HW 1.2.4: Composite Functions
Given each pair of functions, calculate f g 0 and g f 0 .
1. f x 4 x 8 , g x 7 x2
2. f x 5x 7 , g x 4 2x2
3. f x x 4 , g x 12 x3
4. f x
1
, g x 4x 3
x2
Use the table of values to evaluate each expression
5.
f ( g (8))
6.
f g 5
7. g ( f (5))
8. g f 3
9.
f ( f (4))
10. f f 1
11. g ( g (2))
x
0
1
2
3
4
5
6
7
8
9
f ( x)
7
6
5
8
4
0
2
1
9
3
g( x)
9
5
6
2
1
8
7
3
4
0
12. g g 6
Use the graphs to evaluate the expressions below.
13. f ( g (3))
14. f g 1
15. g ( f (1))
16. g f 0
17. f ( f (5))
18. f f 4
19. g ( g (2))
20. g g 0
David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5.
Retrieved from: http://www.opentextbookstore.com/precalc/
For each pair of functions, find f g x and g f x . Simplify your answers.
21. f x
1
7
, g x 6
x6
x
22. f x
1
2
, g x 4
x4
x
23. f x x2 1 , g x x 2
24. f x x 2 , g x x2 3
25. f x x , g x 5x 1
26. f x 3 x , g x
x 1
x3
27. If f x x4 6 , g ( x) x 6 and h( x) x , find f ( g (h( x)))
28. If f x x 2 1, g x
1
and h x x 3 , find f ( g (h( x)))
x
David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5.
Retrieved from: http://www.opentextbookstore.com/precalc/
29. Given functions p x
interval notation.
a. Domain of
1
and m x x 2 4 , state the domains of the following functions using
x
p x
m x
b. Domain of p(m( x))
c. Domain of m( p ( x ))
30. Given functions q x
interval notation.
a. Domain of
1
and h x x 2 9 , state the domains of the following functions using
x
q x
h x
b. Domain of q (h( x))
c. Domain of h(q( x))
31. The function D ( p ) gives the number of items that will be demanded when the price is p. The
production cost, C ( x) is the cost of producing x items. To determine the cost of production when
the price is $6, you would do which of the following:
a. Evaluate D (C (6))
b. Evaluate C ( D (6))
c. Solve D (C ( x )) 6
d. Solve C ( D( p)) 6
32. The function A(d ) gives the pain level on a scale of 0-10 experienced by a patient with d
milligrams of a pain reduction drug in their system. The milligrams of drug in the patient’s system
after t minutes is modeled by m(t ) . To determine when the patient will be at a pain level of 4, you
would need to:
a. Evaluate A m 4
b. Evaluate m A 4
c. Solve A m t 4
d. Solve m A d 4
David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5.
Retrieved from: http://www.opentextbookstore.com/precalc/
33. The radius r, in inches, of a spherical balloon is related to the volume, V, by r (V ) 3
pumped into the balloon, so the volume after t seconds is given by V t 10 20t .
3V
. Air is
4
a. Find the composite function r V t
b. Find the time when the radius reaches 10 inches.
34. The number of bacteria in a refrigerated food product is given by N T 23T 2 56T 1 ,
3 T 33 , where T is the temperature of the food. When the food is removed from the
refrigerator, the temperature is given by T (t ) 5t 1.5 , where t is the time in hours.
a. Find the composite function N T t
b. Find the time when the bacteria count reaches 6752
Find functions f ( x) and g ( x ) so the given function can be expressed as h x f g x .
35. h x x 2
37. h x
2
3
x5
39. h x 3 x 2
36. h x x 5
38. h x
3
4
x 2
2
40. h x 4 3 x
David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5.
Retrieved from: http://www.opentextbookstore.com/precalc/
Selected Answers:
1. 𝑓(𝑔(0)) = 4(7) + 8 = 26, 𝑔(𝑓(0)) = 7 − (8)2 = −57
3. 𝑓(𝑔(0)) = √(12) + 4 = 4, 𝑔(𝑓(0)) = 12 − (2)3 = 4
5. 𝑓(𝑔(8)) = 4
7. 𝑔(𝑓(5)) = 9
9. 𝑓(𝑓(4)) = 4
11. 𝑔(𝑔(2)) = 7
13. 𝑓(𝑔(3)) = 0
15. 𝑔(𝑓(1)) = 4
17. 𝑓(𝑓(5)) = 3
19. 𝑔(𝑔(2)) = 2
21. 𝑓(𝑔(𝑥)) =
1
𝑥
= 7 , 𝑔(𝑓(𝑥)) =
7
( +6)−6
𝑥
7
(
1
)
𝑥−6
+ 6 = 7𝑥 − 36
23. 𝑓(𝑔(𝑥)) = (√𝑥 + 2)2 + 1 = 𝑥 + 3, 𝑔(𝑓(𝑥)) = √(𝑥 2 + 1) + 2 = √(𝑥 2 + 3)
25. 𝑓(𝑔(𝑥)) = |5𝑥 + 1|, 𝑔(𝑓(𝑥)) = 5|𝑥| + 1
4
27. 𝑓(𝑔(ℎ(𝑥))) = ((√𝑥) − 6) + 6
29. (a)
𝑝(𝑥)
𝑚(𝑥)
=
1
√𝑥
𝑥 2 −4
, which can be written as
1
. This function is undefined when there is a
√𝑥(𝑥 2 −4)
negative number under the square root, or when the factor in the denominator equals zero. So the
domain is all positive numbers excluding 2, or {𝑥|𝑥 > 0, 𝑥 ≠ 2}.
1
(b) 𝑝(𝑚(𝑥)) = √𝑥 2 . This function is undefined when there is a negative number under the
−4
square root or a zero in the denominator, which happens when 𝑥 is between -2 and 2. So the
domain is −2 > 𝑥 > 2.
1
(c) 𝑚(𝑝(𝑥)) = (
√
2
1
) − 4 = 𝑥 − 4. This function is undefined when the denominator is zero, or
𝑥
when 𝑥 = 0. So the domain is {𝑥|𝑥 ∊ ℝ, 𝑥 ≠ 0}.
31. b
David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5.
Retrieved from: http://www.opentextbookstore.com/precalc/
3
3(10+20𝑡)
33. (a) 𝑟(𝑉(𝑡)) = √
4𝜋
3
3(10+20𝑡)
(b) Evaluating the function in (a) when 𝑟(𝑉(𝑡)) = 10 gives 10 = √
4𝜋
. Solving this for t
gives 𝑡 ≈ 208.93, which means that it takes approximately 208 seconds or 3.3 minutes to blow up a
balloon to a radius of 10 inches.
35. 𝑓(𝑥) = 𝑥 2 , 𝑔(𝑥) = 𝑥 + 2
3
37. 𝑓(𝑥) = 𝑥 , 𝑔(𝑥) = 𝑥 − 5
39. 𝑓(𝑥) = 3 + 𝑥, 𝑔(𝑥) = √𝑥 − 2
David Lippman and Melonie Rasmussen © 2015. Precalculus: An Investigation of Functions Ed. 1.5.
Retrieved from: http://www.opentextbookstore.com/precalc/
© Copyright 2025 Paperzz