6/15/16 AutonomousAgentsinFinancial Markets:ImplicationsandRisks MICHAELP.WELLMAN ColloquiumonRobustandBeneficialAI 15June2016 WhyFinance? • Criticalsectorofeconomy • Potentiallyfragile,drivenbyinformation(beliefs, expectations), complexinterdependencies • AlreadyhighlyinfiltratedbyAI • Tradinginfinancialmarkets • Creditdecisionmaking 1 6/15/16 Trader 2 6/15/16 AlgorithmicTrading Byanymeasure,accountsformajorfractionofactivityonfinancial markets Howdoes itwork? • • Specificmethodsandpracticeshighlysecretive Generalingredientsreadilyapparent • • • • • • Fastcomputingandcommunication Real-timedataanalysis,riskmanagement Cleverstrategies,detailedunderstanding ofmicrostructure AI&machinelearning WhatisSpecialaboutAlgorithms? 1. SpeedandPrecision • Responsefarfasterthanhumanreactiontimes • Canimplementcomplexstrategiesinvolvingcoordinatedactionsacrossmany markets • Enableslatencyarbitrage,“anticipatory”strategies,novelmanipulations 2. Autonomy • Appliesprogrammedandlearnedmodelstopotentiallyunanticipated circumstances 3. Scalability • Replicatemethodsacrosssecurities,exchanges…worldwide 3 6/15/16 LatencyArmsRace:SourceofInstability? Dedicated communication lines Direct exchange feeds Co-location Specialized hardware/software • NYCtradersplits order formultiple exchanges • Firstorderarrivesat BATSexchangein Weehawken • HFTs seeorderand racetoMahwah (NYSE)andCarteret (Nasdaq) • ~200µs Lincolntunnel 4 6/15/16 One-SecondCallMarkets • Latencyarmsraceanartifactof continuous-time marketoperation • nolowerbound onadifferencein speedthatcouldmatter • Callmarket • Tradeperiodicallyratherthan continuously • Ordersreceivedwithinintervalhidden • Potentialefficiencyandstability advantages Wellman blogentryJuly2009 FlashCrash:6May2010 Whydidthis happen? Whydidthis happen? 5 6/15/16 UltrafastExtremeEvents • Johnsonetal., “Abruptriseof newmachine ecologybeyond humanresponse time”,Scientific Reports2013 • Documented 18,520UEEsin5yr period • Authorsargue: Must beartifactof dynamic interactingagents 6 6/15/16 AlternateExplanation:ISOs • Intermarket SweepOrder(ISO) • Specialordertype, allowsoverrideofNBBO-basedrouting Golub,Keane,&Poone,2012 StrategicAgent-BasedAnalysis • Model-based studies ofeffects ofalgorithmictrading • Challenge:sensitiveto specification ofagentbehavior • Empiricalgame-theoretic analysis • Combinesagent-basedsimulation withgame-theoreticreasoning • Exploreaspaceofheuristic strategies,usingstrategicstability forselection Studies • Latencyarbitrage(EC-13) • Marketmaking(AAMAS-15) • Marketchoicebyfastandslow traders(AMMA-15) • Strategicshading(AGTw-16) • Marketmanipulation (in progress) 7 6/15/16 IllustrativeEGTAResults: EffectsofMMCompetition(N =25) A1 A4 A12 B1 B12 C1 C12 -3000 2MMvs1MM -2000 -1000 0 1000 background-trader surplus 2000 3000 welfare ARB-BOT:AGeneralFrameworkforAITraders • Arbitrage: • takingadvantageofpricedifferencesacrossmarkets forthesameasset • Simple arbitrageagent: • monitormultiplemarketsforpricediscrepancies, thenexecute } Issues Transaction costs } Transport/storage costs } Executionrisk } Whatismeant by “same” asset? M } M M M M M M 8 6/15/16 ARB-BOT EarlyWarningSystem • Developpublic(non-trading) Arb-BotsasanalerttowhattheAIs mightbefinding • Searchapproaches • Reasoningfromsecuritydescriptions • Automateddiscoveryby machinelearning LevelsofARB-BOT Behavior 1. Passivesearchforarbitrageopportunities 2. Attemptstoamplifyarb opps through purposeful instigationofmarketmovements (e.g.,spoofing) 3. Attemptstocreatenewarb opps • • newfinancialinstruments deliberatefragmenting 4. Malicious subversion ofmarkets mostaggressive 9 6/15/16 Level2:MarketManipulation • SECDefinition:Intentionalconductdesignedtodeceiveinvestorsby controllingorartificiallyaffectingthemarketforasecurity • Spoofing • Dodd-Frank defn:biddingorofferingwiththeintenttocancelthebidor offer beforeexecution • Widelyknownstrategies,severalrecentprosecutions Example:DynamicLayering APPENDIX 1 Lots buy/sell 400 Example of Mr Coscia's Pattern of Trading (00:00:00.000 to 00:00:00.609) Price 115.900 Buy orders cancelled after sell order traded 115.890 300 Sell order for 17 lots traded @ 115.88 115.880 200 115.870 Buy order for 17 lots traded @ 115.86 100 0 -20 115.860 115.850 0 80 Time (milliseconds) 180 280 380 480 580 115.840 -100 Sell orders cancelled after buy order traded 115.830 -200 115.820 -300 115.810 Cumulative Buy Orders Cumulative Sell Orders LEG ONE Source:UKFinancialConductAuthority Time Interval Time Order Buy/Sell (milliseconds) 00:00:00.000 0 Buy 00:00:00.023 23 Sell 00:00:00.122 99 Sell 00:00:00.231 109 Sell 00:00:00.232 1 Buy Order Traded 00:00:00.234 2 Buy Order Traded 00:00:00.257 23 Sell Order Cancelled 00:00:00.261 4 Sell Order Cancelled 00:00:00.265 4 Sell Order Cancelled Mid Price Order Volume Best Best Mid Price (lots) Bid Offer Price 115.86 17 115.86 115.88 115.87 115.89 122 115.87 115.88 115.875 115.88 85 115.86 115.88 115.87 115.87 54 115.86 115.88 115.87 115.86 3 115.86 14 115.89 122 115.84 115.86 115.85 115.88 85 115.84 115.86 115.85 115.87 54 115.84 115.86 115.85 Trade Price Mr Coscia Sell Order Price Mr Coscia Buy Order Price LEG TWO Time Interval Order Buy/Sell Time (milliseconds) 00:00:00.294 29 Sell 00:00:00.316 22 Buy 00:00:00.423 107 Buy 00:00:00.550 127 Buy 00:00:00.579 29 Sell Order Traded 00:00:00.593 14 Buy Order Cancelled 00:00:00.607 14 Buy Order Cancelled 00:00:00.609 2 Buy Order Cancelled Order Price 115.88 115.82 115.83 115.86 115.88 115.86 115.83 115.82 Volume (lots) 17 99 88 122 17 122 88 99 Best Bid 115.84 115.84 115.84 115.85 Best Mid Offer Price 115.86 115.85 115.86 115.85 115.86 115.85 115.88 115.865 115.87 115.90 115.885 115.87 115.90 115.885 115.87 115.90 115.885 10 6/15/16 Spoofable Agents (a)PureGDV_2 (b)Pure GDV_1 Aspoofingagentcanexploittheheuristic-basedlearningstrategyandmanipulatethe marketprice. SpoofingEquilibriumStrategies (a)Equilibrium 1 (b)Equilibrium 2 11 6/15/16 Manipulation:CurrentQuestions • Canweautomaticallylearnmanipulation strategies? • Canwereliablydetectmanipulation inmarketdata? • Canwebuildspoof-proof tradingagents? LevelsofARB-BOT Behavior 1. Passivesearchforarbitrageopportunities 2. Attemptstoamplifyarb opps through purposeful instigationofmarketmovements (e.g.,spoofing) 3. Attemptstocreatenewarb opps • • newfinancialinstruments deliberatefragmenting 4. Malicious subversion ofmarkets mostaggressive 12 6/15/16 Level4 FinanceandDesignforBeneficialAI • Aconsequential domain attheleadingedgeofAIautomation • Qualitativelynewphenomena, interactionatsuperhuman timescales • Richtechnical(AI+Econ)andSocial(Law+Policy)challenges 13
© Copyright 2025 Paperzz