezerbak et Nekrasova, 1994 Golden gecko Gekkonidae Varanus salvator Laurenti, 1768 Water monitor Varanus nebulosus Gray, 1831 Clouded monitor Varanidae Lizard species 7 20 No data 6 32 38 149 65 20 23 Number of lizards examined Oochoristica chinensis; Oochoristica tuberculata; Oochoristica sp. 1; Oochoristica sp. 2 Acanthotaenia beddardi; Acanthotaenia nilotica; Acanthotaenia sp.; Kapsulotaenia sandgroundi; Duthiersia expansa; Scyphocephalus bisulcatus Acanthotaenia shipleyi; Acanthotaenia beddardi; Acanthotaenia nilotica; Acanthotaenia sp.; Duthiersia expansa Cestoda Paradistomum orientalis Plagiorchis molini; Parabascus lepidotus; Postorchigenes ovatus Encyclometra colubrimumorum; Singhiatrema vietnamensis; Euparadistomum varani; Diplodiscus mehrai; Mesocoelium brevicaecum; Meristocotyle provitellaria; Haplorchis pumilio Strongyluris calotis Thelandros vietnamensis Abbreviata deschiensi Strongyluris calotis Cosmocercoides tonkinensis Oswaldocruzia sp. 1; Meteterakis mabuyae Oswaldocruzia sp. 1; Skrjabinodon azerbajdzanicus Spauligodon vietnamensis; Pharyngodon duci Oswaldocruzia sp. 2; Raillietascaris varani; Tanque tiara Strongyloides mirzai; Kalicephalus sp.; Oswaldcruzia sp. 2; 'Herpetostrongylus varani' sensu Nguyen 2002; Raillietascaris varani; Meteterakis varani; Hastospiculum varani; Piratuba varanicola Nematoda Recorded parasites * Encyclometra colubrimumorum; Singhiatrema vietnamensis; Mesocoelium brevicaecum; Haplorchis pumilio; Artyfechinostomum surfrartyfex Trematoda Table 1. Endoparasites of lizards in Vietnam recorded during the period of 1966 − 2015. Pseudoacanthocephalus nguyenthileae Acanthocephala Raillietiella affinis Raillietiella frenatus Raillietiella orientalis Arthropoda Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO Fig. 2.Shadow pictures of lizards that have been recorded as hosts for endoparasites in Vietnam. Lizards of different snout-vent length(SVL)are shown without reflecting their sizes. Approximate SVLs are as follows: V. nebulosus, 120 cm; V. salvator, 80 cm; A. lepidogaster, L. reevesii and E. longicaudata, 14 cm; and the remaining five species, 8 cm. publications in domestic and international journals. According to these sources, parasitological surveys on Vietnamese lizards were often conducted at 3.PARASITES RECORDED IN VIETNAM- ESE LIZARDS several places in the Red River Delta, where the As mentioned above, 45 species parasitic to lizards Red River flows from Yunnan in southwest China were recorded in Vietnam. These species comprised through northern Vietnam to the Gulf of Tonkin, and 11 cestodes, 12 trematodes, 18 nematodes, one mountainous provinces of central and southern regions acanthocephalan and three pentastomids[2, 6, 22, of Vietnam as well as unknown places in the southern 68, 82-88, 99, 100, 117-120, 122, 125]. Among them, six region(Fig. 1). We found 45 parasite species recorded species were described as new to science at the time from 10 host lizard species, and more than 360 host of publication: Abbreviata deschiensi Le et Nguyen, individuals were examined by Vietnamese researchers 1966; Pharyngodon duci Tran et al., 2007; Spauligodon as well as their overseas collaborators(Table 1). vietnamensis Tran et al., 2007; Thelandros vietnamensis These host lizards were classified into four families Bui et al., 2009; Cosmocercoides tonkinensis Tran et al., (Table 1 and Fig. 2): Varanidae(Varanus nebulosus 2015; and Pseudoacanthocephalus nguyenthileae Amin and Varanus salvator); Gekkonidae(Gekko badenii et al., 2008. In the following subsections, localities, when and Hemidactylus frenatus); Scincidae (Eutropis defined, are shown by the name of the province and longicaudata); and Agamidae(Acanthosaura lepidogaster, the number plotted on the map(Fig. 1)in parentheses. Calotes emma, Calotes versicolor, Pseudocalotes brevipes The incidence(prevalence)and intensity are shown and Leiolepis reevesii) . for parasite species where these data were provided, although it was found that this information was generally missing from the Vietnamese reports. ― 37 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) 3-1.Cestoda Incidence and intensity: 2.7% (4/149) with 1–3 Eleven recorded species were classified into three worms/host families: Anoplocephalidae Cholodkowsky, 1902 Comment: This cestode is the type species of (Oochoristica Lühe, 1898 – four spp.); Proteocephalidae the genus and is distributed widely in Eurasia and La Rue, 1911(Acanthotaenia von Linstow, 1903 – four northern Africa(Palaearctic region)by parasitism of a spp. and Kapsulotaenia Freze, 1965 – one sp.); and variety of lizards(at least 31 species of 23 genera)as Diphyllobothriidae Lühe, 1910(Duthiersia Perrier, 1873 well as snakes(nine species of nine genera) [40, 131]. – one sp. and Scyphocephalus Riggenbach, 1898 – one This species recorded from common house geckos in sp.). Vietnam had 28–30 testes per segment, different from the aforementioned O. chinensis with 17–22 testes per 3-1-1.Oochoristica chinensis Jensen, Schmidt et segment. Kuntz, 1983 Host and location: Hemidactylus frenatus, small 3-1-3.Oochoristica sp. 1 intestine[85, 118] Host and location: Hemidactylus frenatus, small Locality: Yen Bai Province(5); additionally, Hanoi intestine[85, 118] Province(14) [unpublished] Locality: Yen Bai Province(5) Incidence and intensity: 4.7% (7/149) with 1–5 Incidence and intensity: 1.3% (2/149) with 1–3 worms/host worms/host Comment: Anoplocephalid cestodes of the genus Comment: This cestode was small in size(7–20 mm Oochoristica, ca. 80 species at present, are cosmopolitan in length and 1.3 mm in width)and had 20–24 testes in distribution and predominantly parasitize lizards, but per segment and a small cirrus sac extending 16–20% also snakes, turtles and marsupials[31]. The present of the width of the mature segment. The cirrus sacs of species was recorded from Japalura swinhonis(the the two former species, O. chinensis and O. tuberculata, type host)and Eutropis longicaudata(syn. Mabuya extended 25–30% and 18–20% of the segment width, longicaudata)in Taiwan[52, 93]. The morphological respectively. Although morphological characters were features of the isolate from common house geckos recorded in detail, the exact taxonomic situation of this (H. frenatus)in Vietnam corresponded well with the species was uncertain[118]. . original description[52] Since assumptions of strict host specificity and 3-1-4.Oochoristica sp. 2 geographical isolation had apparently been used as Host and location: Hemidactylus frenatus, small criteria in determining species of this genus, Criscione intestine[85, 118] and Font[31]conducted an experimental infection Locality: Yen Bai Province(5) of Oochoristica javaensis of lizard hosts distributed in Incidence and intensity: 2.0% (3/149) with no a non-endemic region of the cestode and concluded intensity information that members of the Oochoristica may lack strict host Comment: This cestode was small in size(7–9 mm specificity. in length and 0.3 mm in width)and had 12–14 testes per segment and a cirrus sac extending 50–58% of the 3-1-2.Oochoristica tuberculata(Rudolphi, 1819) width of the mature segment. Although morphological Lühe, 1898 characters were recorded in detail, the exact taxonomic Syn. Skrjabinochora sobolevi Spasskii, 1948 situation of this species was uncertain[118]. Host and location: Hemidactylus frenatus, small In addition, Nguyen et al.[85]recorded another intestine[85, 118] Oochoristica sp. from Eutropis longicaudata at the Locality: Yen Bai Province(5); additionally, Hanoi same localities in northern Vietnam. This species was Province(14) [unpublished] different from the four aforementioned Oochoristica ― 38 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO spp. from H. frenatus. No detailed information is aforementioned species, A. shipleyi, had 40–65 testes available. per segment and a uterus with 29–36 lateral branches. 3-1-5.Acanthotaenia shipleyi von Linstow, 1903 3-1-7.Acanthotaenia nilotica Beddard, 1913 Host and location: Varanus nebulosus, small intestine Host and location: Varanus nebulosus and Varanus [117] salvator, small intestine[117] Locality: Southern Vietnam(not specified) Locality: Vietnam(not specified) Incidence and intensity: 17.4% (4/23) with no Incidence and intensity: 27.9%(12/43)with no intensity intensity information information Comment: Members of the genus Acanthotaenia Comment: This species was originally described in have a scolex with an apical muscular organ(piercing Varanus niloticus from Africa, having 75–92 testes per organ) . The scolex and anterior part of the strobila segment and a uterus with 17–25 lateral branches on are covered with a dense network of spines[103]. each side. The uterus has numerous, irregular diverticula. Acanthotaenia spp. are parasitic to varanid reptiles 3-1-8.Acanthotaenia sp. in Africa, Australia and the Indo-Pacific region[103, Host and location: Varanus nebulosus and Varanus 128], and A. shipleyi collected from Varanus salvator salvator, small intestine[117] in Sri Lanka is the type species of the genus. Since Locality: Vietnam(not specified) the original description of the species was made using Incidence and intensity: 14.0%(6/43)with no intensity immature worms, Yamaguti[127]redescribed it using information mature cestodes collected from Varanus salvator on Comment: This species was characterized to have Sulawesi Island, formerly known as Celebes, Indonesia. 150–195 testes per segment and a uterus with 25–52 Recently, de Chambrier et al. [37] conducted lateral branches on each side, distinct from any known phylogenetic analyses of proteocephalid cestodes Acanthotaenia spp. (110 taxa of 54 genera classified in all 13 currently recognized subfamilies, including A. shipleyi)using 3-1-9.Kapsulotaenia sandgroundi(Carter, 1943) Freze, 1965 almost complete 28S ribosomal RNA gene(rDNA) nucleotide sequences. Their findings led them to Syn. Proteocephalus sandgroundi Carter, 1943 propose a need to revise the systematics of the family Host and location: Varanus salvator, small intestine based on phylogenetic achievements or newly defined [117] morphological characters suitable for the division of Locality: Northern Vietnam(not specified) subgroups. Incidence and intensity: 15.0%(3/20)with no intensity information 3-1-6.Acanthotaenia beddardi(Woodland, 1925) Comment: The genera Kapsulotaenia and Acanthotaenia Schmidt et Kuntz, 1974 are closely related, although formation of membranous Host and location: Varanus nebulosus and Varanus egg capsules only occurs in the former genus[103]. salvator, small intestine[117] The type species of the genus is the present species, Locality: Vietnam(not specified) which was fully redescribed by de Chambrier[36]on Incidence and intensity: 18.6% (8/43) with no the basis of the type specimen from Varanus komodoensis intensity information on Komodo Island, Indonesia, and museum materials Comment: This species was originally described from varanid lizards on the Lesser Sunda Islands, in Varanus bengalensis in India. It was defined as Indonesia, and Australia. having 60–77 testes per segment and a uterus with 15–20 lateral branches on each side, whereas the ― 39 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) 3-1-10.Duthiersia expansa Perrier, 1873 [125] Syns. Duthiersia crassa Woodland, 1938; Duthiersia Locality: Nghe An Province(27) venusta Woodland, 1938 Incidence and intensity: No information Host and location: Varanus nebulosus and Varanus Comment: The genus Scyphocephalus is characterized salvator, small intestine[117] by a special scolex with rudimentary bothria and an Locality: Vietnam(not specified) invaginated anterior end forming a sucking organ[21]. Incidence and intensity: 18.6%(8/43)with no intensity This cestode is the type species of the genus, described information based on worms from Varanus salvator in Java, Comment: Members of the genus Duthiersia are Indonesia[104] . As detailed above, S. secundus from small worms from varanid lizards, not exceeding 200 Varanus salvator on Leyte Island, Philippines[124] mm in length, and having a broad and fan-like scolex was synonymized by Vlnová[125].‘Scyphocephalus with bothrial margins frilled or crenulated [21]. jadhavi’ described from the same host species in Woodland[126]examined numerous specimens from Andhra Pradesh, India[60]appears to be a species of varanids in Africa and Asia, and divided them into D. a distinct genus. fimbriata(Diesing, 1854)and D. expansa Perrier, 1873, respectively, with the suppression of D. elegans Perrier, 3-2.Trematoda 1873, D. robusta Woodland, 1938, and D. latissima Twelve recorded species were classified into Woodland, 1938, as junior synonyms of D. fimbriata, 10 families: Plagiorchidae Lühe, 1901 (Plagiorchis and similarly D. crassa Woodland, 1938, and D. venusta ; Encyclometridae Mehra, Lühe, 1899 – one sp.) Woodland, 1938, as junior synonyms of D. expansa. 1931 (Encyclometra Baylis et Cannon, 1924 – one Woodland[126]indicated that the critical differences sp.); Philophthalmidae Looss, 1899 (Singhiatrema between these two species, or African and Asian Simha, 1954 – one sp.); Dicrocoeliidae Odhner, 1911 forms, were few except for the shapes of scoleces and (Euparadistomum Tubangui, 1931 – one sp. and the absence or presence of posterior pore openings ; Phaneropsolidae Paradistomum Kossak, 1910 – one sp.) of the bothrial grooves. Current taxonomy follows his Mehra, 1935(Parabascus Looss, 1907 – one sp. and division. Along with the aforementioned D. expansa ; Diplodiscidae Postorchigenes Tubangui, 1928 – one sp.) specimens, Tran[117]reported the collection of‘D. Cohn, 1904 (Diplodiscus Diesing, 1836 – one sp.); fimbriata’from Vietnamese varanids at an incidence Mesocoeliidae Dollfus, 1929(Mesocoelium Odhner, of 16.3%(7/43). Since the basis for the separation 1910 – one sp.); Meristocotylidae Fischthal et Kuntz, between these two species was not shown in the work 1964(Meristocotyle Fischthal et Kuntz, 1964 – one [117],the present study omits this record. sp.); Heterophyidae Leiper, 1909(Haplorchis Looss, The Asian form, i.e. D. expansa, is the type species of the genus. It is commonly found in a variety of 1899 – one sp.); and Echinostomatidae Dietz, 1909 (Testisacculus Bhalerao, 1927 – one sp.) . Asian Varanus spp.(V. bengalensis, V. flavescens, V. komodoensis, V. marmoratus, V. nebulosus, V. nuchalis, 3-2-1.Plagiorchis molini Lent et Freitas, 1946 V. salvator and V. salvadorii) or Iguana sp. and Host and location: Hemidactylus frenatus, intestine Cyclura stejnegeri(Iguanidae)in Indonesia, Thailand, [100] Philippines, China, Malaysia, India, Sri Lanka, Pakistan Locality: Quang Tri Province(30) and Afghanistan[128] . Incidence and intensity: 3.0%(1/33)with 3 worms/ host 3-1-11.Scyphocephalus bisulcatus Riggenbach, 1898 Comment: This plagiorchid species is often found in Syns. Scyphocephalus secundus Tubangui, 1968; lacertid lizards such as sand lizards(Lacerta agilis)and Scyphocephalus longus Sawada et Kugi, 1973 common wall lizards(Podarcis muralis)distributed Host and location: Varanus salvator, small intestine widely in Europe[70, 71]. Okulewicz et al.[95]found ― 40 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO P. molini in a Chinese water dragon(Physignathus Members of the genus have pyriform bodies with a cocincinus)imported into Poland, suggesting that this head-collar with a row of spines, interrupted dorsally species is also distributed in China and Southeast Asia. [61]. A well-developed ventral sucker is located Plagiorchis elegans(Rudolphi, 1802)Braun, 1902, has centrally and the intestinal caeca end at the posterior also been reported from lacertid lizards[131]. margin of the ventral sucker. 3-2-2.Encyclometra colubrimurorum(Rudolphi, 1819) 3-2-4.Euparadistomum varani Tubangui, 1931 Dollfus, 1929 Host and location: Varanus salvator, gall bladder[99] Host and location: Varanus nebulosus and Varanus Locality: Hanoi Province(14) salvator, oesophagus and intestine[99] Incidence and intensity: No information Locality: Hanoi Province(14)and southern Vietnam Comment: This discoid dicrocoeliid species with (not specified) almost full occupation of the body by uterine coils and Incidence and intensity: No information two testes situated symmetrically at anterolateral Comment: Members of the genus Encyclometra are positions to the acetabulum was originally described in trematodes that dwell in the oesophagus, stomach Varanus salvator from the Philippines, then other places and intestine of snakes in Eurasia[116]. Gupta and in Southeast Asia, Pacific Islands and Madagascar[28, Mehrotra[49]differentiated three valid species: E. 44]. In Vietnam, this species was found in the Asian colubrimurorum(testes tandem or obliquely tandem, water monitor(V. salvator)in 2003[99], and more with equal intestinal caeca); E. bungara Srivastava recently in the Asian house shrew(Suncus murinus) et Ghosh, 1968(testes almost symmetrically placed); [80]. and E. asymmetrica Wallace, 1936(testes tandem or obliquely tandem, with very unequal intestinal caeca). 3-2-5.Paradistomum orientalis(Narain et Das, 1929) Bhalerao, 1936 Encyclometra japonica Yoshida et Ozaki, 1929, and E. vitellata Gupta, 1954, were synonymized with E. Syns. Dicrocoelium orientale Narain et Das, 1929; colubrimurorum and E. asymmetrica, respectively[49]. Paradistomoides orientale(Narain et Das, 1929)Yamaguti, Metacercariae of E. colubrimurorum are often found 1958 in amphibians[7]. In Vietnam, this encyclometrid Host and location: Eutropis longicaudata and Hemida- species was found in snakes(Xenopeltis unicolor and ctylus frenatus, gall bladder[83, 85] Xenochrophis piscator), as reported in various snakes Locality: Hanoi Province(14)and Yen Bai Province(5) (Ptyas mucosus, Natrix natrix and Natrix piscator)from . other Eurasian areas[51] Incidence and intensity: No information Comment: This oval dicrocoeliid species is a common trematode in the gall bladder of various lizards including 3-2-3.Singhiatrema vietnamensis Curran et al., 2001 Calotes versicolor and Hemidactylus flaviviridis in India. Host and location: Varanus nebulosus and Varanus Examining C. versicolor in India, Arora and colleagues salvator, oesophagus and intestine[99] [8, 9]found a high prevalence(67/74)of the species Locality: Hanoi Province(14)and southern Vietnam (not specified) in the gall bladder, and from their studies on the intraspecific variations of the specimens concluded Incidence and intensity: No information several described species to be junior synonyms of P. Comment: This species was originally described from orientalis. Studying the monthly population dynamics of the small intestine of Chinese water snakes(Enhydris P. orientalis in C. versicolor in India, Madhavi et al.[76] chinensis)and rice paddy snakes(Enhydris plumbea) reported that the frequency distribution of the fluke in in Vietnam[32]. It also parasitizes other snakes such the host followed the overdispersion pattern and that as the Taiwan cobra(Naja atra), Chinese ratsnake crowding effects serve as a major regulatory force (Ptyas korros)and banded krait(Bungarus fasciatus). for maintaining the equilibrium of parasite densities ― 41 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) throughout the year. Killick and Beverley-Burton nigrovittata, Quasipaa verrucospinosa and Paramesotriton [64]made a taxonomical evaluation of 21 nominal deloustali[86, 110]. The family Diplodiscidae is a small Paradistomum spp. described from Southeast Asian group of paramphistomoids found predominantly in lizards. amphibians, but also in reptiles and fish, and characterized by a single testis and a ventroterminal sucker[53]. 3-2-6.Parabascus lepidotus Looss, 1907 Host and location: Hemidactylus frenatus, intestine [83, 85] 3-2-9.Mesocoelium brevicaecum Ochi, 1930 Syn. Mesocoelium pearsei sensu Pham et Nguyen, 2003 Locality: Hanoi Province(14)and Yen Bai Province(5) Host and location: Varanus nebulosus and Varanus Incidence and intensity: No information salvator, small intestine[82, 99] Comment: This trematode is the type species of the Locality: Hanoi Province(14)and southern Vietnam genus, originally described from Pipistrellus kuhlii(syn. (not specified) Vesperugo kuhlii; Chiroptera: Vespertilionidae)in Cairo, Incidence and intensity: No information Egypt[74]. This Kuhl’s pipistrelle bat is distributed Comment: Pham and Nguyen[99]collected a small- widely around Mediterranean regions (southern sized oval mesocoeliid species from the small intestine Europe and northern Africa)to India, and there are of varanid lizards in Vietnam and identified it as records of this trematode in the regions with the host Mesocoelium pearsei Goto et Ozaki, 1930. Subsequently, distribution. however, Nguyen and Ha[82]reidentified it as M. brevicaecum. This species was originally described 3-2-7.Postorchigenes ovatus Tubangui, 1928 from the small intestine of various amphibians in Japan, Syn. Parabascus ovatus (Tubangui, 1928) sensu such as Bufo japonicus(syn. Bufo vulgaris japonicus), Nguyen et Pham, 2005 , Pelophylax nigromaculatus(syn. Rana nigromaculata) Host and location: Hemidactylus frenatus, intestine Glandirana rugosa (syn. Rana rugosa), Lithobates [83, 85, 96] , Elaphe quadrivirgata catesbeianus(syn. Rana catesbeiana) Locality: Yen Bai Province(5) and Plestiodon latiscutatus(syn. Eumeces latiscutatus) Incidence and intensity: No information . Similarly, the trematode was found in Duttaphrynus [94] Comment: This oval trematode is the type species melanostictus and Hylarana guentheri(syn. Rana guentheri) of the genus, originally described from Hemidactylus . from Vietnam and D. melanostictus from Taiwan[39] frenatus in the Philippines[74, 129].This species is one As too many species in the genus Mesocoelium have of the very common trematodes of geckos in Southeast been described, Dronen et al.[39]recently undertook Asian countries such as Indonesia, Thailand, Vietnam their evaluation based on intensive morphological and Philippines[14, 64, 78]. criteria and consequently proposed synonymies of multiple species. 3-2-8.Diplodiscus mehrai Pande, 1937 Host and location: Varanus salvator, intestine[99] 3-2-10.Meristocotyle provitellaria Liu et al., 2002 Locality: Hanoi Province(14) Syn. Meristocotyle sp. sensu Pham et Nguyen, 2003 Incidence and intensity: No information Host and location: Varanus salvator, small intestine[99] Comment: This species was originally described from Locality: Hanoi Province(14) Euphlyctis cyanophlyctis(syn. Rana cyanophlyctis) Incidence and intensity: No information in India[129], followed by records in various frogs Comment: Fischthal and Kuntz[44]erected a new in India[50]. Similarly in Vietnam, this trematode genus for their new species Meristocotyle varani from was found in various amphibians including Fejervarya Varanus salvator in the Philippines. Trematodes of this limnocharis(syn. Rana limnocharis), Duttaphrynus genus are characterized by the unusual bipartite nature melanostictus (syn. Bufo melanostictus), Hylarana of the ventral sucker; in other words, a horizontally ― 42 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO divided ventral sucker with two lumina. Later, Liu et the Indian spiny-tailed lizard Saara hardwickii(syn. al.[72]described the second species, M. provitellaria, Uromastyx hardwickii)in India[18, 129] . Simha and from the same host species in China. The morphological Deshpande[112]collected a dozen specimens from the characteristics of Meristocotyle sp. from V. salvator in intestine of a single Varanus bengalensis and described Vietnam provided by Pham and Nguyen[99]coincided a new species, namely Artyfechinostomum varanum. well with those of M. provitellaria detailed by Liu et Bhardwaj[19]collected and examined two specimens al.[72] , whereas they were less coincident with those from Varanus bengalensis in Jabalpur, India, and erected of M. varani reported by Fischthal and Kuntz[44]. a new genus and species, Pseudoartyfechinostomum These two studies from the Philippines and China larueiformis. Premvati and Pande[101]synonymized all documented that worms were collected from the lungs described species under the genera Artyfechinostomum, in addition to the intestine. Neoartyfechinostomum and Pseudoartyfechinostomum, and retained only A. malayanum (Leiper, 1911) 3-2-11.Haplorchis pumilio Looss, 1896 Mendheim, 1943. Kostadinova[65]essentially followed Host and location: Varanus nebulosus and Varanus their revision, but elected A. sufrartyfex Lane, 1915 salvator, small intestine[99] (syn. A. malayanum)as the type species of the genus. Locality: Hanoi Province(14)and southern Vietnam (not specified) Based on these interpretations, we decided to replace the name of the parasites‘Testisacculus indicus’ Incidence and intensity: No information collected by Pham and Nguyen[99]with A. sufrartyfex Comment: In Southeast Asia including Vietnam, in this article. human infections with fishborne zoonotic intestinal trematodes have been increasingly reported in the 3-3.Nematoda last two decades, with one of the major causes being Eighteen recorded species were classified into 12 Haplorchis pumilio[123]. This species is common not families: Cosmocercidae Travassos, 1925(Cosmocercoides only in humans but also in mammals, birds and varanid Wilkie, 1930 – one sp.); Strongyloididae Chitwood et lizards through the consumption of raw freshwater McIntosh, 1934(Strongyloides Grassi, 1879 – one sp.); fish[67, 114]. The original description was made using Diaphanocephalidae Travassos, 1920(Kalicephalus Molin, specimens from white pelicans(Pelecanus onocrotalus) 1861 – one sp.); Molineidae(Skrjabin et Schulz, 1937, in Egypt[129]. subfam.)Durette-Desset et Chabaud, 1977(Oswaldocruzia Travassos, 1917 – two spp.); Herpetostrongylidae 3-2-12.Artyfechinostomum sufrartyfex Lane, 1915 (Skrjabin et Schulz, 1937, subfam.)Durette-Desset et Syns. Testisacculus indicus Bhalerao, 1931; Artyfechino- Chabaud, 1981(Herpetostrongylus Baylis, 1931 – one stomum varanum Simha et Deshpande, 1964; Testisacculus ; Ascaridida, Ascaridoidea(Raillietascaris Sprent, sp.) indicus sensu Pham et Nguyen, 2003 1985 – one sp.);Gnathostomatidae Railliet, 1895(Tanqua Host and location: Varanus nebulosus, small intestine von Linstow, 1897– one sp.); Heterakidae Railliet et [99] Henry, 1914(Meteterakis Karve, 1930 – two spp. and Locality: Southern Vietnam(not specified) Strongyluris Müller, 1894 – one sp.); Diplotriaenidae Incidence and intensity: No information (Skrjabin, 1916, subfam.)Anderson, 1958(Hastospiculum Comment: Echinostomatid trematodes of the genus Skrjabin, 1923 – one sp.) ; Onchocercidae Leiper, Artyfechinostomum Lane, 1915(syn. Testisacculus ; 1911(Piratuboides Bain et Sulahian, 1974 – one sp.) Bhalerao, 1927)are characterized by a spinose tegument Pharyngodonidae Travassos, 1919 (Spauligodon with very large scale-like spines comparable in size to Skrjabin, Schikhobalova et Lagodovskaja, 1960 – collar-spines, dorsal collar-spines in double rows, and two spp.; Pharyngodon Diesing, 1861– one sp.; and deeply branched testes[65].The species was originally Thelandros Wedl, 1862 – one sp.); and Physalopteridae described using specimens from the duodenum of Railliet, 1893(Abbreviata Travassos, 1919 – one sp.) . ― 43 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) 3-3-1.Cosmocercoides tonkinensis Tran et al., 2015 the Neotropical region. Zhang et al.[132]reported Host and location: Acanthosaura lepidogaster, large two Kalicephalus spp., i.e. K. guangdongensis and K. intestine[120] schadi fotedari, from the intestine of Varanus salvator Locality: Cao Bang(8), Son La(4) , Bac Giang(17), from Guangdong Wildlife Rescue Centre, Guangdong Thanh Hoa(26)Provinces Province, South China, although these two species Incidence and intensity: 31.3%(10/32)with 1–29 resembled each other except for spicule length and (geomean 4.1)worms/host other morphometric values, and length and position Comment: Currently, ca. 20 species of the genus with of the externodorsal ray. As the measurements and caudal rosette papillae, not combined with plectanes, drawings provided by Nguyen[87]are not sufficient have been described mainly in amphibians worldwide. to determine the species, in this article we describe The morphology of this species was well characterized the species from clouded monitors in Vietnam as using both light and scanning electron microscopies. Kalicephalus sp. Re-examination of the specimens in The phylogenetic relationships with related species the future should yield a more precise identification. In with available genetic data(Cosmocercoides pulcher addition, Kalicephalus(Kalicephalus)costatus indicus and Cosmocercoides dukae)were also reported[120]. Ortlepp, 1923, from Varanus bengalensis in India, K. This is the third species from lizard hosts after C. (K.)megacephalus Schad, 1962, from Varanus indicus variabilis in North America and C. sauria in Brazil[10, in India and V. salvator in the Philippines, and K.(K.) 23, 47]. schadi Ogden, 1966, from V. bengalensis in India or Sri . Lanka(London Zoo)have been recorded[12] 3-3-2.Strongyloides mirzai Singh, 1954 Furthermore, a variety of Kalicephalus spp. has also Host and location: Varanus nebulosus, intestine[87] been recorded from snakes in Southeast and South Locality: Vietnam(not specified) Asia[66, 73, 77, 102, 108, 130]. Le and Pham[69], and Incidence and intensity: No information Oshmarin and Demshin[96]recorded the following Comment: This species was originally described Kalicephalus spp. from snakes in Vietnam: K. alatospiculus using specimens from Indian sand boas(Eryx johnii) from Chinese ratsnakes Ptyas korros(syn. Zamenis and Oriental ratsnakes(Ptyas mucosa)in India[113]. korros), K. viperae chungkingensis from Indian cobras Likewise in Vietnam, the species was found in a Naja naja, K. indicus from Chinese ratsnakes and radiated variety of snakes such as Chinese cobra(Naja atra), ratsnakes Coelognathus radiata(syn. Elaphe radiata), many-banded krait(Bungarus multicinctus), banded K. bungari (syn. K. najae after [12, 108]) from krait(Bungarus fasciatus)and Chinese ratsnake(Ptyas Indian cobras, K. natricis from Sri Lankan keelbacks korros) [86]. Xenochrophis asperrimus(syn. Natrix piscator)and Kalicephalus sp. from banded kraits Bungarus fasciatus. 3-3-3.Kalicephalus sp. Kalicephalus natricis Yamaguti, 1935, originally from Syn. Kalicephalus macrovulvus sensu Nguyen, 2002, Rhabdophis tigrinus(syn. Natrix tigrina)and Elaphe nec Caballero, 1954 quadrivirgata in Japan, is considered to be a‘species Host and location: Varanus nebulosus, oesophagus[87] inquirenda’,since multiple species, probably K. costatus Locality: Vietnam(not specified) indicus, K. brachycephalus, K. sinensis or K. viperae Incidence and intensity: No information chungkingensis, were described under the name‘K. Comment: Nguyen [87]recorded Kalicephalus [12, 108]. natricis’ nematodes from the oesophagus of clouded monitors (Varanus nebulosus)in Vietnam as K. macrovulvus 3-3-4.Oswaldocruzia sp. 1 Caballero, 1954, originally isolated from Agkistrodon Syn. Oswaldocruzia agamae sensu Nguyen et Bui, 2007 bilineatus in Guatemala. Schad[108]reclassified the Host and location: Hemidactylus frenatus and Eutropis species as K. inermis macrovulvus distributed in longicaudata, intestine[85, 88] ― 44 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO Locality: Hanoi Province(14)and Yen Bai Province(5) Incidence and intensity: No information Incidence and intensity: No information Comment: Although the specific name‘Herpeto- Comment: Nominal species of the genus Oswaldocruzia strongylus varani’assigned by Nguyen[87]to the are currently more than 80 in number[17, 48, 106]. herpetostrongylid nematodes from clouded monitors Ben Slimane et al.[17]attempted to subdivide the in Vietnam is retained in this article, an exact specific genus into five groups based on the disposition of the identification is required in the future. At this time, we caudal bursal rays, the morphology of the synlophe are unable to ascertain the exact taxonomy of the present and the anatomy of the spicules: 1)Oriento-Ethiopian specimens due to Nguyen’s measurements and drawings species, 10 spp.; 2)Neo-Ethiopian species, 11 spp.; 3) [87]being insufficient for species determination. For Holarctic species, 24 spp.; 4)Continental Neotropical reasons outlined in the next paragraph, it is particularly species, 21 spp.; and 5)Caribbean Neotropical species, important to evaluate its possible classification in the 8 spp. From Vietnam, O. mitunagai Durette-Desset, genus Vaucherus Durette-Desset, 1980. Nasher et Ben Slimane, 1992, and O. hoepplii Hsü, 1935, Herpetostrongylus varani Baylis, 1931, was originally both from D. melanostictus and Ranidae, were noted in recorded from Gould’s monitors(Varanus gouldii)in the identification key of this comprehensive taxonomic Townsville, North Queensland, Australia[16]. At the study by Ben Slimane et al.[17] . Oswaldocruzia hoepplii same time, another species, Herpetostrongylus pythonis sensu Moravec et Sey, 1985, nec Hsü, 1935, was considered Baylis, 1931, was described from Morelia spilota(syn. to be a junior synonym of O. mitunagai(the renamed , and later recorded Python spilotes)in Australia[16] species of O. hoepplii sensu Yamaguti et Mitunaga, in Varanus salvator from Palawan, Philippines[109]. 1943, nec Hsü, 1935). Following the systematics of Ben Durette-Desset[41]erected a new genus, Vaucherus, Slimane et al.[17], O. agamae Sandground, 1930, is a for three herpetostrongylid nematode species from parasite of agamid lizards distributed in Liberia. As the Indian and Asian varanid hosts: V. vaucheri Durette- measurements and drawings provided by Nguyen and Desset, 1980, from Varanus rudicollis in Kuala Lumpur, Bui[88]are not sufficient to determine the species, Malaysia; V. leiperi(Sharief, 1957)Durette-Desset, in this article we describe the species from geckos in 1980, from Varanus indicus in Hyderabad, India; and V. Vietnam as Oswaldocruzia sp. Re-examination of the indicus(Deshmukh, 1969)Durette-Desset, 1980, from specimens in the future should yield a more precise Varanus indicus in Aurangabad, India. Durette-Desset identification. et al.[42]differentiated the genus Vaucherus from the genus Herpetostrongylus based on differences in 3-3-5.Oswaldocruzia sp. 2 bursal ray arrangements; 2-2-1 type with hypertrophied Host and location: Varanus salvator and Varanus ray 2, and 1-3-1 type with rays 2 and 3 more strongly nebulosus, intestine[87] developed than 5 and 6, respectively. Locality: Vietnam(not specified) 3-3-7.Raillietascaris varani(Baylis et Daubney, 1922) Incidence and intensity: No information Sprent, 1985 Comment: This species was differentiated from the former species based on multiple morphological Syns. Amplicaecum varani Baylis et Daubney, 1922; features, e.g. different development of caudal bursa and Amplicaecum monitor Khera, 1954; Amplicaecum rays, different morphology of spicules and different egg iguaneae Wahid, 1961 dimensions(0.07–0.10 mm by 0.05–0.06 mm vs. 0.06–0.07 Host and location: Varanus salvator and Varanus . mm by 0.03–0.04 mm, respectively) nebulosus, stomach and intestine[87] Locality: Vietnam(not specified) 3-3-6.‘Herpetostrongylus varani’sensu Nguyen, 2002 Incidence and intensity: No information Host and location: Varanus nebulosus, intestine[87] Comment: This species was originally described Locality: Vietnam(not specified) as Amplicaecum varani using specimens from the ― 45 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) intestine of Varanus salvator in Calcutta, India, and 3-3-10.Meteterakis mabuyae Chakravarty, 1944 several different species from Indian varanids were Host and location: Eutropis longicaudata, intestine recorded in the decades that followed[130] . Sprent [115]erected a new genus, Raillietascaris, and unified [85, 88] Locality: Hanoi Province(14)and Yen Bai Province(5) such species from varanids as junior synonyms of R. Incidence and intensity: No information varani(Baylis et Daubney, 1922).This species was also Comment: This was the fourth species recorded recorded from Varanus rudicollis in Borneo, Indonesia, in Vietnam after M. striatura, M. japonica and M. and imported Chinese water dragons in Poland[35, 95, varani. In addition, at least two Meteterakis spp. were . 107] detected in the large intestine of scale-bellied tree lizards, Acanthosaura lepidogaster, in Vietnam. Specific 3-3-8.Tanqua tiara(von Linstow, 1879)Blanchard, 1904 identification of these species is currently in progress . (unpublished) Host and location: Varanus salvator, stomach[87] Locality: Vietnam(not specified) 3-3-11.Strongyluris calotis Baylis et Daubney, 1923 Incidence and intensity: No information Syns. Ascaridia japalurae Yamaguti et Mitunaga, Comment: This species was originally described 1935; Strongyluris brevicaudata sensu Hsü et Hoeppli, using specimens from the stomach of varanid lizards in 1931, nec Müller, 1894 South Africa. It was subsequently isolated from Varanus Host and location: Pseudocalotes brevipes and Calotes salvator in Sumatra, Varanus gouldii in Australia or emma, large intestine[122] New Guinea, Varanus bengalensis in Sri Lanka and Locality: Phu Tho Province (12) and Bac Kan Varanus niloticus in the White Nile [15, 29, 130]. Province(7) Gibbons and Keymer[45]redescribed the species in Incidence and intensity: 57.1% (4/7) with 1–6 detail, along with a list of previous records of T. tiara worms/host(P. brevipes) ; 16.7%(1/6)with no intensity from varanids in Africa through to Asia. Phylogenetic information(C. emma) analyses of geographical isolates distributed widely Comment: This species is distributed widely in agamid would be very interesting. lizards from the Oriental region. Tran et al.[122] confirmed for the first time the distribution of the 3-3-9.Meteterakis varani(Maplestone, 1931)Skrjabin et al., 1961 species in Vietnam. Furthermore, their morphological studies of two isolates from P. brevipes and C. emma Host and location: Varanus nebulosus, intestine[87] in Vietnam demonstrated differences in numbers and Locality: Vietnam(not specified) arrangements of caudal papillae. However, in combination Incidence and intensity: No information with genetic characterization, their conspecificity was Comment: The genus Meteterakis Karve, 1930, . There are at least four nominal shown[121, 122] currently contains 25 nominal species from Oriental Strongyluris spp. in agamid lizards in the Oriental amphibians and reptiles. In Vietnam, Meteterakis region: S. chamaeleonis Baylis et Daubney, 1922; S. striatura(Oshmarin et Demshin, 1972)from yellow pond bengalensis Chakravorty, 1936; S. karawirensis Karve, turtle Mauremys mutica(syn. Clemmys mutica)and 1938; and S. japalurae Jiang et Lin, 1980. As there Meteterakis japonica(Wilkie, 1930)from a yellowcheek are few critical morphological differences among (Elopichthys bambusa)have been recorded[79, 96], these described species, they need to be genetically although the latter record was considered to be an characterized to confirm the validity of their taxonomy. accidental infection[79]. Meteterakis varani was the third Meteterakis species recorded in Vietnam. 3-3-12.Hastospiculum varani Skrjabin, 1923 Host and location: Varanus nebulosus, body cavity[87] Locality: Vietnam(not specified) ― 46 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO Incidence and intensity: No information information(Gia Lai Province) Comment: There are five Hastospiculum spp. recorded Comment: Currently, 51 species have been described from varanid lizards[20, 130] : H. varani Skrjabin, worldwide in the genus Spauligodon Skrjabin, 1923, from Varanus griseus in Turkistan and Varanus Schikhobalova et Lagodovskaja, 1960[27]. Spauligodon indicus in India; H. bipinnatum von Linstow, 1899, vietnamensis recorded in golden geckos from Vietnam from Varanus griseus(syn. Psammosaurus griseus)in was the 44th species assigned to the genus[119]. northeastern Africa; H. macrophallos Parona, 1889, or Golden geckos (Gekko badenii) have a limited its junior synonym H. spinigerum Chandler, 1929, from distribution in the high mountains of central and Varanus spp. in Myanmar, India and Russia; H. gouldi southern Vietnam, i.e. Tay Ninh, Kon Tum and Gia Lai Yorke et Maplestone, 1926, from Varanus gouldii in Provinces[34, 92]. As two scientific names for golden Australia; and H. spiralis Bolette, 1998, from Varanus geckos, G. badenii and G. ulikovskii, were published indicus in Indonesia. As the record in Vietnam was independently in different scientific journals on 15 May , based on a single male specimen from the host[87] and 15 June, 1994, respectively, the former scientific more specimens need to be examined for an accurate name has priority. identification of the species. 3-3-15.Skrjabinodon azerbajdzanicus(Sharpio, 1974) 3-3-13.Piratuboides varanicola(Mackerras, 1962) Bain et Sulahian, 1974 Bursey et Goldberg, 1999 Syn. Spauligodon azerbajdzanicus Sharpio, 1974 Syn. Piratuba varanicola Mackerras, 1962 Host and location: Hemidactylus frenatus, intestine Host and location: Varanus nebulosus, lungs[87] [85, 88] Locality: Vietnam(not specified) Locality: Hanoi Province(14)and Yen Bai Province(5) Incidence and intensity: No information Incidence and intensity: No information Comment: Mackerras[75]described two onchocercid Comment: The species was originally described filariae of the subfamily Oswaldofilariinae in Australian from the green-bellied lizard Darevskia chlorogaster varanid lizards and newly named them as Piratuba (syn. Lacerta chlorogaster)(Sauria: Lacertidae)in queenslandensis and Piratuba varanicola. Bain and Azerbaijan. Referring to the absence of caudal alae in Sulahian[11]moved them from the genus Piratuba the description of‘Spauligodon azerbajdzanicus’by (equal spicules in size and shape, a short and simple Sharpio[111], Bursey and Goldberg[24]reassigned ovejector, and numerous caudal papillae)to a new the species as Skrjabinodon azerbajdzanicus. genus, Piratuboides, characterized as having subequal spicules, a long but simple ovejector, and a smooth 3-3-16.Pharyngodon duci Tran et al., 2007 female tail or one with small terminal elevations. The Host and location: Gekko badenii, large intestine[119] type species of the genus is Piratuboides zeae(Bain, Locality: Gia Lai Province(36)and Tay Ninh Province 1974)from skinks of Scincidae in Central America, (46) and Piratuboides huambensis was described from blue- Incidence and intensity: 90.0%(9/10)with no intensity tailed skink Trachylepis quinquetaeniata(syn. Mabuya information(Gia Lai Province) quinquetaeniata)in Angola[97]. Comment: As with the genera Spauligodon Skrjabin, Schikhobalova et Lagodovskaja, 1960, and Skrjabinodon 3-3-14.Spauligodon vietnamensis Tran et al. 2007 , the genus Pharyngodon Diesing, 1861, Inglis, 1968[98] Host and location: Gekko badenii (syn. Gekko is confined to reptile and amphibian hosts. Although ulikovskii) , large intestine[119] members of these three genera resemble each other, Locality: Gia Lai Province(36)and Tay Ninh Province major differences lie in the presence(Pharyngodon and (46) Spauligodon)or absence(Skrjabinodon)of caudal alae. Incidence and intensity: 90.0%(9/10)with no intensity Caudal alae of Pharyngodon spp. are supported by all ― 47 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) three pairs of genital papillae, whereas those of Spauligodon 3-4.Acanthocephala spp. are supported by the two anterior pairs only. The N g u y e n [ 8 9 ]r e c e n t l y p r o v i d e d a l i s t o f 7 6 genus Pharyngodon currently contains 37 species, of acanthocephalan species recorded in Vietnam up to the which five were recorded from amphibians[25, 26, year 2015. This list comprised 13 spp. from freshwater 43]. Pharyngodon duci recorded in golden geckos from fish, 21 spp. from marine fish, three spp. from amphibians, Vietnam was the 35th species assigned to the genus five spp. from reptiles, 29 spp. from birds and five spp. [119]. from mammals. One recorded species in Vietnamese lizards was classified in the family Echinorhynchidae 3-3-17.Thelandros vietnamensis Bui et al., 2009 Cobbold, 1876(Pseudoacanthocephalus Petrochenko, Host and location: Leiolepis reevesii, intestine[22] 1956). Locality: Ha Tinh Province(28) Incidence and intensity: 85.0% (17/20) with an 3-4-1.Pseudoacanthocephalus nguyenthileae Amin et al., 2008 average of 25.8 worms/host Comment: The genus Thelandros is closely related Syn. Acanthocephalus sp. sensu Nguyen et al., 2005 to the aforementioned pharyngodonid genera. Parasites Host and location: Hemidactylus frenatus, small of this genus have three, sometimes four, pairs of intestine[6, 85] genital papillae clearly separated into an anterior Locality: Bac Kan Province(7) group(two pairs)around the cloaca and one posterior Incidence and intensity: 4.0%(1/25)with 2 worms/ pair. There is often a fringed membrane covering the host cloaca[98]. Petter and Quentin[98]synonymized Comment: This species was dedicated to Prof. Nguyen Parapharyngodon Chatterji, 1933, with Thelandros Thi Le, a parasitologist of IEBR, VAST[6]. It was Wedl, 1862, but Bursey and Goldberg[25]disagreed also found in amphibians and other reptiles in northern with this view based on several morphological Vietnam, i.e. Hylarana guentheri, Hylarana taipehensis, differences. According to Bursey and Goldberg[25], 31 Duttaphrynus melanostictus, Quasipaa verrucospinosa species are currently assigned to the genus Thelandros, (syn. Paa verrucospinosa) , Polypedates mutus and Naja with only two being described from the Oriental . Amin et al.[6]provided an identification atra[6, 89] region. In the case of the genus Parapharyngodon, 41 key for 11 valid Pseudoacanthocephalus spp. in the species are assigned, with five being described from world. the Oriental region. After Bursey and Goldberg’s 2005 article [25], T. vietnamensis recorded in Reeves’ 3-5.Arthropoda butterfly lizard(L. reevesii)from Vietnam has become The subclass Pentastomida Diesing, 1836(phylum the 32nd(and 3rd Oriental)species assigned to the Arthropoda: subphylum Crustacea: class Maxillopoda genus[22]. Dahl, 1956)is commonly known as tongue worms, parasitizing the respiratory tracts of vertebrates[5, 3-3-18.Abbreviata deschiensi Le et Nguyen, 1966 105]. It is divided into four orders: Cephalobaenida Host and location: Calotes versicolor, stomach[68] Heymons, 1935(one family); Porocephalida Heymons, Locality: Binh Thuan Province(43) 1935 (four families); Raillietiellida Almeida et Incidence and intensity: No information Christoffersen, 1999(one family); and Reighardiida Comment: The physalopterid genus Abbreviata Almeida et Christoffersen, 1999(one family). The Travassos, 1920, has an internolateral tooth and worms have a segmented body covered by a chitinous externolateral tooth, and two double pairs of submedian cuticle and the anterior end bears five appendages, i.e. teeth on each pseudolabium[29]. Multiple Abbreviata one mouth and two pairs of hooks for attachment to spp. have been recorded in varanid lizards and snakes the host. [54-59]. Three recorded pentastomid species from Vietnamese ― 48 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO lizards were classified in Raillietiellidae Sambon, 1922 (Raillietiella Sambon, 1910) . hosts of Colubridae, Elapidae, Viperidae and Boidae in Southeast Asia, India, Philippines, Taiwan, Japan and China[3, 4, 30]. Kelehear et al.[63]reported 3-5-1.Raillietiella frenatus Ali, Riley et Self, 1981 high prevalences of this Asian pentastomid species Host and location: Hemidactylus frenatus, lungs[2, 85] in wild snakes native to the Australian tropics such Locality: Hanoi(14), Yen Bai(5), Tuyen Quang(6), as Tropidonophis mairii(Colubridae), Acanthophis Bac Kan(7)Provinces and southern Vietnam(not praelongus(Elapidae) , Demansia vestigiata(Elapidae) specified) and Liasis fuscus(Pythonidae) . They considered these Incidence and intensity: 30.9%(46/149)with 1–14 records as a recent translocation of alien parasites via worms/host an unknown pathway. In Vietnam, R. orientalis causes Comment: Members of the genus Raillietiella are outbreaks of serious infection in farmed snakes such parasites in the respiratory tract of carnivorous lizards. as Naja naja and Ptyas mucosus. Dang[33]conducted This species was recorded from H. frenatus in Malaysia, epidemiological surveys of R. orientalis in Indian cobras Thailand, Vietnam, Indonesia, Philippines and Taiwan, (Naja naja)and Asian common toads(Duttaphrynus Japalura swinhonis and Eutropis longicaudata in Taiwan melanostictus) in the field of Vietnam and found [1, 2, 78],and Hemidactylus platyurus(syn. Cosymbotus infections at an incidence of 39.6%(44/111)with an platyurus)and Gehyra mutilata in Indonesia[1, 78]. average intensity of 6.2 worms/snake(range 1–50) Barton[13]reported R. frenatus from invasive Asian and 0.4%(2/500)with 3 worms/toad, respectively. house geckos(H. frenatus)as well as native geckos, Furthermore, he demonstrated a direct life cycle of Gehyra australis, in northern Australia, suggesting the this pentastomid species by an experimental infection. possible spread of alien parasites through introduced Nguyen et al.[84]recorded the species from two hosts. Furthermore, Kelehear et al.[63]collected R. varanid species in Vietnam; however, no detailed frenatus not only from invasive Asian house geckos(H. description was given. In addition, they reported the frenatus)but also from invasive cane toads(Rhinella recovery of possibly another pentastomid species in marina)and native tree frogs(Litoria caerulea)in these two varanid species. tropical Australia. Riley et al.[105]and Goldberg and Bursey[46]reported a similar problem, i.e. the 3-5-3.Raillietiella affinis Bovien, 1927 invasion of alien parasites through introduced hosts, in Host and location: Eutropis longicaudata, lungs[85] Texas and Hawaii, respectively. Locality: Hanoi(14), Yen Bai(5), Tuyen Quang(6) , Kelehear et al.[62]emphasized the importance Bac Kan(7)Provinces of molecular analyses of pentastomes in addition to Incidence and intensity: 30.9%(46/149)with 1–14 morphological characterization for valid descriptions worms/host of new species, because often the same species adopts Comment: This species was first collected from the different morphological phenotypes of taxonomic lungs of Gekko gecko(syn. Gekko verticillatus)in Java, importance in different host species. Indonesia, then noted in geckos and skinks from Egypt, Sudan or Hawaii[30]. As an invasive species, Dervin 3-5-2.Raillietiella orientalis(Hett, 1915)Sambon, et al.[38]reported R. affinis from the Madagascar 1922 giant day gecko, Phelsuma grandis. Human cases of R. Host and location: Varanus salvator and Varanus affinis infection are also known. nebulosus, lungs[84] In Vietnam, Nguyen et al.[85]recorded a parasitism Locality: Vietnam(not specified) of the same gecko species with possibly another Incidence and intensity: 12.8%(2/20 V. salvator and Raillietiella sp., different from R. frenatus and R. 3/19 V. nebulosus)with no intensity information affinis. Comment: This species has a wide spectrum of snake ― 49 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) to other scientists for future research. As mentioned 4.DISCUSSION above, Kelehear et al.[62]emphasized the taxonomic In this article, we present a list of 45 species of importance of molecular analyses of pentastomes endoparasite of Vietnamese lizards. Specifically, 11 in addition to morphological characterization for cestode, 12 trematode, 18 nematode, one acanthocephalan accurate species differentiation. Furthermore, recent and three pentastomid species have been recorded worldwide spreads of invasive parasites accompanying from 10 host species. As shown in Table 1, the majority hosts beyond geographical borders make molecular of endoparasite species(55.6%, i.e. 25/45)was recorded characterization of isolated parasites a key technology from two varanid lizards, V. nebulosus and V. salvator. in understanding their exact taxonomic situation, i.e. These lizard species are widely endemic in Vietnam invasive species or native species. as well as other Southeast and South Asian countries At the beginning of this review, we highlighted the such as Myanmar, Laos, Thailand, Cambodia, Malaysia rich herpetofauna diversity of Vietnam(385 reptiles and Indonesia for the former species, and India, Sri and 181 amphibians) . However, only a fraction of Lanka, Bangladesh, South China, Myanmar, Laos, the parasites of reptiles has been recorded in this Thailand, Cambodia, Malaysia, Singapore, Indonesia richly biodiverse territory. Additionally, most of the and Philippines for the latter species[92]. Table 1 also specimens recorded in the past are no longer available. shows that 14 of the 45 endoparasite species(31.1%) Parasitological surveys, if actually possible, on multiple were detected in two gecko species, Hemidactylus lizard hosts in a territory with rich herpetofauna frenatus and Eutropis longicaudata(149 and 38 geckos diversity may disclose the ecological relationships . The remaining six endoparasite examined, respectively) among different categories of host lizards in Vietnam species(13.3%)were nematodes described from five or clarify the taxonomic relationship of parasites from agamid species and one gecko species. The reports Vietnamese lizards with those from lizards of other on these six endoparasite species include five new neighbouring or remote regions. In this sense, it is species descriptions, concentrating on one or two again recommended that parasites are characterized targeted parasite(s). Therefore, it would appear that both morphologically and genetically. rather than these lizard host species having only Research on parasite diversity in Vietnam, as having a few endoparasites, more parasites remain to be been conducted as large-scale surveys in the country, recorded from them. Indeed, we collected at least two exclusively used a classical descriptional approach on Meteterakis spp. from scale-bellied tree lizards, but due parasites based on morphological criteria. With this to difficulties with taxonomic differentiation, specific approach, it is often difficult to evaluate morphological identification has yet to be completed. variation, as having been experienced in many categories Except for two species, Cosmocercoides tonkinensis of parasites. Consequently, more recent parasitological and Strongyluris calotis from agamid lizards, no research has applied molecular genetic technologies molecular analyses accompanied the taxonomical to surveys and parasite characterization, enabling characterization of collected parasites [120, 122]. synonymization of morphological variants or detection Strongyluris calotis collected from two different agamid of cryptic species with an identical morphological species showed two morphotypes with different numbers manifestation. Furthermore, with the latest taxonomic or arrangements of caudal papillae, which are believed approaches, we can determine the phylogenetic position to be of taxonomic importance to separate Strongyluris of observed parasites or evolutional relationships with species [121, 122]. When the geographical and/or related taxa. Usability of these advanced molecular ecological isolation of host species are distinct and approaches is dependent on the calibre of the background multiple morphotypes of parasites from them are noted, genetic data of the targeted species as well as related molecular characterization of parasites can support species. In contrast to parasites of medical and veterinary our specific differentiation or leave invaluable clues importance, the depository of molecular genetic data ― 50 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO of lizard or amphibian parasites is sparse at present. genus Raillietiella Sambon, 1910 with a description General interest in the biodiversity of local nature or of a new species. Syst. Parasitol. 7:111-123. worldwide spread of invasive parasites via translocation 5. Almeida, W. O., Christoffersen, M. L., Amorim, D. S., of vertebrates beyond natural borders may enhance Amorim, D. S. and Eloy, E. C. C. 2008. Morphological our particular understanding of all organisms including support for the phylogenetic positioning of parasites. We are still a long way from disclosing the Pentastomida and related fossils. Biotemas 21:81- full repertoire of endoparasite fauna of lizards from 90. Vietnam. 6. Amin, O. M., Nguyen, V. H. and Heckmann, R. A. 2008. New and already known acanthocephalans from amphibians and reptiles in Vietnam, with keys ACKNOWLEDGEMENT to species of Pseudoacanthocephalus Petrochenko, This study was supported in part by a Grant-in-Aid 1956(Echinorhynchidae)and Sphaerechinorhynchus for International Collaboration Research in Asia 2016 Johnston and Deland, 1929(Plagiorhychidae). J. from the Heiwa Nakajima Foundation and also by JSPS Parasitol. 94:181-189. KAKENHI Grant Number 26291080. We are greatly 7. Amin, O. M., Düşen, S. and Oğuz, M. C. 2012. Review indebted to Prof. Hideo Hasegawa(Oita University, of the helminth parasites of Turkish anurans Japan), Prof. Yuzaburo Oku (Tottori University, (Amphibia) . Sci. Parasitol. 13:1-16. Japan)and Dr. Kayoko Matsuo(Gifu Prefectural Office, 8. Arora, S. and Agarwal, S. M. 1960. Studies on some Japan)for their helpful discussions and encouragement intra-specific variations in Paradistomum orientalis regarding the present work. We would also like to thank Narain and Das collected from the gall-bladder of Seiho Sakaguchi, Laboratory of Veterinary Parasitology, Calotes versicolor Daud: Part I.(Dicrocoeliidae: Yamaguchi University, Japan, for preparing the Trematoda).Bull. Zool. Soc. India 3:43-52. illustrations for the figures. 9. Arora, S., Agarwal, M. M. and Agarwal, S. M. 1962. Studies on some intra-specific variations in Paradistomum orientalis Narain and Das collected REFERENCES from the liver and intestine of Calotes versicolor 1. Ali, J. H. and Riley, J. 1983. Experimental life- Daud: Part Ⅱ.(Dicrocoeliidae: Trematoda). Indian cycle studies of Raillietiella gehyrae Bovien, 1927 J. Helminthol. 14:5-15. and Raillietiella frenatus Ali, Riley & Self, 1981: 10. Ávila, R. W., Strüssmann, C. and Da Silva, R. J. pentastomid parasites of geckos utilizing insects as 2010. A new species of Cosmocercoides(Nematoda: intermediate hosts. Parasitology 86:147-160. Cosmocercidae)from a gymnophthalmid lizard of 2. Ali, J. H., Riley, J. and Self, J. T. 1981. A revision western Brazil. J. Parasitol. 96:558-560. of the taxonomy of the blunt-hooked Raillietiella, 11. Bain, O. and Sulahian, A. 1974. Trois nouvelles pentastomid parasites of African, South-East-Asian Filaires du Oswaldofilaria chez des Lézards sud- and Indonesian lizards, with a description of a new américains; essai de classification des Oswaldofilariinae. species. Syst. Parasitol. 3:193-207. e Bull. Mus. Natul. Hist. Nat. Paris, 3 sér. 1 156: 827-841. 3. Ali, J. H., Riley, J. and Self, J. T. 1982. A revision of the taxonomy of Raillietiella boulengeri(Vaney & 12. Baker, M. R. 1987. Synopsis of the Nematoda Sambon, 1910)Sambon 1910, R. orientalis(Hett, parasitic in amphibians and reptiles. Memorial 1915)Sambon, 1922 and R. agcoi Tubangui & University of Newfoundland, Occasional Papers in Masiluñgan, 1956(Pentastomida: Cephalobaenida). Biology 11:1-325. 13. Barton, D. P. 2007. Pentastomid parasites of the Syst. Parasitol. 4:285-310. 4. Ali, J. H., Riley, J. and Self, J. T. 1985. A review of introduced Asian house gecko, Hemidactylus frenatus the taxonomy and systematics of the pentastomid (Gekkonidae), in Australia. Comp. Parasitol. 74: ― 51 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) 254-259. 24. Bursey, C. R. and Goldberg, S. R. 1999. Spauligodon 14. Barton, D. P. 2015. Helminth parasites of the ovifilus n. sp.(Nematoda: Pharyngodonidae)and introduced Asian house gecko (Hemidactylus other helminths from Diplodactylus stenodactylus frenatus) (Gekkonidae), in the northern territory, (Reptilia: Gekkonidae)from Australia. J. Parasitol. Australia. North. Territ. Nat. 26:44-55. 85:898-902. 15. Baylis, H. A. 1916. XIX.—The nematode genus 25. Bursey, C. R. and Goldberg, S. R. 2005. Two new Tanqua, R. Blanchard. Ann. Mag. Nat. Hist., ser. 8 species of Pharyngodonidae(Nematoda: Oxyuroidea) 17:223-232. and other nematodes in Agama caudospina(Squamata: 16. Baylis, H. A. 1931. Two more new Trichostrongylid Agamidae)from Kenya, Africa. J. Parasitol. 91: nematodes from Queensland. Ann. Mag. Nat. Hist., ser. 10 7:500-507. 591-599. 26. Bursey, C. R., Goldberg, S. R. and Kraus, F. 2008. 17. Ben Slimane, B., Chabaud, A. G. and Durette-Desset, A new species of Pharyngodon (Nematoda, M.-C. 1996. Les Nématodes Trichostrongylina Pharyngodonidae) and other helminths in parasites d’Amphibiens et de Reptiles: problèmes Cyrtodactylus louisiadensis(Sauria, Gekkonidae) taxonomiques, phylétiques et biogéographiques. from Papua New Guinea. Acta Parasitol. 53:41-45. Syst. Parasitol. 35:179-206. 27. Bursey, C. R., Goldberg, S. R. and Grismer, L. L. 18. Bhalerao, G. D. 1931. Two new trematodes from 2014. A new species of Spauligodon(Nematoda: reptiles: Paryphostomum indicum n. sp. and Oxyuroidea: Pharyngodonidae)in Cyrtodactylus Stunkardia dilymphosa n. g., n. sp. Parasitology bintangrendah(Sauria: Gekkonidae)from peninsular 23:99-108. Malaysia. J. Parasitol. 100:317-322. 19. Bhardwaj, O. N. 1963. Morphological studies 28. Capron, A., Deblock, S. and Brygoo, E. R. 1961. and taxonomic discussion of a new trematode Miscellanea helminthological madagascariensis. Pseudoartyfechinostomum larueiformis n. g., n. sp. Trématodes de caméléons de Madagascar. Arch. . Proc. Nat. Acad. (Trematoda: Echinostomatidae) Sci. India, Sect. B. 33:303-313. Inst. Pasteur Madagascar 29:1-71. 29. Chabaud, A. G. 2009. Spirurida: Camallanoidea, 20. Bolette, D. P. 1998. Hastrospiculum spiralis n. sp. Dracunculoidea, Gnathostomatoidea, Physalopteroidea, (Nematoda: Diplotriaenoidea: Dicheilonematinae), Rictularoidea and Thelazioidea. pp.334-360. In: Keys from an Indonesian mangrove monitor, Varanus to the nematode parasites of vertebrates; archival indicus(Reptilia: Sauria: Varanidae). J. Parasitol. volume (Anderson, R. C., Chabaud, A. G. and 84:366-369. Willmott, S. eds.) , CAB International, Oxfordshire, 21. Bray, R. A., Jones, A.and Andersen, K. I. 1994. UK. Order Pseudophyllidea Carus, 1863. pp.205-247. 30. Christoffersen, M. L. and de Assis, J. E. 2013. A In: Keys to the Cestode Parasites of Vertebrates systematic monograph of the recent Pentastomida, (Khalil, L. F., Jones, A. and Bray, R. A. eds.) , CAB with a compilation of their host. Zool. Med. Leiden International, Oxfordshire, UK. 87:1-206. 22. Bui, T. D., Bursey, C. R. and Goldberg, S. R. 31. Criscione, C. D. and Font, W. F. 2001. Development 2009. A new species of Thelandros(Nematoda, and specificity of Oochoristica javaensis(Eucestoda: Oxyuroidea, Pharyngodonidae)in Leiolepis reevesii Cyclophyllidea: Anoplocephalidae: Linstowiinae). (Sauria, Agamidae)from Vietnam. Acta Parasitol. 54:151-153. Comp. Parasitol. 68:149-155. 32. Curran, S. S., Overstreet, R. M., Dang, T. T. and 23. Bursey, C. R. and Brooks, D. R. 2011. Nematode Nguyen T. L. 2001. Singhiatrema vietnamensis parasites of Costa Rican snakes (Serpentes) sp. n.(Digenea: Ommatobrephidae)and Szidatia with description of a new species of Abbreviata taiwanensis(Fischthal and Kuntz, 1975)comb. n. (Physalopteridae) . Comp. Parasitol. 78:333-358. (Digenea: Cyathocotylidae)from colubrid snakes ― 52 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO e Paris, 4 sér 2 3:697-706. in Vietnam. Comp. Parasitol. 68:219-227. 33. Dang, T. T. 2000. Ecological and biological 42. Durette-Desset, M.-C., Ben Slimane, B., Cassone, characteristics of Raillietiella orientalis(Hett, J., Barton, D. P. and Chabaud, A. G. 1994. 1915)Sambon, 1922(Pentastomida)parasiting in Johnpearsonia gen. nov. and Johnpearsoniinae subf. snakes. J. Biol. Hanoi 22:27-32.(in Vietnamese nov.(Molineoidea, Nematoda)from Bufo marinus, with English summary) with comments on the primitive Trichostrongyle 34. Darevsky, I. S. and Orlov, N. L. 1994. Eine parasites of amphibians and reptiles. Parasite 1: 153-160. bemerkenswerte neue, großwüchsige Art der Gattung Gekko; Gekko ulikovskii sp. n. aus Zentral 43. Fenner, A. L., Smales, L. R. and Bull, C. M. 2008. Vietnam. Salamandra 30:71-75. Pharyngodon wandillahensis n. sp.(Nematoda: 35. De, N. C. and Dey, J. 1992. A scanning electron Pharyngodonidae)from the endangered pygmy microscope study of Raillietascaris varani(Baylis bluetongue lizard Tiliqua adelaidensis Peters, 1863 et Daubney, 1922)(Nematoda: Ascaridioidea). , South Australia, Australia. (Sauria: Scincidae) Folia Parasitol. 39:145-151. Comp. Parasitol. 75:69-75. 36. d e C h a m b r i e r , A . 2 0 0 6 . R e d e s c r i p t i o n o f 44. F i s c h t h a l , J . H . a n d K u n t z , R . E . 1 9 6 4 . A Kapsulotaenia sandgroundi(Carter, 1943) (Eucestoda: monogenetic and seven digenetic trematodes of Proteocephalidea: Acanthotaeniinae), a parasite amphibians and reptiles from Palawan Island, of Varanus komodoensis(Varanoidea: Varanidae) Philippines. Proc. Helminthol. Soc. Wash. 31:230- from Indonesia. Syst. Parsitol. 63:83-93. 240. 37. de Chambrier, A., Waeschenbach, A., Fisseha, 45. Gibbons, L. M. and Keymer I. F. 1991. Redescription M., Scholz, T., Mariaux, J. 2015. A large 28S of Tanqua tiara(Nematoda, Gnathostomidae), rDNA-based phylogeny confirms the limitations and associated lesions in the stomach of the Nile of established morphological characters for monitor lizard(Varanus niloticus). Zool. Scripta classification of proteocephalidean tapeworms 20:7-14. 46. Goldberg, S. R. and Bursey, C. R. 1996. New helminth (Platyhelminthes, Cestoda) . ZooKeys 500:25-59. 38. Dervin, S., Sanchez, M., Bursey, C. R., Goldberg, S. records for the mourning gecko, Lepidodactylus R. 2014. First record of Raillietiella affinis Bovien, lugubris(Gekkonidae)from Hawaii. Bishop Mus. 1927(Arthropoda: Raellietiellidae)as an endoparasite Occ. Pap. 49:54-56. of the Madagascan giant day gecko, Phelsuma 47. Goldberg, S. R., Bursey, C. R. and McAllister, C. T. grandis Gray, 1870 introduced at Reunion Island. 1995. Gastrointestinal helminths of nine species of Herpetol. Notes 7:779-781. Sceloporus lizards(Phrynosomatidae)from Texas. 39. Dronen, N. O., Calhoun, D. M. and Simcik, S. J. Helminthol. Soc. Wash. 62:188-196. R. 2012. Mesocoelium Odhner, 1901 (Digenea: 48. Guerrero, R. 2013. Two new species of Oswaldocruzia Mesocoelidae)revisited; a revision of the family (Nematoda: Trichostrongylina: Molineoidea)parasites and re-evaluation of species composition in the of the cane toad Rhinella marina (Amphibia: genus. Zootaxa 3387:1-96. Anura)from Peru. Acta Parasitol. 58:30-36. 40. Dugarov, Zh. N., Baldanova, D. R. and Khamnueva, 49. Gupta, N. K. and Mehrotra, V. 1977. Redescription of T. R. 2012. Tapeworm Oochoristica tuberculata Encyclometra columbrimurorum(Rudolphi, 1819) (Rudolphi, 1819)—Parasite of the lizard Eremias with remarks on the synonymy of E. vitellata Gupta, 1954. Folia Parasitol. 24:179-182. argus Peters, 1869 in Zabaikalie. Parazitologiia 46:463-471.(in Russian with English summary) 50. Imkongwapang, R., Jyrwa, D. B., Lal, P. and 41. Durette-Desset, M.-C. 1980. Nouveaux Nématodes Tandon, V. 2014. A checklist of helminth parasite Trichostrongyloïdes parasites de Sauriens en fauna in anuran Amphibia(frogs)of Nagaland, Malaisie et à Bornéo. Bull. Mus. Natul. Hist. Nat. Northeast India. J. Parasit. Dis. 38:85-100. ― 53 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) 51. Ivanov, V. M. and Semenova, N. N. 2000. Species 61. Kanev, I., Radev, V. and Fried, B. 2005. Family composition and ecological peculiarities of trematodes Philophthalmidae. pp.87-97. In: Keys to the Trematoda, from reptiles in the Volga delta. Parasitologia 34: Volume 2(Jones, A., Bray, R. A. and Gibson, D. I. 228-233.(in Russian with English summary) eds.), CABI Publishing and The Natural History 52. Jensen, L. A., Schmidt, G. D. and Kuntz, R. E. Museum, London, U.K. 1983. A survey of cestodes from Borneo, Palawan, 62. Kelehear, C., Spratt, D. M., Dubey, S., Brown, G. P. and Taiwan, with special reference to three new and Shine, R. 2011. Using combined morphological, species. Proc. Helminthol. Soc. Wash. 50:117-134. allometric and molecular approaches to identify 53. Jones, A. 2005. Family Diplodiscidae Cohn, 1904. species of the genus Raillietiella(Pentastomida). pp.319-324. In: Keys to the Trematoda, Volume 2 PLoS ONE 6:e24936. , CABI (Jones, A., Bray, R. A. and Gibson, D. I. eds.) 63. Kelehear, C., Spratt, D. M., O’Meally, D. and Publishing and The Natural History Museum, Shine, R. 2014. Pentastomids of wild snakes in London, U.K. the Australian tropics. Int. J. Parasitol. Parasites 54. Jones, H. I. 1978. Abbreviata(Nematoda: Physalopteroidae)from Western Australian snakes. Aust. J. Wildl. 3:20-31. 64. Killick, L. M. and Beverley-Burton, M. 1982. Zool. 26:789-807. Observations on digeneans from lizards(Sauria)in 55. Jones, H. I. 1979. Gastrointestinal nematodes, Indonesia(Paradistomum geckonum, Mesocoelium including three new species, from Australian and sociale, and Postorchigenes ovatus)with a revision Papua New Guinean pythons. Proc. Helminthol. . of Paradistomum Kossack, 1910(Dicrocoeliidae) Soc. Wash. 46:1-14. Can. J. Zool. 60:2093-2106. 56. Jones, H. I. 1988. Nematodes from nine species 65. Kostadinova, A. 2005. Family Echinostomatidae of Varanus (Reptilia) from tropical northern Looss, 1899. pp.9-64. In: Keys to the Trematoda, Australia, with particular reference to the genus Volume 2(Jones, A., Bray, R. A. and Gibson, D. Abbreviata(Physalopteridae). Aust. J. Zool. 36: I. eds.), CAB International and Natural History 691-708. Museum, London, UK. 57. Jones, H. I. 2007. Helminth parasites of the lace 66. Kuzmin, Y., Kinsella, J. M., Tkach, V. V., Bush, S. monitor Varanus varius(Reptilia: Varanidae)in E. 2013. New species of Kalicephalus(Nematoda: Eastern Australia. Trans. Roy. Soc. South Aust. Diaphanocephalidae)from a snake, Oxyrhabdium 132:160-166. leporinum, on Luzon Island, Philippines. Comp. 58. Jones, H. I. 2010. Dwarf monitor lizards(Varanidae: Parasitol. 80:240-246. Varanus, Odatria, s. gen.)as definitive and paratenic 67. Lan Anh, N. T., Phuong, N. T., Johansen, M. V., hosts for physalopteran nematodes. Aust. J. Zool. Murrell, K. D., Phan, T. V., Dalsgaard, A., Luong, 58:69-75. T. T. and Thamsborg, S. M. 2009. Prevalence and 59. Jones, H. I. 2013. Gastrointestinal nematodes from risks for fishborne zoonotic trematode infections three species of Australian leaf-tailed geckos(Reptilia: in domestic animals in a highly endemic area of Saltuarius spp.) , with descriptions of new species North Vietnam. Acta Trop. 112:198-203. of Skrjabinodon(Oxyuroidea: Pharyngodonidae) 68. Le, V. H., Nguyen, V. L. 1966. Un nouveau and Hedruris(Habronematoidea: Hedruruidae) . physaloptère, Abbreviata deschiensi n. sp. parasite Comp. Parasitol. 80:47-59. des reptiles, Calotes versicolor(Daud.)au Sud 60. Kalyankar, K. V. and Nanware, S. S. 2010. Studies Viet-Nam. Bull. Soc. Pathol. Exot. 59:866-874, on diphyllidean cestode genus Scyphocephalus 991-996. (Riggenbach, 1898)(Family-diphyllobothriidae 69. Le, V. H. and Pham, N. K. 1968. Les kalicéphales, Luhe, 1910)from Varanus salvator with description parasites des vipères, Agkístrodon rhodostoma B. of a new species. Asian J. Anim. Sci. 5:33-35. du Sud-Vietnam. Bull. Soc. Path. Exot. 61:661― 54 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO 672. 81. Nguyen, Q. T. 2011. Systematics, ecology and 70. Lewin, J. 1992. Parasites of the sand lizard(Lacerta conservation of the lizard fauna in northeastern agilis L.)in Poland. Acta Parasitol. 37:19-24. Vietnam, with special focus on the genera Pseudocalotes 71. Lewin, J. 1992. Parasites of Lacerta vivipara (Agamidae), Goniurosaurus (Eublepharidae), Jacquin, 1787 in Poland. Acta Parasitol. 37:79-82. Sphenomorphus and Tropidophorus(Scincidae) 72. Liu, W., Li, Q.-K., Shih, H.-H. and Qiu, Z.-Z. 2002. from this country. - Ph. D. thesis, Univ. Bonn. Meristocotyle provitellaria sp. nov. (Digenea: 82. Nguyen, T. L. and Ha, D. N. 2010. Trematoda Meristocotylidae)from Varanus salvator in China. parasite in vertebrate of Vietnam. Science and Zool. Stud. 41:283-287. Technology Publishing House, Hanoi, 288 pp.(in 73. Liu, W., Wang, T., Liu, T. B., Tan, L., Lv, C. C. and Vietnamese with English summary) Liu, Y. 2016. The occurrence of the strongylid 83. Nguyen, T. L. and Pham, N. D. 2005. Three nematodes Kalicephalus brachycephalus, K. trematode species parasitic in two reptile species bungari and K. indicus in snake species from living closed to human in Vietnam. J. Biol. Hanoi Hunan Province, China. J. Helminthol.(in press) 37:17-19.(in Vietnamese with English summary) . [Epub ahead of print: May 18 2016] 84. Nguyen, T. L., Nguyen, T. M., Pham, N. D., Tran, 74. L o t z , J . M . , F o n t , W . F . 2 0 0 8 . F a m i l y B. T. and Pham, V. L. 2003. Diversity on parasites Phaneropsolidae Mehra, 1935. pp.545-562. In: Keys of two monitor species(Varanus nebulosus and to the Trematoda, Volume 3(Bray, R. A., Gibson, Varanus salvator)in Vietnam. pp. 157-159. In: D. I. and Jones, A. eds.), CAB International and Proceedings of the 2nd National Conference in Natural History Museum, London, UK. Biology, Agriculture and Medicine, Hue University, 75. M a c k e r r a s , M . J . 1 9 6 2 . F i l a r i a l p a r a s i t e s July 25 - 26. 2003.(in Vietnamese with English (Nematoda: Filarioidea)of Australian animals. Aust. J. Zool. 10:400-457. summary) 85. Nguyen, T. L., Nguyen, T. M., Pham, N. D., Tran, B. 76. Madhavi, R., Nirmala, E. and Subbalakshmi, C. 1998. T. and Dang, T. T. 2005. Biodiversity of parasites A population study of the dicrocoeliid trematode in some reptile species closed to human. pp.215-217. Paradistomum orientalis in the garden lizard In: Proceedings of the 2nd National Conference Calotes versicolor. J. Zool. 244:489-496. in Life Sciences, Hanoi, October 26, 2005. (in 77. Maplestone, P. A. 1931. Parasitic nematodes Vietnamese with English summary) obtained from animal dying in the Calcutta 86. Nguyen, T. L., Nguyen, T. M., Tran, B. T. and Bui, T. Zoologicl Gardens: the genus Kalicephalus in D. 2008.[Preliminary study on parasites in reptiles Indian reptiles(6).Zool. Survey India 33:104-125. from northern part of central Vietnam.]J. Biol. 78. Matsuo, K. and Oku, Y. 2002. Endoparasites of Hanoi 30:18-22.(in Vietnamese with English three species of house geckoes in Lampung, Indonesia. J. Helminthol. 76:53-57. summary) 87. Nguyen, T. M. 2002. Parasitic nematodes in giant 79. Moravec, F., Sey, O. 1988. Nematodes of freshwater lizard from Vietnam. J. Biol. Hanoi 24:133-141.(in fishes from North Vietnam. Part 3. Cosmocercoidea, Vietnamese with English summary) Seuratoidea, Atractoidea, Heterahoidea and 88. Nguyen T. M. and Bui, T.D. 2007. Parasitic Ascaridoidea. Věstník Československé společnosti nematodes of house gecko, Hemydactylus frenatus zoologické 52:250-265. Schlegel et Bibron, 1836 and skink, Maybuya 80. Ngo, H. D., Ermolenko, A. V. and Gerasev, P. I. longycaudata(Hallowell, 1857)in Vietnam. pp.179- 2010. On the fauna of trematodes from the family 183. In: Proceedings of the 2nd National Scientific Dicrocoeliidae(Plagiorchidida)parasitizing animals Conference on Ecology and Biological Resources, in Vietnam. Parazitologiia 44:515-524.(in Russian Hanoi, October 26, 2007. (in Vietnamese with with English summary) English summary) ― 55 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) 89. Nguyen, V. H. 2015. An updated list of acanthocephalans Hanoi 25:5-10. (in Vietnamese with English (Acanthocephala)from animals in Vietnam. J. Biol. Hanoi 37:384-394. (in Vietnamese with summary) 100.Pham, N. D. and Nguyen, T. L. 2007. Discovery of English summary) Plagiorchis(Plagiorchis)milini Lent et Freitas, 90. Nguyen, V. S. and Ho, T. C. 1996. A checklist of 1946 (Trematoda: Plagiorchiidae) from house reptiles and amphibians of Vietnam. Science and gecko(Hemidactylus frenatus Schelegel at Bibron, Technology Publishing House, Hanoi, 264 pp.(in 1836)in Vietnam. pp.38-39. In: Proceedings of the Vietnamese) 2007 National Conference on Life Sciences, Quy 91. Nguyen, V. S., Ho, T. C. and Nguyen, Q. T. 2005. A Nhon University, August 10, 2007.(in Vietnamese checklist of reptiles and amphibians of Vietnam. Science and Technology Publishing House, Hanoi, with English summary) 101.Premvati, G. and Pande, V. 1974. On Artyfechinostomum 180 pp.(in Vietnamese) malayanum (Leiper, 1911) Mendheim, 1943 92. Nguyen, V. S., Ho, T. C. and Nguyen, Q. T. 2009. (Trematoda: Echinostomatidae)with synonymy of Herpetofauna of Vietnam. Edition Chimaira. allied species and genera. J. Helminthol. Soc. Wash. Chimaira Buchhandelsgesellschaft mbH, Frankfurt 41:151-160. am Main, Germany, 768 pp. 102.Purwaningsih, E. and Mumpuni. 2011. New host 93. Norval, G., Goldberg, S. R., Bursey, C. R., Mao, J.-J., and locality records of snake intestinal nematode Slater, K. 2014. Internal parasites of lizards from Kalicephalus spp. in Indonesia. Asian Pac. J. Trop. Taiwan. Herpetol. Conserv. Biol. 9:484-494. Biomed. 1:121-123. 94. Ochi, S. 1930.[A new trematode, Mesocoelium 103.Rego, A. A. 1994. Order Proteocephalidea Mola, brevicaecum n. sp., from a Japanese snail intermediate 1928. pp.257-293. In: Keys to the Cestode Parasites . Okayama host, with special reference to its life-cycle] of Vertebrates(Khalil, L. F., Jones, A. and Bray, R. Med. J. 42:388-402.(in Japanese with German A. eds.),CAB International, Oxfordshire, UK. summary) 104.Riggenbach, E. 1898. Scyphocephalus bisulcatus n. 95. Okulewicz, A., Kaźmierczak, M., Hildebrand, J. g. n. sp., ein neuer Reptiliencestode. Zool. Jahrb. and Adamczyk, M. 2015. Endoparasites of lizards (Lacertilia) from captive breeding and trade (Syst.)12:145-153. 105.Riley, J., McAllister, C. T. and Freed, P. S. 1988. networks. Helminthologia 52:34-40. Raillietiella taegueselfi n. sp. (Pentastomida: 96. Oshmarin, P. G. and Demshin, N. I. 1972. The Cephalobaenida)from the Mediterranean gecko, helminths of domestic and some wild animals of Hemidactylus turcicus(Sauria: Gekkonidae), in the Vietnam Democratic Republic. Trudy Biol- Texas. J. Parasitol. 74:481-486. pochvenn. Inst. Vladivostok 11:5-115.(in Russian) 106.Santos, J. N., Giese, E. G., Maldonado, A., Jr. and 97. Petit, G., Bain, O., Gomes, A. F. and Toubatier, Lanfredi, R. M. 2008. A new species of Oswaldocruzia L. 1983. Piratuboides huambensis n. sp., Filaire (Molineidae: Nematoda) in Chaunus marinus Oswaldofilariinae parasite de Lézard en Afrique (Amphibian: Bufonidae)(Linneaus, 1758)from australe. Bull. Mus. Natn. Hist. nat., Paris 4e sér. 5:743-747. Brazil. J. Parasitol. 94:264-268. 107.Schad G. A. 1959. Nematodes from varanid lizards 98. Petter, A. J. and Quentin, J.-C. 2009. Oxyurida. of Borneo. A description of Abbreviata borneensis pp.218-247. In: Keys to the Nematode Parasites n. sp.(Nematoda: Physalopteridae)and records of of Vertebrates: Archival Volume(Anderson, R. two other species. Can. J. Zool. 37:71-74. , CAB C., Chabaud, A. G. and Willmott, S. eds.) 108.Schad, G. A. 1962. Studies on the genus Kalicephalus International, Oxfordshire, Oxford, U.K. (Nematoda: Diaphanocephalidae). II. A taxonomic 99. Pham, N. D. and Nguyen, T. L. 2003. Trematodes parasiting in giant lizards in Vietnam. J. Biol. ― 56 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 revision of the genus Kalicephalus Molin, 1861. Can. J. Zool. 40:1035-1165. Binh Thi TRAN, Son Truong NGUYEN, Tao Thien NGUYEN, Pham Van LUC, Eliakunda MAFIE, Fatema Hashem RUPA, Hiroshi SATO 109.Schmidt, G. D. and Kuntz, R. E. 1972. Nematode parasites of Oceanic. XIX. Report on a collection Acta Parasitol. 52:363-367. 120.Tran, B. T., Sato, H. and Luc, P. V. 2015. A new from Philippine reptiles. Trans. Am. Microsc. Soc. Cosmocercoides species(Nematoda: Cosmocercidae) , 91:63-66. C. tonkinensis n. sp., in the scale-bellied tree lizard 110.Sey, O. 1985. Amphistomes of Vietnamese vertebrates (Acanthosaura lepidogaster)from Vietnam. Acta (Trematoda: Amphistomida). Parasitol. Hung. 18:17-24. Parasitol. 60:407-416. 121.Tran, B. T., Sato, H., Hasegawa, H., Diong, C. H. 111.Sharpio, V. P. 1974. Spauligodon azerbajdzanicus sp. and Luc, P. V. 2015. Scanning electron microscopy n.(Nematoda, Pharyngodonidae)—a parasite of of Strongyluris calotis (Nematoda: Ascaridida: Lacerta chlorogaster Boul. Yestnik Zool. 3:82-83.(in Heterakidae) in the large intestine of agamid Russian with English summary) lizards in Asia. Jpn. J. Vet. Parasitol. 14:13-21. 112.Simha, S. S. and Deshpande, P. 1964. On a new 122.Tran, B. T., Ong, A. V., Luc, P. V. and Sato, H. 2016. species of Artyfechinostomum Lane, 1915, from the Morphological and molecular genetic diversity intestine of the monitor lizard, Varanus bengalensis of Strongyluris calotis (Nematoda: Ascaridida: in Hyderabad-India. Z. Parasitenkd. 24:23-26. Heterakidae)in South East and East Asian lizards. 113.Singh, S. N. 1954. Studies on the morphology and life-history of Strongyloides mirzai n. sp. from Parasitol. Res. 115:2807-2816. 123.Trung Dung, D., Van De, N., Waikagul, J., snakes in India. J. Helminthol. 28:25-34. Dalsgaard, A., Chai, J. Y., Sohn, W. M. and 114.Sommerville, C. 1982. The life history of Haporchis Murrell, K. D. 2007. Fishborne zoonotic intestinal pumilio(Looss, 1896)from cultured tilapias. J. trematodes, Vietnam. Emerg. Infect. Dis. 13:1828- Fish Dis. 5:233-241. 1833. 115.Sprent, J. F. A. 1985. Ascaridoid nematodes of 124.Tubangui, M. A. 1938. Pseudophyllidean cestodes amphibians and reptiles: Raillietascaris n. g. Ann. occurring in the Philippines. Livro Jubilar Lauro Parasitol. Hum. Comp. 60:601-611. Travassos 1938:489-494. 116.Tkach, V. V. 2008. Family Encyclometridae Mehra, 125.Vlnová, I. 2014. Revize diphyllobothriidních tasemnic 1931. pp.349-352. In: Keys to the Trematoda, plazů (Eucestoda: Solenophoridae). Jihočeská Volume 3(Bray, R. A., Gibson, D. I. and Jones, univerzita v Českých Budějovicích, Přírodovědecká A. eds.), CAB International and Natural History fakulta. Master thesis, 61 pp. Museum, London, UK. 126.Woodland, W. N. F. 1940. A revision of African and 117.Tran, B. T. 2009. Study of parasitic cestodes in Asiatic forms of the genus Duthiersia(Cestoda). some reptiles from Northern Vietnam. pp.41- Proc. Zool. Soc. London B110:207-218. 45. In: Proceedings of the 3rd National Scientific 127.Yamaguti, S. 1952. Parasitic worms mainly from Conference on Ecology and Biological Resources, Celebes. Part 7. Cestodes of reptiles. Acta Med. Hanoi, October 22, 2009. (in Vietnamese with Okayama 8:1-12. English summary) 128.Yamaguti, S. 1954. Systema Helminthum, Volume 118.Tran, B. T., Nguyen, T. L. and Nguyen, V. H. 2005. II. The cestodes of vertebrates. Interscience Cestode parasite in house gecko(Hemydactylus Publishers, Inc., New York, U.S.A., 860 pp. renatus). pp.412-414. In: Proceedings of the 2005 129.Yamaguti, S. 1958. Systema Helminthum, Volume National Conference on Life Sciences, Hanoi I. The digenetic trematodes of vertebrates. Medical University, November 03, 2005. (in Interscience Publishers, Inc., New York, U.S.A., Vietnamese with English summary) 1575 pp. 119.Tran, B. T., Bursey, C. R., Goldberg, S. R. 2007. 130.Yamaguti, S. 1961. Systema Helminthum, Volume Two new species of Pharyngodonidae(Nematoda, Ⅲ. The nematodes of vertebrates. Interscience Oxyuroidea)in Gekko ulikovskii from Vietnam. Publishers, Inc., New York, U.S.A., 1261 pp. ― 57 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Endoparasites of Vietnamese lizards recorded in the last 50 years(1966 − 2015) 131.Yildirimhan, H. S., Bursey, C. R. and Altunel, F. Province, China. Acta Parasitol. 56:48-53. N. 2011. Helminth parasites of the Balkan green 133.Ziegler, T. and Nguyen, T. Q. 2010. New discoveries lizard, Lacerta trilineata Bedriaga 1886, from Bursa, of amphibians and reptiles from Vietnam. Bonn Turkey. Turk. J. Zool. 35:519-535. Zool. Bull. 57:137-147. 132.Zhang, H., Zhang, S. and Zhang, L. 2011. Two species of the genus Kalicephalus Molin, 1861(Nematoda, Diaphanocephaloidea)from the water monitor, Varanus salvator(Laurenti, 1768)in Guangdong Correspondence:Hiroshi SATO, Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, 1677-1 Yoshida, Yamaguchi 753-8515, Japan. E-mail:sato7dp4@yamaguchi-u.ac.jp ベトナム産トカゲの内部寄生虫 : 過去 50 年間(1966−2015)の記録 トラン・ビンティ 1、グエン・ソントゥルオン 2、グエン・タオティエン 3、ルック・ファンヴァン 3、 マフィエ・エリアクンダ 4、ルパ・ファテムハシム 4、佐藤 宏 4 1 ベトナム科学技術院(VAST)生態・生物資源研究所(IEBR)寄生虫学部門、2 脊椎動物学部門、 3 ベトナム国立自然史博物館、4 山口大学大学院 連合獣医学研究科 要 約 ベトナムの両生類、爬虫類の寄生虫について現在までに得られた知見は限られている。これまでに 45 種の内部寄 生虫がベトナム産トカゲから記録されている。その内訳は、条虫 11 種、吸虫 12 種、線虫 18 種、鉤頭虫 1 種、舌虫 類 3 種で、宿主となるトカゲは 10 種を数える。ベトナムが両生類・爬虫類相が世界屈指の豊富さを誇ることを考え ると(最近の報告によると、ベトナム国内から記録された爬虫類は 385 種、両生類は 181 種とされている)、宿主の 生物多様性に比して寄生虫相の研究は遠く及んでいないと考えざるを得ない。今後も正確な寄生虫種の同定を行うと ともに、ベトナム国内産トカゲから得た種と近隣地域あるいは世界から報告された種との異同や類縁性を明確にする 研究が取り組まれねばならないが、その実施に際しては形態学的種同定とともに系統分類学的特徴づけが必要である。 Key words:ベトナム、トカゲ、寄生虫、蠕虫、舌虫、記録 ― 58 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Essay Veterinary Education in Nepal Gokarna GAUTAM 1 and Ishwari Prasad DHAKAL 1,2 1 Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Nepal 2 Vice Chancellor of Agriculture and Forestry University ABSTRACCT Nepal is an agricultural country with livestock being an integral component of the agriculture sector. Due to Nepal’s agrarian economy and livestock product-based enterprises being one of the major businesses in both rural and urban areas of the country, veterinarians presently available in the country are not sufficient to take care the livestock and poultry health, thus, the number of institutions providing veterinary education has recently increased. The university level undergraduate degree of veterinary science in Nepal is BVSc&AH(Bachelor of Veterinary Science and Animal Husbandry). There are currently four academic institutes in Nepal that offer this bachelor degree of veterinary science. Two of these institutes are government funded, while the other two are private institutions. To date, the Nepal Veterinary Council has registered 856 veterinarians in the country. Maintenance of the quality of education that the institutes provide following the guidelines of the Nepal Veterinary Council is of great importance. For this purpose, the institutions require infrastructure development, adequate numbers of highly qualified academic staff, enhanced performances of faculty supporting staffs, upgraded laboratories and the provision of research facilities Key words:Veterinary education, Nepal, livestock. in South Asia and has been stagnant in recent years. 1.INTRODUCTION One of the main reasons for this low productivity is Nepal is a landlocked and mountainous country with the failure to achieve adequate productivity from the a population of around 27.5 million. It is predominantly animals, maintain their health and ensure access to an agricultural country; about 65.6% of the Nepalese resources for farmers raising livestock[4]. people depend on agriculture for their livelihood. The There are approximately 7.2 million cattle, 5.2 million agriculture sector in Nepal contributes approximately buffaloes, 0.8 million sheep, 10 million goats, 1.2 million 35% to the national gross domestic product(GDP) pigs and 48.1 million poultry in Nepal. Of these, only [1]. Livestock is an integral and important component 20% are commercially managed, while the rest are of the Nepalese agriculture sector, contributing owned by small farmers [5]. In livestock rearing, approximately 24% to the agricultural GDP [2]. various diseases cause an estimated annual loss of It also plays important roles in human food and 845 million NPR(Nepalese rupee)to the cattle and nutritional security, livelihood, regional balance, gender buffalo industry of the country[6]. Nevertheless, the mainstreaming and rural poverty alleviation [3]. livestock subsector has been one of the fastest growing Approximately 87% of the total Nepalese people keep subsectors in agriculture in Nepal. The Agriculture some form of livestock. With 5.8 heads of livestock Perspective Plan 1995–2015 identified livestock and poultry per household, Nepal has one of the production and productivity as an engine for growth in highest ratios of livestock to humans in Asia. However, agriculture[7]. agricultural productivity in Nepal is one of the lowest There are currently four academic institutes in ― 59 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Veterinary Education in Nepal Table 1. Status of Veterinary Institutions in Nepal. Establishment(Year) Student number enrolled per year Remarks Himalayan College of Agricultural Sciences and Technology(HICAST) 2001 48 Private Nepal Polytechnic Institute(NPI) 2010 48 Private Faculty of Animal Science, Veterinary Science and Fisheries(FAVF) 2012 50 Government Institute of Agriculture and Animal Science (IAAS) 2013 40 Government University Agriculture and Forestry University(AFU) Tribhuvan University(TU) ⎫ ︱ ︱ ︱ ⎬ ︱ ︱ ︱ ⎭ Purbanchal University(PU) Institution Nepal that offer courses for the attainment of bachelor faculties within the university; FAVF, Faculty of degree of veterinary science(Table 1). These are: Agriculture, and Faculty of Forestry. (i)Faculty of Animal Science, Veterinary Science The university has a total of 110 faculty members. and Fisheries(FAVF)at Agriculture and Forestry The current university student population consists of University(AFU), Rampur, Chitwan;(ii)Institute around 1,300 undergraduates, 200 postgraduates and of Agriculture and Animal Science(IAAS)under 50 PhD scholars in different disciplines of agriculture, Tribhuvan University(TU)at Paklihawa, Rupandehi; animal science, veterinary science, fisheries and (iii) Himalayan College of Agricultural Sciences forestry. The Rampur academic complex occupies and Technology(HICAST)affiliated to Purbanchal an area of 280 ha and the Hetauda Forestry Campus University(PU)at Kalanki, Kathmandu; and(iv)Nepal has an area of 95 ha. The faculty members of the Polytechnic Institute(NPI)affiliated to PU at Bharatpur, university are involved in different research and Chitwan. BVSc&AH(Bachelor of Veterinary Science developmental activities with the support of national and Animal Husbandry)is a five-year programme and international institutions and agencies. At present, comprising 10 semesters – nine semesters of study various classrooms, farm buildings, laboratories, student at college and a six-month internship at various dormitories and residential buildings are in need of institutions related to the veterinary profession. renovation(Figs. 1 and 2). The university requires more support both nationally and internationally 2. SCHOOLS FOR VETERINARY EDUCATION IN NEPAL for human resources development. As it is a new university, the faculties and students also need to learn 2-1.FAVF at AFU AFU was established in Rampur, Chitwan, Nepal, in June 2010. This is the first technical university in the country. It was founded upon the merger of the Rampur Agriculture Campus of the IAAS and the Hetauda Forestry Campus of the Institute of Forestry of TU, thus inheriting undergraduate, graduate and PhD programmes in agriculture and veterinary sciences and fisheries from the Rampur Campus and undergraduate and Master programmes in forestry from the Hetauda Campus. The educational programmes are supported by quality research and developmental activities. Presently, there are three Fig. 1.BVSc&AH classroom building, AFU, Rampur, Chitwan. ― 60 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Gokarna GAUTAM, Ishwari Prasad DHAKAL Around 50 students enrol each year in the BVSc&AH programme. In 2015, the faculty enrolled 56 students in the BVSc&AH programme and 16 students in the BSc Fisheries programme. Additionally, 37 Masters students and nine PhD students were enrolled in different disciplines of FAVF. As it is a new university, the first intake of BVSc&AH students is currently in its sixth semester[8] . FAVF has linked up with universities abroad for capacity building, enhancement of research and laboratory capacity, faculty and student exchange Fig. 2.Veterinary Teaching Hospital, AFU, Rampur, Chitwan. research collaboration, etc. The faculty is fully committed to sharing samples and reagents in order to produce quality peer-reviewed publications and reports. how successful universities work and improve their FAVF is happy to provide space and accommodation standing in society. Faculty and student exchange for the conduct of workshop and related research would benefit both parties in the long term[8]. activities by participating faculty members from As mentioned above, FAVF is one of three faculties South Asia and abroad. The faculty has very good within AFU. The FAVF fosters student self-development, working relationships with local organizations such commitment and responsibility for the welfare of as Department of Livestock Service(DLS), Nepal Nepalese society. Chitwan District is one of the areas , Department of Agricultural Research Council(NARC) with the most potential for agriculture, livestock, poultry National Parks and Wildlife Conservation(DNPWC), and aquaculture farming. Presently, the livestock- Himalayan Animal Rescue Trust (HART) Nepal, raising pattern is changing from household level to Local Initiatives for Biodiversity Research and commercialization. This is mainly occurring in poultry Development(LI-BIRD), National Zoonoses and Food and dairy farming. It is greatly facilitated by committed Hygiene Research Centre(NZFHRC), Asia Network farmers and other allied entrepreneurs, the presence of of Sustainable Agriculture and Bioresource(ANSAB), adequate technical support from AFU, the suitability of etc. FAVF also has links with foreign institutions such the environment for farming and adequate marketing as The United Graduate School of Veterinary Science, facilities[8]. Yamaguchi University, Japan(Fig. 3) , HART UK, Currently, there are 10 departments in the veterinary science programme. These are: Veterinary Anatomy, Physiology and Biochemistry; Veterinary Microbiology and Parasitology; Veterinary Pathology and Clinics; Veterinary Pharmacology and Surgery; Theriogenology; Veterinary Medicine and Public Health; Animal Breeding and Biotechnology; Animal Nutrition and Fodder Production; Livestock Production and Management; and Aquaculture and Fisheries. There are 38 faculty members, 42 supporting staff and nine adjunct faculties at FAVF. Two academic programmes are provided, namely a five-year BVSc&AH and a four-year BSc. Fisheries. In 2013, the faculty incorporated BSc. Fisheries programme for the first time in the country. Fig. 3.Ceremony for the renewed MOU(Memorandum of Understanding)between AFU and UVY(The United Graduate School of Veterinary Science, Yamaguchi University)on 3 March, 2015. ― 61 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Veterinary Education in Nepal University of Veterinary Medicine, Vienna, Austria, of bachelor students who were enrolled at the Rampur St. George’s University, Grenada, West Indies, Anglia Campus prior to the establishment of AFU. Bachelor Ruskin University, Cambridge, UK, etc[8]. programmes are now conducted at its Lamjung Campus(BScAg)and Paklihawa Campus(BScAg and 2-2.IAAS under TU at Paklihawa, Rupandehi BVSc&AH) (Fig. 5) [9]. IAAS is an agricultural institute under TU in The veterinary science programme of IAAS was Nepal for college level education in agriculture and initiated in 1992 at the Rampur Campus, Chitwan, veterinary sciences. The IAAS originated as a School by converting its four-year BSc Animal Science of Agriculture established in 1957 in Kathmandu to programme into a five-and-a-half-year BVSc&AH train Junior Technical Assistants. In 1968, the school degree. This programme conversion made it the first was upgraded to a College of Agriculture. In 1972, veterinary school in the country and approximately 300 the college was recognized as IAAS under TU and veterinarians have been trained at IAAS to date. moved to Rampur, Chitwan, in 1974. It offers a BSc in Following the acquisition of the facilities of IAAS, Agriculture(BScAg) , BVSc&AH, Master of Science Rampur, by AFU, the Veterinary School of TU moved (Agriculture), Master of Science(Animal Science), to the Paklihawa Campus, Rupandehi, in 2013. At Master of Veterinary Science, Master of Science present, it enrols approximately 40 students each (Aquaculture)and PhD programmes. Following the year in the BVSc&AH programme. There are four government of Nepal’s policy in 2010 to establish departments in the veterinary science programme: AFU at Rampur, Chitwan, the physical properties Veterinary Anatomy, Physiology and Biochemistry; and other assets of IAAS, Rampur, were acquired Veterinary Medicine, Pharmacology and Surgery; by AFU. Consequently, the office of the IAAS Dean Veterinary Microbiology, Parasitology and Epidemiology; was moved to Kathmandu in 2011 and directs its and Veterinary Pathology, Theriogenology and Clinic. programmes and activities through the Dean’s contact Additionally, the three departments of Animal Breeding offices in Sanepa, Lalitpur and Kirtipur, Kathmandu. and Biotechnology, Animal Nutrition and Fodder Although AFU was established in the facilities of Production, and Livestock Production and Management IAAS, some administration offices of IAAS remain in work closely with the four aforementioned departments Rampur(Fig. 4). IAAS academic programmes are not for a broader perspective of animal science study and conducted there, with the exception of the final years research[10]. 2-3.HICAST HICAST was established in 2000 (Fig. 6). It is affiliated to PU and is the first private veterinary school in Nepal. It recently moved to Kalanki, Kathmandu, from its original site in Bhaktapur. The college aims to teach and contribute to all fields of Fig. 4. Joint office of AFU and IAAS, TU at Rampur, Chitwan, during the transition phase. knowledge in agricultural and applied sciences, from the farmer’s intuitive knowledge to the sciences and from the theoretical to the applied. It offers BScAg and BVSc&AH programmes. The veterinary programme (BVSc&AH)at HICAST was initiated in 2001. For the last few years, it has enrolled 48 students per year in the BVSc&AH programme. To date, it has trained nearly 200 veterinarians[11]. Fig. 5. Paklihawa Campus, Rupandehi, IAAS, TU. ― 62 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Gokarna GAUTAM, Ishwari Prasad DHAKAL Fig. 7. NPI, Bharatpur, Chitwan. three schools that conduct a three-year veterinary Fig. 6. HICAST, PU at Kalanki, Kathmandu. diploma programme. There are more than 7,500 paravets (JT/JTA) in the country. Because the small 2-4.NPI number of veterinarians in Nepal cannot personally NPI Ltd. was established in Bharatpur, Chitwan, attend all the farms, these para-vets serve the livestock in 1994 as a training institute to conduct short-term sector of our country to a great extent. training in various technical fields(Fig. 7) . Subsequently, university level undergraduate programmes were also launched at the institute. In 2010, an undergraduate 4. CONCLUSION level veterinary programme(BVSc&AH)was introduced. In Nepal, the current veterinary education is recognized This programme is affiliated to PU. It is the second as a major determinant for the all-round development private veterinary school in Nepal. NPI enrols 48 of the country. The quality of the education has to be students each year in the BVSc&AH programme. The enhanced to produce able, productive, disciplined and first intake of BVSc&AH students will graduate in socially responsible citizens and to create a workforce July/August 2016[12]. capable of facing the challenges of the 21st century. The immense potential of the livestock sector in enhancing 3.JUNIOR TECHNICIANS AND JUNIOR TECHNICAL ASSISTANTS (PARA-VETS)FOR VETERINARY SERVICE the income of the poor is becoming increasingly apparent. Livestock distribution is more equitable than land distribution. Thus, the livestock sector provides a natural entry point for poverty alleviation programmes. However, a major issue affecting the livestock economy Apart from these veterinary colleges, there are is the quality of the education and the effectiveness various technical training schools affiliated to the of the delivery of livestock services to communities. Council for Technical Education and Vocational At present, a good number of institutions provide Training (CTEVT) that educate students to the veterinary education in Nepal. However, it is important levels of Junior Technician(JT)and Junior Technical to maintain the quality of the education they provide. Assistant(JTA)in the field of veterinary science. For this purpose, the institutions require infrastructure After passing the School Leaving Certificate(SLC) development, adequate numbers of highly qualified examination, students can join JTA and JT level academic staff, enhanced performances of faculty courses. There are about three dozen training centres supporting staffs, upgraded laboratories and the that conduct 15-month veterinary JTA training and provision of research facilities. ― 63 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 Veterinary Education in Nepal on the Social Dimension of Globalization: Geneva, ACKNOWLEDGEMENT Switzerland, 2004; p. 143. We thank Prof. Hiroshi Sato, Dean of The United 4. iRIN. 2013. Why livestock matters in Nepal. Graduate School of Veterinary Science, Yamaguchi [Available online: http://www.irinnews.org/report/ University, Japan, for his guidance and encouragement in the preparation of this manuscript. We also thank 98463/analysis-why-livestock-matters-nepal] 5. DLS. 2015. Department of Livestock Services, Dr. Subir Singh, Department of Veterinary Medicine Ministry of Livestock Development, Nepal. and Public Health, AFU, Rampur, Chitwan, and 6. Lohani, M.N. and Rasali, D.P. 1992. Economic Dr. Shambhu Shah, Faculty of Veterinary Science, analysis of animal diseases in Nepal, Proceedings of Paklihawa Campus, IAAS, TU, for providing valuable the 4th Nepal Veterinary Conference, Nov 17–19. information. 7. MoAC. 1995. Agriculture Perspective Plan(App) , 1995–2015; Government of Nepal: Kathmandu, Nepal. REFERENCES 8. http://www.afu.edu.np/about-us. 1. Statistical information on Nepalese agriculture 9. https://en.wikipedia.org/wiki/Institute_of_ (2013/14) . 2014. Government of Nepal, Ministry Agriculture_and_Animal_Science. of Agricultural Development.[Available online: 10. http://www.iaas.edu.np. http://www.moad.gov.np/uploads/files/Year%20 11. https://en.wikipedia.org/wiki/Himalayan_College_ book%202014.pdf] of_Agricultural_Sciences_%26_Technology_ 2. ADS. 2012. Ads Assessment Report, Agricultural Development Strategy Assessment; Government ). (HICAST) 12. http://www.npibharatpur.org.np/. of Nepal, ADB, IFAD, EU, FAO, SDC, JICA, WFP, USAID, DANIDA, DfID and World Bank: Kathmandu, Nepal. 3. I L O . 2 0 0 4 . A F a i r G l o b a l i z a t i o n : C r e a t i n g Opportunities for All; Report of the World Commission Correspondence:Gokarna GAUTAM, Department of Theriogenology, Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Chitwan, Nepal. E-mail:gokarnagautam@gmail.com ネパール国の獣医学教育の現況 ゴカルナ・ゴータム 1、イシュワリ・プラサド・ダカール 1,2 1 ネパール国農林業大学・畜産獣医水産学部、2 ネパール国農林業大学・副学長 要 約 ネパール国は農業国で、畜産も盛んである。国内の地域を問わず、農業関連産業や畜産関連産業は主要な経済分野 であるため、獣医学教育機関も最近増加してきた。ネパール国で獣医学を学ぶ大学教育を修了すると BVSc&AH(獣 医畜産学士)が授与されるが、この教育は同国内では現在4機関で行われている。そのうちの 2 機関は国立大学、他 の 2 機関は私立大学である。ネパール国獣医師協議会には現在までに 856 名が登録されている。ネパール国獣医師協 議会が定める指針に沿い実施される獣医学教育のレベル維持は極めて重要といえる。そのためには、国内 4 つの獣医 系教育機関の施設整備、教育スタッフの質的・数的充実、教育補助員の技能充実、最新診断技術・解析機器の導入や 研究設備の充実などが今後の課題となっている。 Key words:獣医学教育、ネパール、畜産 ― 64 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 施設紹介 大原研究所から馬原アカリ医学研究所へ ―ダニ媒介性感染症研究の断片― 藤 田 博 己 1,2 1 馬原アカリ医学研究所、2 藤田保健衛生大学医学部 要 約 大原研究所は、1925 年に野兎病研究のための専用施設として、当時の福島県福島市にあった私立大原病院内に大 原研究室として開設された。1944 年からの閉鎖期間もあったが 1948 年には再開、1973 年には財団法人大原綜合病院 附属大原研究所に改組され、野兎病研究を主体にダニ媒介性感染症一般にも範囲を広げながら、2012 年の閉鎖まで 活動を続けた。馬原アカリ医学研究所は、2010 年にダニ媒介性疾患研究を目的に、徳島県阿南市の医療法人新心会 馬原医院内に開設された馬原医院アカリ疾患研究センターから始まり、2011 年に馬原医院外の施設での開設に向け て現在の名称に変更、2012 年から大原研究所の研究材料・資料と研究機能を引き継いで活動を開始した。 Key words:大原研究所、馬原アカリ医学研究所、ダニ媒介性感染症、野兎病、日本紅斑熱、研究活動 . で大原八郎によってそれぞれに「再発見」された。国内 1.はじめに におけるヒト患者の発生は、年間 80 例近くに達した年 大原研究所と馬原アカリ医学研究所は、開設の時期は もあったが、1970 年代から 1980 年代になると年間発生 大きく異なるが、どちらも民間の医療機関に属し、それ 数は 10 例前後に減少し、最近では発生の見られない年 ぞれに野兎病(やとびょう、tularemia)と日本紅斑熱 も続くようになった。発生が減少しているとはいえ、野 という新疾患との遭遇が開設の契機となっていることで 兎病菌は自然環境内にマダニ類や吸血性昆虫類などを介 共通する。この他にも相互に少なからず関わりを持ち続 して野生動物間に維持されているので、野兎病は現在で けてきた両施設について、筆者は大原研究所に長年勤務 も常に感染リスクのある疾患である。 し、また現在はアカリ研究所に所属する立場から歴史的 大原研究所の前進の大原研究室は、1924 年に当時の 経過も含めて紹介したい。 大原病院の副院長で外科と耳鼻科を専門とする大原八郎 が不明熱性疾患(後の野兎病)患者に遭遇したことを契 機に開設された。未知の疾患を予感した大原は、1925 2.大原研究所 年に論文を発表するとともに、まだ感染症かどうかも不 大原研究所が 80 年以上の長期にわたって研究を継続 明であったこの疾患の原因究明のために研究室を立ち上 してきた野兎病は、今では発生頻度が低いこともあって、 げた。大原研究室は病院の手術室を改造したもので、16 国内の医療関係者からは忘れ去られた感染症となってし 畳ほどのコンクリート床の大部屋とタイル張りの小部屋 まった。野兎病は野兎病菌の感染による急性の発熱性疾 からなり、当時を知る人によると、まるで穴倉のような 患で、主に北半球の広い地域に発生が知られる人獣共通 研究室だったという。ここには、コッホ式滅菌装置、孵 の感染症である。この疾患のもっとも古い記録が日本に 卵器、遠心器、冷蔵庫、顕微鏡、ミクロトームといった ある。1837 年の江戸時代に本間棗軒が著した瘍科秘録 機材が設置されてはいたが、研究施設としては必要最小 の第 9 巻に記載された食兎中毒(のちに中兎毒に改訂) 限にも満たないようなものであった。研究スタッフも必 が野兎病に一致する。近代医学の時代以降には、1911 要最小限で、常勤は大原と助手 1 名のみ、ここに研究志 年に米国において、R. A. Pearse によって昆虫媒介性の 望者が 1、2 名訪れては数年間研究生活を送るといった ヒト疾患として、また同年に G. W. McCoy によってハ 研究方式が続けられた。このように極めて小規模な研究 タリスのペスト様疾患として、次いで、1925 年に日本 施設ながら、ここからは研究成果が次々と発表されてい ― 65 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 大原研究所から馬原アカリ医学研究所へ ―ダニ媒介性感染症研究の断片― くことになる。研究開始の 1925 年には、まだ野兎病菌 ロッキー山研究所と旧ソ連モスクワのガマレア研究所の を安定的に培養できる培地がなかったにもかかわらず、 各野兎病研究部署を主体に各国の野兎病研究者との間で 早くも原因菌を分離・特定して、細菌感染症の 1 種であ 続けられた。 ることを確定した。この時点で野兎病という病名はまだ 大原研究所で徹底されていたことは、「野兎病菌以外 ない。原因菌は大原 - 芳賀球菌と呼称された。病原体確 は雑菌である」ということであった。野兎病菌の分離に 定に向けた検索を主導したのが海軍軍医中佐だった芳賀 は所長からの金一封があった。小動物からの野兎病菌検 竹四郎で、彼は大原にとっては最初の野兎病の共同研究 査の過程でときおり分離されるツツガムシ病リケッチア 者でもあり、大原研究室初の野兎病研究による学位(医 などはまさに雑菌扱いで、上司からは「そんな雑菌は早 学博士)取得者となった。一時閉鎖となる 1944 年まで く捨てろ」と再三言われた。 に大原研究室からは 145 編の論文発表が続き、芳賀以降 野兎病確定のための病原診断依頼には無料で対応して にも野兎病研究には各地から 8 名が訪れ、いずれにも学 いた。確定症例については、野兎病調査票の提出をお願 位が授与されている。研究内容は、病型、病理、菌の性 いすることになっていた。検査依頼が大原研究所に集中 状、感染経路、媒介動物、ワクチン、など多方面におよ していたために、国内の野兎病の発生に関するデータ んだ。一方では、野兎病研究の本場、米国公衆衛生局の E. ベースとしてはこの調査票が有力なものとなっている。 Francis や G. W. McCoy らとの情報交換や研究材料のや 野兎病には類似疾患が複数あり、特に 1980 年代から多 り取りを通した交流も行っている。1943 年の大原の死 発傾向になったツツガムシ病を含むリケッチア症との鑑 去にともない 1944 年に研究室は閉鎖となった。 別が必要となった。そこでまずはツツガムシ病を、その 1948 年に大原八郎の長男、甞一郎によってこの穴倉 後は紅斑熱と発疹熱も加えて標準対応とした。研究所に のような研究室は再開された。大原甞一郎は外科と耳鼻 おけるツツガムシ病やダニへの対応が活性化したため 科を専門とし、野兎病以外の研究テーマに興味を持って か、大原研究所をツツガムシ病あるいはダニの専門研究 いたものの、その希望は断念せざるを得ない状況であっ 機関との誤解が最近になっても一部にはあるようだが、 た。この時期に野兎病患者が多発し、戦前の大原病院で 本業はあくまでも野兎病研究である。 の野兎病治療を知って受診する患者への対応に迫られた 1999 年、大原研究所は福島市郊外の大原綜合病院附 ためである。ところがすでに父八郎の残した研究材料は 属大原医療センター内への移転に伴い、これまでの野兎 診断用抗原の作成に必須の菌株も含めてほとんど失われ 病研究室、細胞培養室、ダニ研究室を1つの部屋に集約 ていた。そこで、分離株が得られるまでの過渡期には、 させざるを得なくなった。このほかに小さな資料室と動 患者から摘出した病巣部位のリンパ節膿汁から抗原を作 物室が付随した。規模は縮小し研究員も実働 2 名に減少 成して診断に使用したこともあった。 した。2011 年 3 月には東日本大震災に見まわれ、福島 1957 年には新しい施設への移転となった。同じ病院 市内もライフラインは全て止まった。回復には長い日数 内ではあるが、もはや穴倉のような研究室ではない。将 を要したが、研究所のある大原医療センターは早い時点 来の研究所への移行も見据えて、新たな研究室群も用意 で自家発電装置が稼動、また透析施設の維持のため持続 された。まずは細菌室と病理室が稼動し、機材も充実し 的に給水を受けることができた。電源が確保できたこと 始めた。 からフリーザー類は安定していて、研究材料は維持でき 1973 年には大原研究所へ改組となった。筆者が大原 た。もっとも、地震によって物品の多くが散乱した研究 研究所に勤務を始めた 1979 年には、細菌室、病理室、 室の片付け作業は結構大変ではあったし、原発事故に 野兎病研究室、細胞培養室、動物室から構成され、スタッ よって福島市内でも一時は最大で毎時 24 マイクロシー フは実働 5 名であった。この年に、野兎病媒介ダニを扱 ベルトの放射線量が記録された。実験室診断は継続でき うダニ研究室を新設させていただいた。その後、電子顕 ていたものの、交通網は各所で分断されて検体の輸送は 微鏡室が増設された。病院内には小規模ながら野兎病記 滞り、この時期には外部からの検査依頼検体の搬送はほ 念室が設けられていて、この疾患の啓発や研修にも使わ とんどできなくなった。その中で主治医自らが緊急車両 れていた。病理室は、その後の病理診断の診療科への制 に便乗して、研究所まで検体が届けられたこともあった。 度変更によって、病理部に独立して研究所から分離され 大原研究所の時代にも戦前と同様の研究方式は継続さ た。 れ、1951 年以降、研究所からの発表論文数は 2011 年ま 戦後の海外との研究交流は、米国モンタナ州にある でに 350 編を越え、19 名が学位を取得した。 ― 66 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 藤 田 博 己 図1.大原研究所および関係資料.A 大原綜合病院内の研究所入口(1990 年代); B 研究室で実験中の大原八郎 ; C 研究用ノウサギ捕獲の一行(右端が大原八郎); D 野兎病の最初の記載者,本間棗軒 ; E 野兎病が記載された 瘍科秘録第九巻(1837 年)表紙の一部 ; F 野兎病(食兎中毒)の記載部分. ― 67 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 大原研究所から馬原アカリ医学研究所へ ―ダニ媒介性感染症研究の断片― 経過は前後するが、2010 年 3 月 10 日、唐突に財団か おけるこの新しい病気の概念と治療法の確立には特に大 ら 3 月 31 日に研究所を閉鎖するとの通知があった。研 きな難題はなかったものと思われる.国立予防衛生研究 究材料と資料は他の研究機関へ移動するなどして処分す 所(現国立感染症研究所)、秋田大学医学部、福井医科 るようにとのことであった。しかし、その時点で大原研 大学(現福井大学医学部)、徳島大学医学部、愛媛大学 究所が研究分担で参加していた厚生労働省の研究事業が 医学部などからは、随時の研究協力が得られた。大原研 継続中であり、これが終了するまでは研究所を維持すべ 究所も 1986 年以降、主に媒介ダニの野外調査や病原体 きとの交渉の結果、2012 年 3 月末までは継続できるこ 検索、患者の病原診断などで協力関係が続いた。 ととなった。実際には 4 月末までの延長後に閉鎖となっ 2010 年、筆者は馬原院長から研究所立ち上げの協力 た。 要請を受けた。この研究所は、ダニとダニ媒介性疾患の 2012 年 3 月から4月には、実験室診断の受け入れと 研究を目的に馬原医院アカリ疾患研究センターとして、 研究活動を維持しつつ、研究材料と資料は、受け入れに この年の 1 月に開設となったが、まだ施設の建物はなく、 応じてくれた新設の馬原アカリ医学研究所へと移送作業 馬原医院の関連施設の会議室の一角を間借りして、顕微 が続けられた。同年 4 月末日に退所した最後の研究員 2 鏡 1 台とマダニの採集用具の常備からのスタートとなっ 名は、5 月 1 日に馬原アカリ医学研究所へと移った。 た。正規の研究員は馬原医院の職員 1 名が兼任し、筆者 と他 1 名が外部の客員研究員として所属した。その後, 研究施設候補には馬原医院に近い工場跡地が選定され、 3.馬原アカリ医学研究所 解体されずに残されていた工場従業員用保育所を改装し 主にダニ類媒介性で急性発熱性疾患の紅斑熱群リケッ て研究所に使用することになった。これに伴い、2011 チア症は、かつて日本には存在しないとされていた。 年に研究所は現在の名称、医療法人新心会馬原アカリ医 1984 年に徳島県阿南市の私立(当時、現在は医療法人) 学研究所に変更された。 馬原医院の馬原文彦院長が同市で発生した不明熱性疾患 2011 年、研究所の建物がほぼ完成した。2012 年の 4 の患者を診察し、これが国内初確認の紅斑熱群リケッチ 月末までには大原研究所からの研究材料や資料の搬入が ア症、後の日本紅斑熱の発見となった。野兎病の場合に 終了した。リケッチア症や野兎病の病原診断技術と研究 は、患者に初めて遭遇した大原は研究に向けて直ちに研 機能のすべてが大原研究所から引き継がれ、大原研究所 究室を立ち上げたが、馬原は自前の研究施設をすぐには で実施されてきた病原診断・検査についても、引き続き 作っていない。馬原による紅斑熱研究は、臨床面を主体 こちらで対応できることをこれまでに依頼のあった医療 に続けられたため、医院の施設自体が研究室を兼ねてい 施設や研究機関に通知された。2012 年 5 月 1 日から現 たと見ることもできる。馬原には、確定のための病原診 在の施設での活動が開始された。研究所内にダニとダ 断や媒介ダニ調査などの研究協力者が外部に複数いたこ ニ関連疾患情報資料の展示室が併設され、資料館とし とも研究室開設に至らなかった理由だったかもしれな て 2012 年 7 月から一般公開された。研究所は研修の受 い。外部に確定のための病原診断を随時依頼することが 入れと野外調査の拠点としての利用にも対応している。 できたし、また外部から現地調査の協力や材料提供の依 2016 年現在の人員は、研究員が常勤 2 名と兼任 1 名、 頼があれば共同研究に参画してきた。その意味では当時 外部の客員研究員が 2 名である。 の大原が野兎病について頼るべき外部の研究機関がほぼ なお、当研究所を国内唯一のダニ専門の民間研究施設 皆無であった状況とは大きく異なっていた。日本紅斑熱 と認識する向きが一部にはあるようだがそれは誤解であ は新たな独立疾患ではあるが、類似する紅斑熱群リケッ る。国内には当研究所開設以前からダニ研究を専門とす チア症は、古くはロッキー山紅斑熱があり、世界各地に る複数の民間研究施設が存在する。それらの研究から集 発生が既知であったことから、診断法や治療法などの大 積されてきた多くの研究業績と活動に敬意を表したい。 枠については多くの知見が集積されていた。臨床方面に ― 68 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 藤 田 博 己 図2.馬原アカリ医学研究所.A 研究所外観 ; B 表札 ; C 資料展示室 ; D 実験室. ― 69 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016 大原研究所から馬原アカリ医学研究所へ ―ダニ媒介性感染症研究の断片― 記 に情報・資料の収集 医療法人新心会 馬原アカリ医学研究所/馬原ダニの資 2. ダニ媒介性疾患の実験室診断、ダニの同定、疫学調 査、その他の研究と医療活動への支援 料館 〒 779-1510 徳島県阿南市新野町是国 56-3 3. ダニ媒介性疾患の資料とダニ類標本の展示公開 Tel/Fax 0884-36-3601 4. その他の関連事項 資料館の開館日:平日 9 時から 17 時。土・日・祝日 は休館。臨時休館日あり。 アクセス:JR 牟岐線「新野」駅下車、徒歩 3 分 事業内容 1. ダニ媒介性疾患と寄生性ダニ類に関する研究ならび 連絡責任者:藤田博己、馬原アカリ医学研究所、〒 779-1510 徳島県阿南市新野町是国 56-3. E-mail : fujitah7knu@y8.dion.ne.jp Correspondence:Hiromi FUJITA, Mahara Institute of Medical Acarology, Korekuni 56-3, Aratano-cho, Anan, Tokushima 7791510, Japan Brief histories of Ohara Research Laboratoy and Mahara Institute of Medical Acarology Hiromi FUJITA 1,2 1 Mahara Institute of Medical Acarology, 2 Fujita Health University ABSTRACT Ohara Research Laboratory, formerly The Laboratory of Ohara Hospital(latterly Ohara General Hospital), in Fukushima, Japan, was established in 1925 for research on tularemia. Up until 2012, this laboratory conducted active research on the particular disease caused by Francisella tularensis. Other acari-borne diseases were also studied at the laboratory in more recent times. In 2010, Mahara Institute of Medical Acarology, formerly Mahara Hospital Center for Medical Acarology, in Anan, Tokushima, Japan, was established for research on acari-borne diseases and their vectors. Brief histories of these distinguished institutions are presented here. Key words:Ohara Research Laboratory, Mahara Institute of Medical Acarology, acari-borne infectious disease, tularemia, Francisella tularensis, Japanese spotted fever, Rickettsia japonica, research activity. ― 70 ― Jpn. J. Vet. Parasitol. Vol. 15. No. 1 2016
© Copyright 2024 Paperzz