CMSI計算科学技術特論C (2015/10/08) ALPS と量子多体問題 ② 藤堂眞治 東京大学大学院理学系研究科 / 物性研究所 / NIMS wistaria@phys.s.u-tokyo.ac.jp 「ALPS と量子多体問題」Agenda (1/2) • CMSI計算科学技術特論Cの全体像 • 対象と目標、講義項目、プログラム • ALPS (Applications and Libraries for Physics Simulations) とは? • 量子格子模型とは? 強相関量子多体系のためのシミュレーション手法 • ALPS の生まれた背景、歴史と活用事例 • ALPS の設計 • シミュレーションのワークフロー、ALPS階層構造 • XML / HDF5 による入出力 • C++言語のテンプレートとジェネリックアルゴリズム • Pythonによる後処理・可視化 • アプリケーション・フレームワークとしての利用 2 「ALPS と量子多体問題」Agenda (2/2) • ALPS の開発 • ALPLS開発の経緯と開発体制、ライセンスと「ビジネスモデル」 • オープンソースのツールの利用 (ビルドシステム、バージョン管理、バグ追跡、ド キュメント作成、GUI・可視化) • アプリケーション普及のために • ユーザサポート (ドキュメント、講習会、ワークショップ) • 公開と普及 (MateriApps と MateriApps LIVE!) • プロジェクトの普及と継続に不可欠なものは? 3 ALPS の特徴 • 任意の格子 • XML フォーマットによる格子構造の定義 • ユニットセルの繰り返しによる格子生成 • 格子を任意の有限グラフ (頂点と辺の集合) として定義することも可能 • 任意のハミルトニアン (模型) • XML フォーマットによる量子数、演算子の定義 • 数式によるハミルトニアンの定義 • 様々な最新の解法 (アプリケーション): ED、CMC、QMC、DMRG、DMFT • 全ての ALPS アプリケーションに共通の入力形式 • 汎用的な出力形式、Python による解析・グラフ作成ツール 4 ALPS の階層構造 tools XML manipulation Python binding GUI applications MC domain-specific libraries lattice model observables scheduler numerics QMC random ublas ED DMRG DMFT iterative eigenvalue solver Boost library generic C++ C / Fortran graph serialization XML/XSLT BLAS LAPACK MPI 5 ALPS のワークフロー Lattice XML File square lattice Model XML File H = J Σ < i,j > Parameter File LATTICE = "square lattice" MODEL = "spin" L = 16 Jxy = 1 Jz = 2 SWEEPS = 10000 THERMALIZATION = 1000 { { { { T T T T = = = = 0.1 0.2 0.5 1.0 } } } } parameter2xml tool <LATTICES> <LATTICE name="square lattice" dimension="2"> <PARAMETER name="a" default="1"/> <BASIS><VECTOR>a 0</VECTOR><VECTOR>0 a</VECTOR></BASIS> </LATTICE> <UNITCELL name="simple2d" dimension="2"> <VERTEX/> <EDGE> <SOURCE vertex="1" offset="0 0"/> <TARGET vertex="1" offset="0 1"/> </EDGE> <EDGE> <SOURCE vertex="1" offset="0 0"/> <TARGET vertex="1" offset="1 0"/> </EDGE> </UNITCELL> <LATTICEGRAPH name="square lattice"> <FINITELATTICE> <LATTICE ref="square lattice"/> (0,1) <EXTENT dimension="1" size="L"/> <EXTENT dimension="2" size="L"/> <BOUNDARY type="periodic"/> </FINITELATTICE> <UNITCELL ref="simple2d"/> (0,0) (1,0) </LATTICEGRAPH> </LATTICES> Parameter XML File application programs [ S iz S jz + ( S i+ S j- + S i- S j+ )/ 2 ] - h Σ i S iz <MODELS> <BASIS name="spin"> <SITEBASIS name="spin"> <PARAMETER name="local_S" default="1/2"/> <QUANTUMNUMBER name="S" min="local_S" max="local_S"/> <QUANTUMNUMBER name="Sz" min="-S" max="S"/> <OPERATOR name="Sz" matrixelement="Sz"/> <OPERATOR name="Splus" matrixelement="sqrt(S*(S+1)-Sz*(Sz+1))"> <CHANGE quantumnumber="Sz" change="1"/> </OPERATOR> <OPERATOR name="Sminus" matrixelement="sqrt(S*(S+1)-Sz*(Sz-1))"> <CHANGE quantumnumber="Sz" change="-1"/> </OPERATOR> </SITEBASIS> </BASIS> <HAMILTONIAN name="spin"> <PARAMETER name="J" default="1"/> <PARAMETER name="h" default="0"/> <BASIS ref="spin"/> <SITETERM> -h * Sz(i) </SITETERM> <BONDTERM source="i" target="j"> J * (Sz(i)*Sz(j) + (Splus(i)*Sminus(j)+Sminus(i)*Splus(j)))/2 </BONDTERM> </HAMILTONIAN> </MODELS> Quantum Lattice Model Quantum Monte Carlo Exact Diagonalization DMRG DMFT Python based evaluation tools Plots Outputs in HDF5 & XML 6 ALPS ライブラリ・フレームワークを使う利点 • エラーバーと自己相関時間の自動計算 (ALPS/alea) • 自動並列化 & ロードバランシング (ALPS/scheduler) • チェックポイント作成とリスタート機能 (ALPS/scheduler) • XML・HDF5形式による計算結果の自動出力とこれらを扱うツール • 入力パラメータの柔軟な扱い (ALPS/parameter) • 擬似乱数生成器 (ALPS/random) • 格子の容易な取扱い (ALPS/lattice) • 量子ハミルトニアンの容易な取扱い (ALPS/model) • アプリケーションの「ALPS化」のチュートリアルを用意 7 CMSI計算科学技術特論C (2015/10/08) ALPS 実行デモ 参考文献: 藤堂「“実験技術”としての量子多体系シミュレーションソフトウェア ALPS」 日本物理学会誌 70, 275-282 (2015) 藤堂・加藤「CMSIハンズオン 物質科学計算パッケージソフト MateriApps LIVE!」 http://www.slideshare.net/cms_initiative/20150902 CMSI計算科学技術特論C (2015/10/08) ALPS の開発体制 ALPS の展開 • 上方展開 (大規模化・高性能化・並列化) • 「大規模並列量子モンテカルロ法」(ALPS/looper) の高度化 • 高並列スケジューラ(ALPS/parapack)のハイブリッド多重並列化 • Fortran, C プログラムのための API 作成 • 下方展開 • 実験家・理論家による幅広い利用の促進 • Windows/Macintosh 用バイナリインストーラの開発 • ワークフロー・履歴管理システムとの統合 • GUI (グラフィカルユーザインターフェース)の開発 10 Windows、Mac OS X 用バイナリインストーラ for Mac OS X for Windows 11 ワークフロー・履歴管理システムとの統合 http://www.vistrails.org/ 12 「公開ソフト」への長い道のり • ソースコード • ビルドシステム • テストスイート • チュートリアル • Webページ • ユーザサポート • ライセンス • アプリ名 • ロゴ • ドキュメント • 講習会、、、、、、 13 ALPS プロジェクトの規模 • 開発者: 約30人 (7ヶ国) • ソースコードの行数 Measuring programming progress by lines of code is like measuring aircraft building progress by weight. — Bill Gates ALPS Libraries ALPS Applications examples, tutorials, tests 言語 C++ Python C++ Fortran C++ Fortran Python 行数 148,000 13,000 94,000 11,000 34,000 16,000 1,000 • アプリケーションよりもライブラリの方が大きい • サンプル、チュートリアル、テストもかなり大きな比重を占める 14 開発・サポート環境 • ソースコードの規模、開発体制が大きくなると今までの方法では破綻する • 開発・サポートのためのツールを一から作りあげるのは非現実的 • フリーソフトウェアの利用 • ビルドシステム: CMake • ソースコードの管理: Subversion • プロジェクト管理・バグ追跡: Trac • ドキュメント作成: MediaWiki • メーリングリスト: Mailman • Linux ワークステーションが1台あれば、あるいは web サービスを利用すれば、これ らの環境を整えるのは現在では比較的容易 15 ビルドシステム • CMake - http://www.cmake.org • Makefileを生成するためのユーティリティー (configureスクリプトに対応) • Windows の Visual C++ 用ソリューションファイル、Mac OS X の Xcode 用プ ロジェクトファイルの生成も可能 • 設定は CMakeLists.txt に記述する • テスト(CTest)やバイナリ配布(CPack)の機能もある • ファイルの依存関係の自動検出 CMakeLists.txt cmake Makefile make 実行ファイル プログラム開発時に作成 ビルド・実行環境で行う subversion でファイルを管理 PC, サーバ, スパコン等 16 VCS (Version Control System) によるソース管理 • Subversion - http://subversion.apache.org/ • 開発者が複数になると、ディレクトリ名やログファイルによ るバージョン管理はすぐに破綻する • ソースコードをサーバー上で一括管理 • ネットワーク経由でソースを check out/check in • 更新毎に一意なバージョン番号を付与 • 全ての修正履歴を保存 • 複数人が同時に更新した場合に衝突を回避するしくみ • ブランチ・マージ・タグ付けなどが可能 • 開発者が一人、公開の予定がない場合でも積極的に使うべき • 東大理学部物理3年の講義「計算機実験」でもVCSを教えている 17 BTS (Bug Tracking System) の利用 • Trac - http://trac.edgewall.org/ • プロジェクト管理とバグ追跡のためのツール • Web ブラウザからアクセス・操作 • 開発者の情報共有のための wiki • Subversion との連携 (ソース、修正履歴の web 上での閲覧) • プロジェクト管理 (ロードマップ、マイルストーンの管理) • チケットシステム (issue 管理) • バグやタスクの登録 • 担当者の決定 • 修正状況の追跡 18 Wiki によるマニュアル作成・管理 • MediaWiki - http://www.mediawiki.org/wiki/MediaWiki • もともとはウィキペディアのために開発された • Wiki とは? • Webブラウザを利用してWeb文書を書き換えるシステム • ネットワーク上のどこからでも書き換えができる。共同作業が容易 • Webブラウザがあれば編集作業が行える • HTMLよりも簡潔な書式 • 文書間のリンクの作成が容易 • ALPS Wiki のコンテンツ • ニュース、インストール方法、ALPSに関連する論文、発表資料、ライブラリリ ファレンスマニュアル、チュートリアル 19 の利用 • git - https://git-scm.com • 分散型バージョン管理システム • Linux カーネルの開発に使うために開発された • 近年、subversion の後継として普及が進んでいる • GitHub - https://github.com • git を核とした OSS 開発ポータル (例: MateriApps LIVE!) • git + ソースコードブラウザ + wiki + issue 管理 + 統計 + リリースページ作成 • 無料 + 教育機関所属者は無料で非公開リポジトリを作成可 (GitHub Education) • git & GitHub を使ってみたい人 CMSIハンズオン「バージョン管理システム」 • 神戸 & 柏で開催、CMSI web でも資料公開中 20 ALPS メーリングリスト • Mailman - http://www.gnu.org/software/mailman/index.html • 開発者メーリングリスト • 1.7通/日 (2010年∼2014年) • 開発方針に関する意見交換、リリーススケジュール調整、担当者調整 • Tracチケットの変更ログも自動的にここに流れる • ユーザメーリングリスト • 1.1通/日 (2010年∼2014年) • Web からの自動登録 • 開発者 + ユーザコミュニティーによるサポートの場 • FAQ Wiki ドキュメントへ • バグレポート、要望など Trac チケットへ 21 ワークショップ・講習会 • ALPS developers workshop • 今後の開発方針についてブレインストーミング & ディスカッション • ALPS users workshop • アルゴリズムについてのレビュートーク • Wiki のチュートリアルを用いて ALPS の実習 • ALPS ハンズオン (CMSI ハンズオン) • 半日程度のチュートリアル • とにかく ALPS を動かしてみることを目標に 22 ライセンス = ビジネスモデル • ALPS Library License, ALPS Application License • GNU General Public License (GPL) を基本としたライセンス • Non-commercial academic use の場合自由に利用可能 • Commercial use の場合は要相談 • 自由に再配布可 • ユーザが変更を施したコードも同じライセンスの下で再配布可 • ALPSを用いた研究成果を公表する場合には acknowledgement と論文の引用が義 務 (ALPSをユーザーコードのテストのみに使った場合を含む) 1. In any scientific publication based wholly or in part on the Library, the use of the Library must be acknowledged and the publications listed in the accompanying CITATIONS.txt document must be cited. 23 ALPS 論文 • ALPS Library に関する論文 • B. Bauer et al. The ALPS project release 2.0: Open source software for strongly correlated systems, J. Stat. Mech., P05001 (2011). • A. F. Albuquerque et al. The ALPS project release 1.3: open source software for strongly correlated systems, J. Mag. Mag. Mat. 310, 1187 (2007). • F. Alet et al. The ALPS Project: Open Source Software for Strongly Correlated Systems, J. Phys. Soc. Jpn. Suppl. 74, 30 (2005). • 加えて、ALPS Application ごとに引用文献が定められている • 誰を(どこまで)アプリの著作者に含めるか? 論文の著者に含めるか? • 永遠の課題 24 Department for Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, University of Munich, 80333 Munich, Germany 18 Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106, USA 19 Institute for Solid State Theory, RWTH Aachen University, 52056 Aachen, Germany 20 Institut für Theoretische Physik III, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany E-mail: troyer@comp-phys.org 17 ALPS 2.0 Paper J Received 23 December 2010 Accepted 15 March 2011 Published 4 May 2011 ournal of Statistical Mechanics: Theory and Experiment Online at stacks.iop.org/JSTAT/2011/P05001 doi:10.1088/1742-5468/2011/05/P05001 J. Stat. Mech. (2011) P05001 Abstract. We present release 2.0 of the ALPS (Algorithms and Libraries The ALPS project release 2.0: open for Physics Simulations) project, an open source software project to develop source software for strongly correlated libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly The ALPS project release 2.0: open systems correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, source software for strongly correlated systems 1 9,10 1 5 1 J. Stat. Mech. (2011) P050 B Bauer1, L D Carr2, H G Evertz3, A Feiguin4, J Freire5, common evaluation and plotting tools, and simulation programs. The programs S Fuchs6 , L Gamper1, J Gukelberger1, E Gull7, S Guertler8, enable non-experts to start carrying out serial or parallel numerical simulations A Hehn1 , R Igarashi9,10, S V Isakov1 , D Koop5, P N Ma1, by providing basic implementations of the important algorithms for quantum P Mates1,5 , H Matsuo11, O Parcollet12, G Paw!lowski13 , lattice models: classical and quantum Monte Carlo (QMC) using non-local J D Picon14, L Pollet1,15, E Santos5 , V W 1Scarola16, 2 3 4 simulations, 5 exact and full diagonalization (ED), updates, extended ensemble B , L D Carr , H G Evertz , A Feiguin , J Freire , 17 5 1 Bauer 10,11 18 , S Trebst1 , the density matrix U Schollwöck , C Silva , B Surer , S Todo group (DMRG) both in a static version and 6 1 renormalization 7 1 19,20 S Fuchs L Gamper , J Gukelberger , E Gull , S Guertler8, and S,Wessel M Troyer1,21, M L Wall2, P Werner a dynamic time-evolving block decimation (TEBD) code, and quantum Monte , R Igarashi , S V Isakov , Ddynamical Koop , mean P N field Ma theory , A Hehn Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland Carlo solvers for (DMFT). The ALPS libraries 1,5 CO 80401, USA 11 12 13 2 Department of Physics, Colorado School of Mines, Golden, , H Matsuo , O Parcollet , G Paw! l owski , P Mates provide a powerful framework for programmers to develop their own applications, 3 Institut für Theoretische Physik, Technische Universität Graz, A-8010 Graz, 14 1,15 5 16 for instance, simplify E Santos , V Wgreatly Scarola , the steps of porting a serial code onto a J D Picon , L Pollet ,which, Austria 17 5 1 10,11 18 4 Department of Physics and Astronomy, University of Wyoming, Laramie, distributed memory, machine. B Surer , S Todo S TrebstMajor , changes in release 2.0 include U Schollwöck , C Silva ,parallel, WY 82071, USA of HDF5 for S binary data,19,20 evaluation tools in Python, support for the 1 , M L Wall2,the P use Werner and Wessel MUniversity Troyerof1,21 5 Scientific Computing and Imaging Institute, Utah, Windows operating system, the use of CMake as build system and binary 1 Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland Salt Lake City, UT 84112, USA installation packages for Mac OS X and Windows, and integration with the 6 Institut für Theoretische Physik, Georg-August-Universität Göttingen, 2 Department of Physics, Colorado School of Mines, Golden, CO 80401, USA VisTrails workflow provenance tool. The software is available from our web server Göttingen, Germany 3 für Theoretische Physik, Universität Graz, A-8010 Graz, 7 Columbia University, New York, NY 10027, Institut atTechnische http://alps.comp-phys.org/. USA 8 Bethe Center for Theoretical Physics, Universität AustriaBonn, Nussallee 12, 4 Department of Physics and Astronomy, University of Wyoming, Laramie, 53115 Bonn, Germany Keywords: density matrix renormalization group calculations, classical Monte 9 Center for Computational Science and e-Systems, Japan Atomic Energy WY 82071, USA Carlo simulations, quantum Monte Carlo simulations, quantum phase transitions Agency, 110-0015 Tokyo, Japan 5 Scientific Computing and Imaging Institute, University of Utah, (theory) 10 Core Research for Evolutional Science and Technology, Japan Science and Salt Lake City, UT 84112, USA Technology Agency, 332-0012 Kawaguchi, Japan 6 Institut für Theoretische Physik,ArXiv 11 Department of Applied Physics, University ePrint: 1101.2646 Göttingen, Georg-August-Universität of Tokyo, 113-8656 Tokyo, Japan 12 Institut de Physique Théorique, CEA/DSM/IPhT-CNRS/URA 2306, Göttingen, Germany CEA-Saclay, F-91191 Gif-sur-Yvette, France7 Columbia University, New York, NY 10027, USA 13 Faculty of Physics, A Mickiewicz University, Umultowska 85, 61-614 Poznań, 25 8 Bethe Center for Theoretical Physics, Universität Bonn, Nussallee 12, Poland 1 14 53115 Bonn, Germany J. Stat. Mech. (2011) P05001 J. Stat. Mech. (2011) P05001 J ournal of Statistical Mechanics: Theory and Experiment The ALPS project release 2.0: open source software for strongly correlated systems Contents The ALPS project release 2.0: open source software for strongly correlated systems 1. Introduction 4 10.License 17 2. The ALPS project 2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2. New features in version 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 6 11.Future development plans 18 3. Building and installing ALPS 3.1. Build system . . . . . . . . 3.2. Building ALPS from source 3.3. Binary installation packages 3.4. LiveALPS . . . . . . . . . . . . . . 6 6 6 7 7 4. Data formats 4.1. XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2. HDF5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 8 5. ALPS libraries 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Evaluation tools in Python 9 6.1. The Python language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6.2. The pyalps package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7. Applications 7.1. Exact diagonalization . . . . . . . . . . . . . . . . . . . . . . 7.1.1. Sparse diagonalization code sparsediag. . . . . . . . 7.1.2. Full diagonalization code fulldiag. . . . . . . . . . . 7.2. Classical Monte Carlo simulations . . . . . . . . . . . . . . . 7.2.1. Classical Monte Carlo codes for spin models spinmc. 7.3. Quantum Monte Carlo simulations . . . . . . . . . . . . . . 7.3.1. The looper code. . . . . . . . . . . . . . . . . . . . . 7.3.2. The directed loop algorithm code dirloop sse. . . . 7.3.3. The worm algorithm code worm. . . . . . . . . . . . . 7.3.4. The extended ensemble code qwl. . . . . . . . . . . . 7.4. Density matrix renormalization group (DMRG) algorithms . 7.4.1. The dmrg code. . . . . . . . . . . . . . . . . . . . . . 7.4.2. Time-evolving block decimation code tebd. . . . . . . 7.5. Dynamical mean field theory QMC solvers dmft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 11 11 11 11 11 12 12 12 12 12 12 12 12 13 8. Integration with the VisTrails workflow and computational provenance tools 13 8.1. Computational provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 8.2. The ALPS VisTrails package . . . . . . . . . . . . . . . . . . . . . . . . . . 14 9. Tutorials and examples 15 9.1. Tutorials on using the ALPS codes . . . . . . . . . . . . . . . . . . . . . . 15 9.2. Tutorials on writing codes with ALPS . . . . . . . . . . . . . . . . . . . . . 16 doi:10.1088/1742-5468/2011/05/P05001 3 19 Appendix A. Scientific workflows and VisTrails A.1. Workflows . . . . . . . . . . . . . . . . . . . A.2. Data provenance . . . . . . . . . . . . . . . . A.3. Caching and persistent storage . . . . . . . . A.4. Sharing content and reproducible research . Appendix B. Python examples Appendix C. ALPS installation C.1. Prerequisites . . . . . . . C.2. The CMake build system C.3. Installation steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20 20 23 24 24 with CMake 26 . . . . . . . . . . . . . . . . . . . . . . . . . 26 . . . . . . . . . . . . . . . . . . . . . . . . . 27 . . . . . . . . . . . . . . . . . . . . . . . . . 28 Appendix D. The ALPS XML schemas 29 D.1. Lattice definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 D.2. Model definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 References 33 1. Introduction In this paper we present release 2.0 of the ALPS project (Algorithms and Libraries for Physics Simulations), an open source software development project for strongly correlated lattice models. This paper updates the publications on the previous releases [1, 2] to include changes and new features in version 2.0. Quantum fluctuations and competing interactions in quantum many-body systems lead to unusual and exciting properties of strongly correlated materials such as quantum magnetism, high temperature superconductivity, heavy fermion behavior, and topological quantum order. The strong interactions make accurate analytical treatments hard and direct numerical simulations are essential to increase our understanding of the unusual properties of these systems. The last two decades have seen tremendous progress in the development of algorithms, including refinements to existing numerical algorithms, such as exact diagonalization [3], the density matrix renormalization group [4]–[7] and (quantum) Monte Carlo (QMC) techniques, as well as the advent of a new class of variational approaches based on tensor network states [8]–[12]. Some of the algorithmic refinements have led to computational speedups of many orders of magnitude, such as the development of non-local update schemes [13, 14] in QMC methods [15]–[22], the sampling of extended ensembles [23]–[28], or the continuous-time approach to quantum impurity problems [29]–[33]. These advances often come at the cost of increased algorithmic complexity and challenge the current model of program development in this research field. In contrast to other research areas, in which large ‘community codes’ are being used, the field of strongly correlated systems has so far been based mostly on single codes developed by individual researchers for particular 26 doi:10.1088/1742-5468/2011/05/P05001 4 J. Stat. Mech. (2011) P05001 . . . . J. Stat. Mech. (2011) P05001 . . . . Acknowledgments CMSI計算科学技術特論C (2015/10/08) アプリケーション普及のために アプリケーション普及のための条件 • そもそも、なぜ普及させる必要があるのか? • 「良いソフトウェア」を公開することは必須の条件、だが十分条件ではない • 公開後もユーザに「関わり続ける」ことが重要 • ソフトが「生きている」と感じてもらう • バグフィックス、機能追加、バージョンアップ • ユーザーサポート、リアクション • チュートリアル、事例紹介の充実 • 結局のところ、普及するかどうかはタイミングや運によるところが大きい • それでも「打率」を上げることは可能 28 「公開アプリ」プロジェクトの立ち上げ • 最初から「公開」を前提に立ち上げる • 最初は小さく、素早く、簡潔に Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you are, by definition, not smart enough to debug it. — Brian W. Kernighan • 最初の三ヶ月で公開までもっていく • お金を取ってくるなら、プロジェクトを立ち上げた後で • シニア(40歳以上)やお金を持っている人抜きで始める • 実際に書く(書ける)人だけでチームを組む • アプリの「名前」や「ロゴ」は重要(かも) 29 開発・普及に役立つツールや仕組みの利用 • GitHub、SourceForge、SlideShare、YouTube • MateriApps http://ma.cms-initiative.jp/ • MateriApps web • MateriApps LIVE! • MateriApps Installer • MateriApps Cloud (coming soon?) • コミュニティーによるサポート • CMSIハンズオン開催サポート • 物性研 ソフトウェア高度化プロジェクト 30 物性研ソフトウェア高度化 第1号: HΦ (エイチファイ) • 並列計算機に対応した数値厳密対角化法による有効模 型ソルバーパッケージ。広汎な多体量子系の有効模型 (多軌道ハバード模型、ハイゼンベルグ模型、近藤格子 模型など)の基底状態及び低励起状態の波動関数を並 列計算によって求める。ランチョス法による基底状態 計算、熱的純粋量子状態を利用した比熱・帯磁率の温 度依存性計算が可能 • 開発代表: 山地洋平(東大院工) • 2015/10/09 (明日!) 17:00 (JST) 公開予定 • MateriApps http://ma.cms-initiative.jp/ja/listapps/hphi • GitHub https://github.com/QLMS/HPhi/releases It always takes longer than you expect, even when you take into account Hofstadter's Law. — Hofstadter's Law 31 a Portal to Materials Science Simulation Computational Materials Science in Japan S. Todo1,2, R. Igarashi2, S. Kasamatsu2, T. Kato2, N. Kawashima2, T. Kawatsu3, Y. Konishi2, H. Kouta2, H. Matsuo4, M. Noda5, S. Sasaki6, Y. Terada7, S. Tsuchida6, K. Yoshimi2, K. Yoshizawa2 (MateriApps collaboration) (1UTokyo, 2ISSP, 3YCU, 4RIST, 5IMS, 6Ageha, 7IMR) Current status and issues in Computational Materials Science - Computational Materials Science Initiative - Promoting cutting-edge researches on wide topics ranging from strongly correlated electrons, electric devices, molecules to structural materials From Users’ viewpoint: - New algorithms should be implemented and used, or it will be forgotten and lost - “In-house” code will be left uncontrolled once the graduate student or PostDoc leaves the group - Costs too much to write and maintain the documents - Development of software itself is hardly considered as scientific achievements - Little idea about potential “customers” and their needs - State-of-the-art algorithms developed and optimized for massively parallel supercomputers: the K computer, HPCI systems, etc. - Faster, more stable, and more accurate simulations of larger systems - Provides advanced functionality for leading-edge researches: conductivity, excited states, extended ensembles, downfolding, etc. a Portal Site for Materials Science Simulation From Developers’ viewpoint: mismatch between seeds and needs “How and where can we distribute our codes?” - Trade-off between “initial cost” and “scalability, functionality, accuracy, performance” - What kind of applications? Who develops them? - Which application should we use for our problem? - Manual and documentation are not well prepared - How can we evaluate the accuracy of the results? “How and where can we find and learn the best Apps?” - Introduces materials science applications/tools/databases - Search from category, features, targets, methods/algorithms - Information of applications/tools - brief introductions, links to homepage, installation, usage, online hands-on, developer’s voice, updates, license, etc. http://ma.cms-initiative.jp/ - Forum for exchanging experiences between users and developers - Voice from users CMSI Open-source Application Software Goal of MateriApps Project Electronic structure calculation (solid state physics) Formation of community in the field of computational materials science through the promotion of open-source software... - Performs electronic structure calculation for a wide range of materials including crystals, interfaces, liquids, etc. For example, OpenMX is able to deal with non-collinear magnetism and non-equilibrium Green's function calculations for electron transport Pr Computational science experts n ne w rar ts m ec lthou h the terms o f use oj ormat. pr b nar nt d an ce rfa te arch se gr a m de v elo p er s Code development, documentation, user support The development of better programs, and high ratings from outside for the algorithms and programs are important il l on the nn be en source ro ram. In order sers ma be able to alter the sou e code or t t o be used b a w de ran e o users, or incor orate their own ro ram i acco first th e code must work correctl , and it ance with the cal culation re uired, r the must hav e an eas -to-use user nter ace ma be able to make modifications to t he such as a GUI as well as documentation n r i ri i ll n n in a anese or En lish such as manua ls exam les are the L nux O , the macs for installin and usi n it, and tutor ials ed tor, and the com ler. for t ical users. In addition, user su or Ther e are var ous t es o users n the us n ema l, bullet n boards and so on, field of com utational materials s ence. and re ular course s for users are es se Theorists ma us e the r o rams s la t al. It s also nec essar to res ond to forms for veri in new theories an ox re ests for b f ixes and new featu res mations, or for tr in out new ide while on an on oin basis. ex er mental researchers and res hers To dat e there is l ittle o en source so n cor orat ons w ll use them or n r re ware rom a an n the eld o com ut in ex erimental resul ts a nd model real i n lm ri l i n Th m in r materials. For com utational s ence n f r hi r h r l n ex rts, o n source software sh ld be nvolved n mak so tware ree ava seful for verif in t he out ut re lts of l In r r l r h rri r he r own progra ms, benchmark co r ov d n and ma nta n n o en source ut n s eed, and as modules or c led r o rams, M I s work n cont nuousl alculations. Meanwhile, the r ui ments to rov de tools or cre at n s tes or ma for o en source software d iffer acco in to a in source code and rovidin r he use to whi ch the are ut. T he r ams and documentation, as well as nclude ease o use r chness o ture im rovin courses for users and the we on ex lains the a lications ava s eed, accurac , and so on (Fi .1 . site which l nown as l a . At the sa me http://cmsi.github.io/MateriAppsLive/ time, we are wor kin to im rove the k ll D nR r h r Conversel , what is th e oint of makin software o en source, and what are the Software where the s ource code is m l iffer sli htl accordin the ro ram, called an o HPC Hierarchy andtoMateriApps Flagship system (K, post-K,...) Electronic Structure Quantum Chemistry Molecular Dynamics Lattice Models AkaiKKR☆ OpenMX☆ xTAPP☆ ABINIT☆ ... FMO☆ SMASH☆ GAMESS☆ DC☆ ... MODYLAS Gromacs☆ ERmod☆ MDACP ... ALPS☆ DSQSS BLOCK DMRG++ ... (37) (19) (16) (21) Continuum Models Data Analysis Viaualization Database ANSYS Multiphysics Octa ... (8) CLUPAN BSA (25) TAPIOCA☆ ParaView☆ (28) MatNavi☆ AFOWLIB☆ (3) Bold: CMSI Applications ☆: included in MateriApps LIVE! a Portal Site for Materials Science Simulation http://ma.cms-initiative.jp/ Introducing on https://youtu.be/xfDpilTcutw on. N e w N Pro i n fo r m a t i . de ea rch bu g co in tr es an d ew fn no - Performs simulations of strongly correlated systems such as magnetic materials or correlated electrons. Heat capacities, susceptibilities, magnetization processes in interacting spin systems, the density of states of strongly correlated electrons, etc, can be calculated jo i es isio ew j o i nt r esea r ch a nd j oi n td ev el Requ op e s t im m p f e u n c tion rove d s. N ew use ri joi nt n re Prov Strongly correlated systems/ effective model calculation HPC infrastructure supercomputers in Japan Supercomputers for shared-use in research fields Cloud computing, on-premises PC clusters Personal workstations, PCs enefits for develo ers? Releasin ro rams allows develo ers to rece ve eed ack rom lots o eo le, allow n them to ake the r ro rams more rel able. B accept ng code rom collaborators, t s also ossible to enhance the software b addin new functions. In addition, com un cat on w th users requently leads to the develo ment of new al orithms, new o nt research, and the creat on o com un t es. Even a su er or al or thm s developed, there s almost no chance or that art cular a roach to be evaluated unless it is im lemented in the form o re. his trend has been articularl ro nounced recentl n the eld o uantum chemistr calculation, but in future, it is l kely to spread to the whole computa t onal sc ence n eneral. Ideall , code or new a roaches to calculation will be ade ava lable as o en source, and at the same t me, the program w ll grow n the commun t as bas c so tware or the m lementat on o new chn . I th s sort of communit c can e st , t w ll reatl bene t t onl t d o ers but also the who com . Pr v d n o en source ams c n not ust a serv ce or er p e, t nothin short of leavi a r ec d our achievements science the rm of so What MateriApps will Provide li b Publishing software Theorists - Equipped with most of standard MD techniques including free energy calculations based on thermodynamic integration method, and enables investigations of large-scale real systems such as viruses, liposomes, assemblies of proteins and micelles, and polymers utat ials e I 150+ applications/tools on the list 8000+PV, 1300+ unique visitors / months of Interpretation of results, exprimental and use in modeling materials Emphasis on usability and on feature richness. Also emphasis quality assurance and support. Experimental researchers & company researchers Verification of new theories and calculation methods Select high precision, easily extensible programs Molecular dynamics Applications/Tools/Databases Introduced in o s io - Performs quantum-mechanical simulations of large molecular systems efficiently, and calculates various information regarding the structure and function of biopolymers, such as the interaction between a protein and a ligand Program verification, benchmarking, use as a development platform Select programs with good performance, which make good development platforms Sustainable development of materials science applications for future HPC systems including post-K flagship system and beyond... vi Electronic structure calculation (quantum chemistry) Establishment of infrastructure for easily starting materials science simulations for theoreticians, experimentalists, researchers in companies, students, and more... “A lot of information, careful explanation ...” “Plain design and rich contents ...” “... able to know the applications I did not know before, ... nice to widely advertize their own application software for developers ...” “... hope that you can further lower the barrier to start materials simulation ...” “... would be great if one can connect to a supercomputer directly and execute simulations just after trial on USB ...” “ ... would like to see the comparison of simulation results for the same system using different application software ...” Review articles on applications in each category will start soon - To find application software Why is GAUSSIAN Used Worldwide? - catalog of application/tool on MateriApps web being standard calculation methods. This p o p u l a r, but among GAUSSIAN a these Debian USB Live Linux System - To learn application software is the result of researchers of the first rank distinguished itself from the others through its ease of use ̶ particularly the state-of-the-art theory and - CMSI hands-on session at Kobe and other places developing Bootable USB ease withdirectly which inputfrom data could be stick (or in virtual machine) calculation methods on an ongoing -basis created. It almost goes without saying and then providing the code to GAUSSIAN. - web tutorials, distant learning - justthat boot anda necessary get ready for materials science simulations without installation! this was requirement for attaining widespread use. As the - To start using application software Exceptional Ease of Use - Version was publishd in July 2015 number1.7 of users increased, inevitably the amount of feedback on modifications The history of GAUSSIAN dates all the way - MateriApps LIVE! Pre-installed software and improvements increased as well, and back to the 1970 version (GAUSSIAN- 70). responding to these needs caused the But I first came in contact with the pro- MateriApps Cloud (comming soon!) ABINIT, AkaiKKR, CP2K, program to expand its ALPS, advantages over Feram, gram in 1975. The shock of that initial - To actively use application software similar programs even further. encounter is still fresh in my mind today. ERmod, GAMESS, Gromacs, OpenMX,` As I recall, at the time it consisted of some Quantum ESPRESSO, SMASH, xTAPP, - MateriApps Instasller 30,000 lines of Fortran (which made it an A Rare Opportunity to various visualization exceptionally large program for its time). I and Promote a Japanese tools - MateriApps Forum remember being amazed at the originality Software 800+ copiesWorldwide downloaded/distributed since July 2013 Kazuo Kitaura of the program's structure. At the time it Professor, Graduate School of System Informatics, Kobe University was known as the overlay segment method. Each step of the calculations was almost completely independent of the others: a two-electron integral calculation section, an SCF calculation section and so on. For this reason, when new functions Establishment of a Global were added, it could be done with only Standard the minimal amount of modification to Today many programs for quantum chemrelevant sections. This made GAUSSIAN an istry calculation exist. But one has an overoutstanding platform for verifying new whelming share worldwide. That program theories and calculation methods. Another is GAUSSIAN. This program was developed thing that had a profound impact on me by a group led by John A. Pople, co-winner was that fact that somewhere in the comof the Nobel Prize for Chemistry in 1998 ments it said that GAUSSIAN was "a quantum for his development of computational chemistry calculation program designed for methods in quantum chemistry. GAUSSorganic chemists." At the time, anywhere IAN is currently provided by Gaussian, Inc. other than the United States, quantum The program is so widely used ̶ not only chemists had just started to perform ab in academia but in industry as well, for initio MO calculations. Looking back on it, education, academic research and develit seems as if, even from the stage of initial opmental research ̶ that it is said that a development, GAUSSIAN had foreseen the supercomputer will not sell unless it can situation today, in which it is used as a run GAUSSIAN. It is in the background of research tool not just for quantum chemisthis overwhelming share that GAUSSIAN try but for chemistry in general. Beginning has become the standard for quantum in the mid-1980s, the number of computachemistry calculation. GAUSSIAN is a tional chemists increased, and experimen"standard" not only in the sense that it is tal researchers themselves came to conused to verify whether or not the calculaduct quantum MateriApps Installer onchemistry calculations on tions of other programs are correct, but their own. As a result, the number of https://github.com/wistaria/MateriAppsInstaller also because so many people use GAUSSGAUSSIAN users increased dramatically. At IAN that the theory and calculation meththe time, Hondo and a number of other ab ods contained in GAUSSIAN are seen as initio MO calculation programs were For many years, people in Japan have been concerned at the total lack of an academic program developed in Japan that is popular worldwide. To avoid any misunderstanding, let me state that many Japanese researchers have provided code for GAUSSIAN and GAMESS and other quantum chemistry calculation programs that are used worldwide. These programs were "made in USA," but the code can be seen as a product of the international community. Each of them is an enormous program consisting of a million lines of Fortran. It would be unrealistic to expect a program that can compete with these to be developed overnight. If the chance for a reset challenge is to present itself, it will come only from inventing a new algorithm with a method that is completely different from existing methods (which would be desirable), or through innovations in computer architecture and programming language ̶ something that turns existing programs into dinosaurs. If we think along these lines, then right now ̶ when massively parallel computers with several orders of magnitude more CPUs and cores are beginning to come into widespread use ̶ may be one of our few chances to develop a revolutionary parallel computing program that is designed for use by next-generation exaflop computers and promote it worldwide. Installer - Collection of install scripts of MateriApps applications/tools - together with sample job scripts n a an, the K com h t ade ava lable or c us r t nd of Se tember 201 ut a l ty stud es have be sta rt t construct on o next erat o a- al su ercom uters. We r ov e c t on ro rams cr t cal o the d tational materials s en t t ar uned for massivel alle ch ture as well as work oact researchers in the c ter ie e el to des n the next at o s com uters accord n l tho o it wil l become increas o t purs ue the consol da o t on code for com utation ater ls Demo ci n order to establ sh a uct c . https://youtu.be/Pn5H3ro6WgY CMSI ublic relations bcom ee r r sentat ve: n e T the I t ol d tate Ph s cs, Un t ok Hands-on Installer Cloud - Covers major supercomputers, workstations, PCs K computer, ITC systems, ISSP/IMS/IMR supercomputer systems, cluster workstations, PCs, Mac OS X https://github.com/wistaria/MateriAppsInstaller Cloud on-demand execution of MateriApps applications will start from Autumn 2015 32 MateriApps — 物質科学シミュレーションのポータルサイト • 公開ソフトウェア(アプリケーション)を核としたコミュニティー形成をめざして • 155の物質科学アプリケーションや ツールを紹介(2015年9月現在) • 「やりたいこと」からアプリケーショ ンを検索 • 検索タグ:「特徴」「対象」「手法・ アルゴリズム」 • 開発者の声を利用者に届ける • アプリ紹介、開発者ページ、アプリ の魅力・将来性・応用性 • フォーラム(掲示板)を利用した意見交換 • 講習会情報・web講習会・更新情報 2013年5月公開 MateriApps,2013-2015. All rights reserved. • 月間 8000 ページビューにまで成長 33 MateriApps 掲載アプリケーション • 155の物質科学アプリケーションやツールを紹介 (2015年9月現在) 密度汎関数法 量子化学 分子動力学 格子模型 AkaiKKR☆ FMO☆ MODYLAS☆ ALPS☆ OpenMX☆ SMASH☆ Gromacs☆ DSQSS xTAPP☆ GAMESS☆ ERmod☆ BLOCK ABINIT☆ DC☆ MDACP DMRG++ ... (37) ... (19) 連続体シミュレーション (8) ... (19) (22) データ解析 可視化 phonopy☆ (26) TAPIOCA☆ (28) CLUPAN☆ ANSYS Multiphysics Octa ... ... fu☆ ☆ MateriApps LIVE! 収録 ( 一部予定 ) アプリ MateriApps,2013-2015. All rights reserved. 34 MateriApps 活動の目的 • 開発者側の問題点 • 有益なプログラムはもっと使われるべきだが、多くのソフトは研究室内にとど まって終わる • 公開・情報発信には手間がかかる • アプリ開発を成果として主張しにくい(指標がない) • 利用者側の問題点 • どんなプログラムがあるのかよくわからない • インストール・使い方について知りたい • 開発者の活動(特に講習会情報)をもっと知りたい • 両者をつなぐ役割を果たしたい 35 MateriApps, 2013-2015. All rights reserved. アプリケーション普及にむけた三本柱 • アプリの情報発信 • ポータルサイト MateriApps web • スパコン上でのアプリ利用支援 • 「京」や国内主要スパコンへのアプリのプレインストール MateriApps Installer • 個人・研究室レベルでのアプリ利用の支援 • MateriApps LIVE! • インストールや入力ファイルの準備における「壁」を解消 • 計算科学の専門家だけではなく、実験家や企業内の利用、教育活動における活用へ 36 MateriApps,2013-2015. All rights reserved. MateriApps LIVE! とは? • USBメモリから直接ブートできる Linux システム (Debian Live Linux) • Windows、Mac などで利用可 • インストール作業なしで物質科学アプリを実行できる • バージョン1.8公開 (2015年8月31日) • MateriAppsで紹介している公開アプリ・ツールを収録 • 2015年8月現在:ABINIT, AkaiKKR, ALPS, CP2K, Feram ,ERmod, Gromacs, OpenMX、 Quantum Espresso, SMASH, xTAPP, VESTA 等 • GAMESS, VMDには自動インストーラーを準備 • MateriApps LIVE! サイトからダウンロード可能 • 900以上のコピーを配布済、学部講義でも利用 37 MateriApps, 2013-2015. All rights reserved. MateriApps LIVE! ハンズオン • MateriApps LIVE! の起動方法の説明 • 第一原理計算手法によるバンド計算 • 第一原理計算ソフト OpenMX • 入力補助 C-Tools、可視化 VESTA、フェルミ面 XCrysDen • 分子動力学法による溶液のシミュレーション • 汎用分子動力学ソフト Gromacs • 可視化ツール VMD • モンテカルロ法によるスピン模型の相転移シミュレーション • 強相関格子模型のシミュレーションパッケージ ALPS • 可視化ツール ParaView • 量子化学計算 (準備中) • http://www.slideshare.net/cms_initiative/clipboards/materiappslive で公開中 38 MateriApps, 2013-2015. All rights reserved.
© Copyright 2024 Paperzz