@A6+ working fluids ()*+,-./0123 • STUVW (equation of state) p = f ( T, v ) • kl() (compressibility factor) OPQR.STUVW XYZR XYZR.ST[ XYZR.ST\] – XYZR z = pv/(RT) = 1 – OPQR z = 1 + B! + C!2 + !! !"#$%&' virial equation of state !"#$%&' virial equation of state 1.0 • z = 1 + B! + C!2 + !! Tr=2 Z T r=1.2 =1 c T / T T r= 0.2 0 1 pr=p/pc 7 456+,78%&9( real fluids and corresponding state real fluids and corresponding state dbce pc ^_` *Za3bc` a/ :;>? j / pr=p/pc 456+,78%&9( :;>? pr= p/pc B: "#$%&'()*#+,-./0123 second virial coefficient C: "4$%&'() third virial coefficient $%&'56789:;<=>?@ABC +,-DEF=.()5GHIJKLMNC pc Z / i hZ g f Tr= T/Tc Tc *Za3bc` a / j / fg aR i #/e mi Zk= fgh Z/ :;B= dbce :;<= !r=!/!c !c ^_` COYZ$[R specific enthalpy ()*+ ideal gas pv = RT R = R0 / M M [kg!kmol-1]:n'o[ R [kJ!kg-1!K-1] :ZRp) R0 [J!mol-1!K-1]qn'ZRp) rrrrrrrrrr*stZRp)3 R0 = 8.314472 J!mol-1!K-1 CDEF specific heat capacity "u‘’ dq = du + pdv OYZ$[R\]^._`aLbcd h [kJ!kg-1]= u + pv efcd, dh = du + pdv + vdp S>23gh dp = 0 dh = du + pdv dhhDFaijklmdJnDGHogc 6+GH Thermophysical Properties of Fluids "u‘’ dq = du + pdv +IJKL.MN dq = du LICD cV=("q/"T)V=("u/"T)V >?JKL.MN dq = du + pdv = dh L>CD cp=("q/"T)p=("h/"T)p OP$QRST.UV Law of equipartition of energy • ZR+,.“”}~'•€6•.vw.–—˜ …DƒˆI™+Dš+Œ›œ 1—˜…•žŸ6*WX #35¡BC – ¢£,+,6yz.(x,y,z)<—˜…6 3q u=¤¥¦§¨RT – 2£,+,6yz5©.ªŸ.«¬*2-.£,._® >¯°©.ªŸ.«¬6±²<³B3 —˜…6 ¥´*¥µu3=¶q u=¤¶¦§¨RT – 4£,·ŠD¡B5—˜…665¡Bqu=¤¸¦§¨RT ZR+,vwx ZR+,.yzvwD{|F vw}~'•€•‚ƒ„…D†‡ˆIKBC u=(3/2)pV=(3/2)RT „…u‰Š‹Œ•B.D(3/2)R.Ž••• cV=(3/2)R ()*+%&.CDEF specific heats at ideal gas state dh = du + d(pv) = cV dT +RdT = cp dT cp = cV + R CDCq " = cp / cV > u ()*+.%&pqs/012 3t ()*+.%&pqs/012 3t change of states for ideal gas (quasi-static process) change of states for ideal gas (quasi-static process) ™„\]*ÁV3 ™k\]*ÁV3 ™Â\]*ÁV3 ÃŽ\]*ÁV3$Ä%ÅÆ€Ç\] ™„\]*ÁV3 ™k\]*ÁV3 ™Â\]*ÁV3 ÃŽ\]*ÁV3$Ä%ÅÆ€Ç\] SBpq isothermal change S>pq isobaric change • pv = RT = constant dq = du + dw = cVdT + dw = dw = pdv = (RT/v)dv • q12 = w12 = RT (ln v2 # ln v1) = RT ln (v2/ v1) = p1v1 ln (v2/ v1) = p2v2 ln (p1/ p2) • ¼HžŽ[•½I¾¿D\ÀŒ›BC SEpq isochoric change • p/T = constant = R/v dw = pdv = w12 = 0 • dq = du + pdv = du = cv dT q12 = u2 - u1 • XYZR.¹º6†Ž•sp»¡.< q12 = u2 - u1 = cv (T2 - T1) • v/T = constant = R/p w12 = p (v2 # v1) • dq = du + pdv = dh = cp dT r(vdp = 0) q12 = h2 # h1 • XYZR.¹º6†Ž•sp»¡.< q12 = h2 # h1 = cp (T2 # T1) uDsSOYvw[Rtpq adiabatic (isentropic) change dq = du + dw = 0 dw = -du ()*+.MNq w12 = -u12 = cv(T1-T2) ÃŽ\].¹º6œÈÉ}~'•€\]• ¾¿D¡BC uDsSOYvw[Rtpq adiabatic (isentropic) change uDsSOYvw[Rtpq adiabatic (isentropic) change vdp+ (cp / cv) pdv = 0 vdp+ " pdv = 0 *1/p3dp+ " (1/v)dv = 0 ln p + " ln v = constant ()*+.MN pdv + vdp = RdT dq = cv dT + pdv = cv(pdv + vdp )/R+ pdv = 0 cv(pdv + vdp ) + R pdv = 0 cv vdp+(cv + R ) pdv = 0 cv vdp+ cppdv = 0 vdp+ (cp / cv) pdv = 0 p v " = constant p = RT/v JŸ T v " -1 = constant uDpq,x"vwRypq adiabatic and polytropic changes XYZR.ÃŽ\] p v " = constantœ # =" :†Ž† OPZR.ÃŽ\] # p v = constantœ# qÃŽÊ) x"vwRypq polytropic changes ÃŽ\] n=# p isentropic exponent OPZR.Ä%ÅÆ€Ç\] p v n = constantœn qÄ%ÅÆ€ÇÊ) w polytropic exponent x"vwRypq polytropic changes v ()*+.%&pq change of states for ideal gas n=0 p n=% n= 1 n= # v ¾¿ w12 Ž[ q12 ™„\] RTln(v2/v1) RTln(v2/v1) ™k\] p(v2-v1) h2 - h1 ™Â\] 0 u2 - u1 ÃŽ\] u1 - u2 0
© Copyright 2024 Paperzz