lnupri web fc2 com) 赤阪 正 純 (httpン ク ミックス ジ ュー ス は コー ヒー をか ける と分離 で きる ? 等差数列や等比数 列 の 和 は ,Σ 記号や公式 を用 いて 計算 で きます 等差数列 の 禾ロ ム 等上ヒ数列 の 本国 な どで す Σ 3+ た =1+2-卜 2た ー 油び ノ 資もMPめ , +π ==:π (π ■ 1) =21■ 22+23+¨ ・12れ =2生11三l子1≧ =2(22--1) で は ,次 の ような 和 は どの よ うに して計 算 すれば よいので し ょうか (等 差)× (数 列)の ミックス型 Σ た2た =1・ 21+2・ 22+3・ た=1 参 注 くれぐれも Σ をバラさないこと Σ λ2た キ Σ た× Σ た-1 た-1 々=1 具体的に書き出せば等しくならないのは明らかですね 1・ 例 えば ホンマが∼1 ホンマや,た ぅ 21+2・ 22+3・ 23+… +π .2π キ (1+2+3+… 2た 23+ ・2π =??? 十π です Σ 記号は積ではバラせません モリやイ費 わ +π )× (21+22+23+… +22) こ よ ` ヽヽ あ朴し (等 差)× (数 列)の ミックス型の和を求めるには,次 のポイン トが重要 です (ウ ソだ よ∼ ん ) ――>Pointく コーし― ミックスジ ュース は コー ヒーをか けて引 くと (寄 差)x(写 掟)%7・ は 幽 亀幽 分離 す るこ とがで きる 珍注 オ,デ ルサン3・ この こ とは科 学 的 に証 明 され て い る 【 例 1】 Σ た2た を計算せよ 々-1 ―→ ` +靱 ・ ・ ′レンシ リンコ .・ た ′ "´att、 タ えit ヽ やすヽ ψおソ 堪ff`り まずは具体的に書き出す こと 考え方 Σ のままでは全く手も足も出ません 実際に書き並べてコーヒー (公 比)を かけて引こう S=1・ 21+2・ 22+3・ 23+… … 1・ 22+2・ 23+ … S=1・ 21+1・ 22+1.23+… -S=21+22+23+… ……+2″ ―π 2″ ;み tlo■ に´ … +(π -1)・ +(κ + -2)・ 1・ 221+ 2π 2η ・ν π l+(η -1)・ 2+π l+ 1・ 2 1漱 2.ブ通 反気) の等瓦再し」t薇 」′ "rr η Σ (2た -1)3た を計算せよ た-1 ―→ π・2π +1 輪 +1 ヽ √ 2タ 末沐 【 例 2】 ・2η +1 まずは具体的に書き出す こと 考え方 前間同様 ,ま ずは具体的に書 き並べて, コー ヒー (公 比)を かけて引 こ う │ミ をだチ ││ ュ 瓶ク 赤 阪 正 純 (htt銭 グ nupri web fc2 com) S=1・ 31+3・ 32+5・ 33+… 3S= 1・ 32+3・ 33 -2S=1・ 31+2・ 32+2・ 33+ -2S=3+2(32+33+… … +3η )― … (2″ +(2π -3)・ 3π l+(2π -1)・ 3η 十 -5)・ (2π 2・ 3η l+(2π -3)・ 3η 十 32 1 + (2π -1)・ 3″ (2κ -1)・ 3η +1 +1 ■ミl!マ ←スにな3よ シ -1)3″ +1 秘(わ ,■ 31夕 に3濠表1-リ l-1)一 ‐1)3π +1=3+32(3η S=(π (2π =― (2η -2)3η +1-6 ` ` と を て 仄-2S″ こ t贅 ′ ・ Sに tじ -1)3η +1 -1)3η +1+3 せ よ 一庭 計 算 ム者を lλ 判と し ま 解 釈 す (:)々 考え方 ゃっば リコー ヒー (公 比 )を かけて引 く 公比が分数なので計算 ミスに注意 して慎重 にやろ う 3 一 1 一 一 1 π 一 り´ π ヽ 1 + + 一 3 一 1 一 3 ∴ Oη (:) 兵 ス 311れ 澪 葬 `to3よ Cせ・ 崚皓ゞノ ・ 援・ 援 タCけ タ 激 ,) 激 ノ ・ (が ::∫:lil::言 ,1!:ま[│,1(:)″ :二 1-: ′ 十ηrニ 1(:) 宣 】 1宣ユ iS=〔 一 一 1 〓 S 2 一 3 1げ +1皓 ソ+1皓 ド十… + 1■ 0 ん π η 一 一 1 十 十 一 3 + 十 1 1 つU つ乙 一 3 0 4 1■ + 一 3 十 + 1 1 Is 一 一 〓 S ′ ,、・ ι ` 丁ノ ^^ ^ ^ ‐‐ ^ S=-3(π +:)(:)″ +:=― :響 [(:)η ヽ ^ ‐‐ 十 F (π 十 i)(:)π ;′ i17手 Fっ :・ 考え方 ″Σ ″ 【 夕」4】 (や や難 ) ―→ た23々 を計算せ よ (等 差 )× (等 比 )タ イ プで は あ りませ ん が s=12.31+ 22.32 + 32.38 +… 12・ 32 + 22.33 + -12)・ 32+( … … + + やはり, まずは 具体的に書 き出す , 同 じよ うに コー ヒー (公 比 )を か けて 引 くと … … (″ _1)2.3η l (π -2)2.321 (η -1)2-(π -2 -2S=11・ 31+3・ 32+5・ 33+… ……+(2π -3)321+(2π 〕 霧 1[:1lj[li二 ミ ^1,つ π ヾ〔 夕 働2〕 tな くla t` lt Jli:ilifIIi,3η もすず Tり ″2・ 十 (π -1)31-π 2.3″ ますo +1=(― 2+π _1)3″ +1+3 3η _1)2.3れ 十π2.3η +1 +1 (※ ) t,′ エ ツマイナス ` ヽ [g12」 0千 手 ヒう 巧 焦た 卜 …に11 ;ケ 珍 注 もし実際 にこの問題 が出題 されるとすれば,最 初 に 【 例 2】 が誘導 として出題 され ると思います し,誘 導 がな ければ,(※ )部 分でもう一度公比をかけて引 くとい う作業をすることにな ります も まお,■ _ ノーバ1レ i3J R、 T_」 S《127'・
© Copyright 2025 Paperzz