Copyright Reprinted from the Journal of the American Chemical Society, 1991, II3. O 1991 by the American Chemical Society and reprinted by permission of the copyright Carbon{arbon Bond Formationin AqueousEthanol: Transformationof Unprotected Diastereoselective Carbohydrates to Higher CarbonSugarsUsing Allyl Bromideand Tin Metsll WaltherSchmid2and GeorgeM. Whitesides* Departmentof Chemistry,Haruard Uniuersity 02I 38 Cambridge,Massachusetts ReceiuedApril 5, I99l additionof allyl groups This reportdescribes the *nucleophilic" in aqueto the carbonylmoietiesof unprotected carbohydrates ous/organicsolvents(eq l). Thesereactionsare basedon proCH2OH cI|0 I I (c8og) cH2oH CArOB II (CIiOH) n-r Sn, n lllyl azo/tr.LoB, bronide ultrrsound tl H-C-OR I Ho-9-s tl 9H, tl CH:Cl{z (CaOE) "-1 o' BO-{-B | 8--f -oE (1) $xt CE:C[2 ceduresdevelopedand applied to non-sugaraldehydesand ketones by Luche,s{ Nokami,T Benezra,8and otherse'I0using reactionof allylic halideswith zinc or tin metal in the presenc€of the carbonyl acceptor. When applied to carbohydrates,the reactions proceed with useful diastereoselectivity and permit the synthetic utilization of these water-solublesubstratesdirectly in aqueoussolutions without protection. The adducts were convertedto higher carbon aldoses by ozonolysis of the deprotected polyols followed by suitablederivatization. The yields reportedin Table I were obtainedin ethanol/water mixtures. Using tetrahydofuraninsteadof ethanoldid not improve the yield but did slow the rate. Commercially availabletin powder (Alfa company; 100 mesh) was used,and the suspensionof the reactantswas sonicatedfor 12-18 h in an ultrasoniccleaning bath (Cole-Parmer8852)." Although the pH drops sharply during *pH' = I ), we the courseof the reaction (typically to a value of pH positive control. The polyols did not run the reaction under generatedwere acetylated to simplify the purification procedure. (l) This work was supportedby the NIH, Grant GM 30367. (2) Erwin SchrodingerPostdoctoralFellow of the Fondszur F6rderungder wissenschaftlichen Forschungin Osterreich(Austrian ScienceFoundation). (3) Einhorn,C.; Einhorn,J.; Luche, J. L. Synthesi.r19t9, 787-813. (4) Luche,C. J.; Damiano,J. C. J. Am. Chem.Soc.19t0, 102,7926-'7927. (5) Petrier,C.; Luche, J. L. J. Org. Chem.19t5, J0, 912-915. (6) Petrier, C.; Einhorn, J,; Luche, J. L. Tetrahedron Lctt. 1985, 26, t449-t452. (7) Nokami, J.; Otera, J.; Sudo, T.; Okawara,R. Organometallics19t3, 2. t9t-t93. (8) Mattes, H.; Benezra,C. TetrahedronLett. lgtl, 26,5697-5698. (9) Wilson,S. R.;Guazzaroni,M. E. J. Org. Chem.19t9,54,3087-3091. (10) Wu, S.; Huang, B.; Gao, X. Synth. Commun. 1990' 20(9), t279-t286. (l l) Ultrasoundincreasesthe reactivityof many metals: Suslik, K. S.; Casadonte,J. D.;Doktycz, S. J. Chem.Mater.l9t9, 1, 6-8. Ultrasound: Its Chemical, Physical and Biological Effects; Suslik, K. S., Ed.; VCH PubJ. C.; Petrier,C.; Luche,J. L. lishers;New York, 1988. de Souza-Barboza, J. Org. Chem.1988,J3, 1212-1218. 0002-7863 l9ll15l3-6674$02.5010@ l99l AmericanChemicalSociety owner. 6675 Table L NucleophilicAddition of Allyl Groupsto Aldoses startlng carbohydrate producto yield,6 Vo diastereomericratio. (threo:erythro) D-erythrose I 52 4.0:l o-ribose 2 65 3.5:l o-arabinose 3 85 5.5:l o-glucose 4 70 6.5:l D-mannose 5 90 6.0:l 2-deoxy-o-glucosed 26 I.5:l 2-NAc-o-glucose 0 2-NAc-o-mannose 0 aReactions werecarriedout in 9:l ethanol/waterwith 2 equiveach of tin powder(100 mesh)and allyl bromideand promotedby ultrasonicationuntil completion(12-16 h). 6Basedon isolatedperacetyrated cDeterminedfrom NMR. dDiastereomers diastereomers. not separated. SchemeI. Conversions of o-Ribose,o-Arabinose, and n-Glucose to Heptoseand OctoseDerivatives 6, 7, and 8 "vo I -o" ro" roH Los D-Ribo!a Aco---1 Aco--i Acol SD, Aco o""' The yields reported in Table I were of isolated materials, following column chromatography over silica gel. Experimental details are given in supplementarymaterial. To assignthe stereochemistryof the chiral center formed by addition of the allyl groups,we transformedthree of the adducts (2,3. and 4) to the correspondingheptoseand octosederivatives 6, 7, and 8 by ozonolysisand appropriatederivatization(Scheme I). In the pyranoseforms of thesehigher carbon sugars,the stereochemistryof the newly generatedcenter could be assigned easilyby analysisof couplingconstantsin the 'H NMR spectra. For the major diastereomerformed in each reaction,the hydroxy function formed and that originally presentat C-2 of the starting aldosehavea threo relationship. This result is in agreementwith observationsmade by Coxon et al.l2 for this type of reactionon aldehydescontainingan asymmetriccenteradjacentto the carbonyl function. The diastereoselectivity is lower in the one case in which there is no hydroxy group presentat C-2. For aldoses having N-acetyl groups in position 2, no reaction was observed under the reactionconditionsused,l3 This tin-promotedC{ bond forming reactionextendsthe range of synthetic methods applicable to unprotectedsugarsin protlc solventsand should be especiallyuseful in preparing higher carbon sugars. We are applying these methodsto more highly functionalizedsystemsand to other halide sources. , Y I Ho--l .oH Fo" L-olr AcO---1 o"o---] AcO l | )-o (_J>-ocH3 I o"O , D-Ara.binoae E_O Y l T_ VT "o--] .oH f-oH Los D-GIucose AcO - tT- v. NJ--l Aco l--o l--olc Loo" SupplementaryMaterial Available: Experimental details for the preparationof l-8 (7 pages). Ordering information is given on any current mastheadpage. (12) Coxon,J. M.;van Eyk, S. J.;Steel,P. J. Tetahedronlztt.19135.26. 6t2t-6124. (13) This observationmay suggesta possiblecomplexationof the presumptiveallyltin spcciesto the a-hydroxy function.
© Copyright 2025 Paperzz