การเพาะเลีย้ งยีสต์ Rhodotorula rubra ในถังปฏิกรณ์ ชีวภาพแบบอากาศยก Cultivation of Rhodotorula rubra in Airlift Bioreactor Asst. Prof. Dr. Nuttaporn Chanchay1/ ผศ, ดร. ณัฐพร จันทร์ ฉาย1/ Abstract: Carotenoids are used as additives in food and animal feed industries. They can be obtained by chemical synthesis or from natural sources. Chemical process is costly, therefore, biochemical production of carotenoids by microorganisms or plants is preferable. This study aimed to optimum the culture conditions simultaneously for maximum carotenoid productions by red yeast (Rhodotorula rubra). It has been found that R. rubra cultivate in airlift bioreactor conditions with glucose as a carbon source at 10.0% (w/v), ammonium sulfate as a nitrogen source at 1.5% (w/v), pH 7.0, temperature at 35 ๐ C and Yeast extract 1 g/l as growth factor. Using 2.5 inches of aquarium air stone at the air volume with the pressure of 0.5 kg/bar to 96 hr. could produce carotenoid to a maximum of 150.818 μg/g cell dry weight. Moreover, had the ability of antioxidants using DPPH method maximum equal to 99.54%. Keywords: Rhodotorula rubra, Airlift Bioreactor, carotenoid, antioxidation บ ท คั ด ย่ อ : แ ค โร ที น อ ย ด์ เป็ น ส า ร เติ ม แ ต่ ง ที่ นิ ย ม ใ ช้ ใ น อุ ต ส า ห ก ร ร ม อ า ห า ร แ ล ะ อ า ห า ร สั ต ว์ โด ย แ ค โรที น อ ย ด์ ที่ ได้ จ าก ก ระ บ ว น ก า รท า งเค มี ต้ อ งน า เข้ า จ า ก ต่ า งป ระ เท ศ ซึ่ งมี รา ค า ค่ อ น ข้ า งสู ง ดั ง นั ้ น แ ค โ ร ที น อ ย ด์ ที่ ไ ด้ จ า ก ธ ร ร ม ช า ติ จ า ก ก ร ะ บ ว น ก า ร ท า ง ชี ว เ ค มี จ า ก พื ช แ ล ะ จุ ลิ น ท รี ย์ จึ ง เ ป็ น ท า ง เ ลื อ ก ห นึ่ ง ที่ ก า ลั ง ไ ด้ รั บ ค ว า ม ส น ใ จ การศึกษาในครัง้ นีม้ ีวัตถุประสงค์ เพื่อศึกษาสภาวะที่เหมาะสมต่อการผลิตแคโรทีนอยด์จ ากยีสต์ สีแดง (Rhodotorula rubra) จ า ก ก า ร ศึ ก ษ า พ บ ว่ า R. rubra เมื่ อ เลี ย้ งในถั ง หมั ก แบบอากาศยกในสภาวะที่ มี น า้ ตาลกลูโคสเป็ นแหล่ ง คาร์ บ อนที่ ป ริ ม าณ 10.0กรั ม ต่ อ ลิ ต ร มี แ อ ม โ ม เ นี ย ม ซั ล เ ฟ ต เ ป็ น แ ห ล่ ง ไ น โ ต ร เ จ น ที่ ป ริ ม า ณ 1.5 กรั ม ต่อ ลิ ต รมี สารสกัด จากยี สต์ เป็ น ปั จ จัย ส่ง เสริ ม การเจริ ญ เติ บ โตที่ ป ริ ม าณ 1 กรั ม ต่อ ลิต ร ท าการเลีย้ ง 96 ชั่ว โมง ที่ ค วามเป็ นกรด-ด่ า ง เริ่ ม ต้ นที่ 7.0 ภายใต้ อุ ณ หภู มิ 35 องศาเซลเซี ย ส มี ก ารให้ อากาศจากปั ้ม ด้ วยแรงดัน 0.5 กิ โล ก รั ม ต่ อ บ า ร์ ด้ ว ย หั ว ท รา ย ข น า ด 2.5 นิ ้ว ส า ม า รถ ผ ลิ ต แ ค โรที น อ ย ด์ ได้ ป ริ ม า ณ ม า ก ถึ ง 150.818 ไมโครกรั ม ต่ อ กรั ม น า้ หนัก แห้ ง นอกจากนี ย้ ัง มี ผ ลต่ อ ความสามารถต้ านอนุ มูล อิ ส ระด้ วยวิ ธี DPPH เท่ า กับ 99.54 เปอร์ เซ็นต์ คาสาคัญ: Rhodotorula rubra, ถังปฏิกรณ์ชีวภาพแบบอากาศยก, แคโรทีนอยด์, ความสามารถต้ านอนุมลู อิสระ 1/ 1/ สาขาวิชาเทคโนโลยีชีวภาพ มหาวิทยาลัยแม่โจ้ -แพร่ เฉลิมพระเกียรติ จ. แพร่ 54140 Department of Biotechnology, Faculty of Maejo University Phrae Campus, Maejo University, Phrae, 54140 Thailand. Introduction Carotenoids are a group of bioactive compounds and are responsible for bright yellow/orange colours of various plants, microorganisms and animals (Wilhelm and Helmut, 1996). It has been found that carotenoids can inhibit various types of cancer and guard one from other important ‘‘lifestyle-related’’ diseases, such as cardiovascular disease and age-related macular degeneration due to their antioxidant activity and provitamin A function. (Andrew and Young, 2001 ; Benemann, 1992 ; Krinsky, 1998 ; Sotirios, and Vassiliki, 2006 ; Steven et al., 2000). It has been increasingly used as a feed and food pigment in the aquaculture industry, and has also been regarded as a potential functional food and pharmaceutical supplement, because of its excellent antioxidant activity (Johnson and Schroeder, 1995 ; Guerin et al., 2003). However, most of the carotenoids sold in the market are derived from chemical synthesis and cannot meet consumers’ desire for natural carotenoids. Thus, researchers shifted attention from chemical synthesis to isolation of carotenoids from biological sources such as Chlorella zofingiensis (Po-Fung, and Feng, 2005) and Haematococcus pluvialis (Garcia-Malea et al., 2005) for green microalgae study, Rhodotorula mucilaginosa (Aksu, and Eren, 2005), Rhodotorula rubra (Parajo, 1996) and Phaffia rhodozyma (Fontana et al., 1996 ; Parajo et al., 1998) for yeast study, Gibberella fujikuroi (Garbayo et al., 2003) for filamentous fungi study, and Rhodospirillum rubrum (Goodwin, and Osman, 1954), and Rhodobacter sphaeroides for bacteria study. Effective methods for carotenoids extraction from biological sources have been investigated (MaciasSanchez et al., 2005 ; Sachindra, and Mahendrakar, 2005). Rhodotorula rubra was originally considered a high-carotenoid producing strain, its carotenoid content is still too low for commercial application. Recently, a few carotenoid hyper producing yeast strains have been attained through conventional and modern strain development methods, which can accumulate carotenoids at much higher levels and have a greater commercial potential. (Chanchay et al., 2012). This study aims to optimize the major nutrients and culture conditions simultaneously for maximum carotenoid production and antioxidant activity in airlift bioreactor to much higher levels for animal feed industry Materials and Methods Microorganism and culture conditions The Rhodotorula rubra was used in this study, which was kindly provided from Maejo University. It was later identified, to be Rhodotorula rubra by the Faculty of Associated Medical Sciences, Chiangmai University. The basal medium for routine liquid culture contained 10.0 g glucose, 1.0 g (NH4)2SO4, 2.0 g KH2PO4, 1.0 g MgSO4.7H2O and 1.0 g yeast extract (YE) (per litre), with the pH adjusted to 5.5 For stock culture, the yeast was sub cultured on agar slop (basal medium + 15 g/l agar) and incubated at 30 0C for 72 h. It was kept in the refrigerator. The continuous sub culture was done in every 3 months. For starter culture, one loop of the yeast was transferred from the culture slop into 100 ml of basal medium contained in 250 ml Erlenmeyer. The flask was rotated on the rotary shaker at 250 rpm, and 30 0C for 72 h. To investigate optimal condition (pH, carbon sources, nitrogen sources, time, temperature, growth factor, Air volume and Head size sand) the liquid culture was done in 250 ml Erlenmeyer shake flasks, each was filled up with 100 ml medium and incubated on the rotary shaker at 250 rpm, 30 oC. Each of the flasks was inoculated with 5 per cent starter culture. The culture broth was centrifuged at 5,000 rpm, 10 min, washed with deionized water and centrifuged at 5,000 rpm for 10 min. The cells of Rhodotorula rubra were analyzed for carotenoid content by Foss method (Foss et al.,1984) and antioxidant activity modified by Foti et al (2004). Three replication experiments were carried out. Measurement of carotenoid content Yeast cells were separated from the liquid medium by centrifugation and rinsed twice with double distilled water, and then freeze dried. The carotenoid content was extracted from the yeast was determined for carotenoid contents by Foss method. Measurement of antioxidation characteristic of Rhodotorula rubra The antioxidation characteristics was extracted from the yeast was determined for antioxidation characteristics were as 2,2-Diphenyl-1-picrylhydrazyl (DPPH free radical scarvenging assay) is used to determine antioxidant activity of carotenoids produced by Rhodotorula rubra that is modified by Foti et al. (2004). Statistical Analysis Experimental data were subjected to analysis of variance using the Completely Randomized Design (CRD). Duncan, s New Multiple Range Test was used to identify significant differences among mean of treatments. Results and Discussion Rhodotorula rubra in cultivation in airlift bioreactor conditions with glucose as a carbon source at 10.0% (w/v), ammonium sulfate as a nitrogen source at 1.5% (w/v) for 96 hr., pH 7.0, temperature at 35 ๐C and Yeast extract 1 g/l as growth factor. (Figure 1). The air volume from pump to the 0.5 kg/bar with aquarium air stone size 2.5 inch can produce carotenoid increases to a maximum equal to 150.818 μg/g cell dry weight and the ability of antioxidants using DPPH maximum equal to 99.54%. (Table 1-5). Rhodotorula rubra was cultured in the fermentor at 23.77 g glucose, 3.19 g (NH4)2SO4, 3.19 g yeast extract (YE), pH 6.69, and 37 0C (per litre). Dissolved Oxygen was constant maintained by aeration and agitation. The cells of Rhodotorula rubra were collected, analyzed for carotenoid contents, while it was 239.72± 0.86 µg/g cell dry weight in practical, DPPH = 96.58 per cent, ABTS = 99.84 per cent, and MDA = 85.71 µmol/l (Chanchay et al., 2013) Rhodotorula rubra grew well in yeast malt extract medium (Glucose 10 g/l) and produced 30.679 g/ g (cell dry weight) of carotenoids. The optimal ratio of molasses to water for carotenoid production by Rhodotorula rubra in molasses medium, was 1 to 20. The supplementation of 5 per cent (w/v) sucrose in the medium provided the better yield of carotenoid content of 164.54 g/g cell dry weight (Aksu and Eren, 2005). In general, increase in sugar concentration in the growth medium increased the growth of yeast and carotenoids formation. The ability of R. mucilaginosa yeast for growing on a variety of carbon sources, such as glucose, sucrose, and lactose is a remarkable advantage. When compared with the results obtained with other yeasts in the literature, the high carotenoid productivity of the yeast also suggests a feasible process (Bhosale and Gadre, 2001 ; Buzzini and Martini, 2000). Thus, the yeast R. mucilaginosa will be one of the most promising microorganisms for the commercial production of carotenoids by the use of agricultural wastes as a cheap carbon source. The highest carotenoid concentration (125.0 mg total carotenoids per liter of fermentation broth) was obtained when 20 g/l molasses sucrose was used as the carbon source while the highest product yield based on the maximum cell concentration (35.5 mg total carotenoids per gram of dry cells) was achieved when 13.2 g/l whey lactose was the carbon source in the broth. (Aksu and Eren, 2005). Compare to another,s work (Aksu and Eren, 2007). An initial ammonium sulfate concentration of 2 g/l gave the maximum carotenoids production by Rhodotorula mucilaginosa. The highest carotenoid concentration (89.0 mg total carotenoids per liter of fermentation broth. Rhodotorula glutinis was cultivated aerobically on Yeast-extract–glucose–chloramphenicol agar (Merck, Germany) for 9 days at 25 °C under diffuse light. (Kaiser et al., 2007). Many yeast fermentation companies in Korea used ammonium sulfate and urea as nitrogen source. Yeast accumulated dark pigments of the molasses in the presence of ammonium sulfate but not in the presence of urea. Yeast extract is the water-soluble portion of autolyzed yeast. The autolysis is carefully controlled to preserve naturally occurring Bcomplex vitamins. Yeast extract is prepared and standardized for bacteriological use and cell cultures, and is an excellent stimulator of bacterial growth. Yeast extract is generally employed in the concentration of 0.3% 0.5%. Yeast extract is typically prepared by growing baker’s yeast, Saccharomyces spp., in a carbohydraterich plant medium. Yeast extract has been successful in culture media for microorganism studies in milk and other dairy products. (Chan et al.,1998) Several media containing Yeast extract have been recommended for cell culture applications. Yeast extract provides vitamins, nitrogen, amino acids, and carbon in microbiological and cell culture media. (Ikonomou and Agathose, 2001) Glucose, ammonium sulfate and Yeast extract have been screened out as the significant factors affecting on carotenoid biosynthesis of R. rubra in shake-flask cultures. The optimal levels of the two major nutrients for cell growth are very different from those for carotenoid biosynthesis. The cell growth required relatively high concentrations carbon and nitrogen source of carotenoid production, while carotenoid biosynthesis required much lower concentrations of glucose and ammonium sulfate. In addition, the optimal growth factor (Yeast extract) for cell growth was slightly higher than that peptone for carotenoid biosynthesis. A plausible explanation for the low optimal nutrient concentrations required for carotenoid biosynthesis is that carotenoids as the secondary metabolites of R. rubra are mainly synthesized when the cells are under stress (such as nutrient limitation) and the cell growth (primary metabolism) is suppressed. (Yuan and Jia, 2006). Carotenoids belong to isoprenoids synthesized through the mevalonate (MVA) pathway, which is one of the major secondary metabolism pathways in microbial cells (Bailey and Ollis, 1986). Although, most of the secondary metabolites such as antibiotics are mainly produced during the stationary phase (non-growth associated), some may be produced during the growth phases. (Shuler and Kargi, 2002). Sugars such as glucose in the culture medium provides both the major energy source for cell metabolism and the carbon element for biosynthesis of biomolecules. However, excessive glucose has been found to repress the carotenoid synthesis due to the so-called Crabtree effect (Yuan and Jia, 2006 ; Reynders et al., 1997). Nitrogen source, such as ammonium sulfate, is another major nutrient which has been shown to affect the growth and carotenoid production of several Xanthophyllomyces dendrorhous mutant strains (An et al., 1989). Yeast extract is another significant factor affecting on the carotenoid production in R. rubra cultures found in this and many previous studies. Most previous studies have chosen and identified yeast extract 1 g/l for cell growth and carotenoid biosynthesis in the cultures of wild R. rubra strains (Yuan and Jia, 2006 ; Johnson and Lewis, 1979). Figure 1 Optimal condition for carotenoids production and antioxidant activity by R. rubra Table 1 The effect of growth factor on the production of carotenoids and antioxidant activity by R. rubra Growth factor (g/l) Yeast extract Peptone Carotenoid (µg /g cell dry weight) 139.453a±1.765 98.743b±1.542 Antioxidant activity (%) 98.87a±0.44 96.34b±0.31 Table 2 The effect of temperature on the production of carotenoids and antioxidant activity by R. rubra. Temperature (๐C) 25 30 35 40 45 50 Carotenoid (µg /g cell dry weight) 88.653bc 89.962c 99.983a 91.243b 88.519bc 75.025d Antioxidant activity (%) 93.56bc 93.61bc 97.88a 95.65b 83.67d 81.21e Table 3 Optimal conditions for carotenoids production and antioxidant activity by R. rubra Optimal conditions pH 7.0 Glucose 10.0 % (w/v) Ammonium sulfate 1.5 % (w/v) Time 96 h. Temperature 35 ๐C Yeast extract ที่ 1 g/l Carotenoid (µg /g cell dry weight) Antioxidant activity (%) 145.673±1.782 98.93±0.34 Table 4 Air volume used to produce carotenoids and antioxidant activity by R. rubra in airlift bioreactors Air volume (kg/bar) 0.25 0.5 0.75 Carotenoid (µg /g cell dry weight) 142.152 b±1.136 146.442 a±1.343 146.528a±1.236 Antioxidant activity (%) 96.83b±0.13 98.46 a±0.16 98.19 a±0.15 Table 5 Size of aquarium air stone for carotenoids production and antioxidant activity by R. rubra in airlift bioreactors Aquarium air stone (inch) 1.0 1.5 2.5 Carotenoid (µg /g cell dry weight) 143.553 c±1.456 147.872 b±1.043 150.818a±1.556 Antioxidant activity (%) 97.73c±0.23 98.99 b±0.46 99.54 a±0.19 Conclusion Carotenoid microbial products into the feed industry is increasing year after year. Efforts have been made in order to reduce the product costs of fermentation pigments compared to those of systhetic pigments or pigments extracted from natural sources. Innovations will improve the economy of pigment production by isolating new or creating better microorganisms, by improving the processes. This study aimed to screen out and to optimize the major nutrients (Carbon and nitrogen sources) and growth factor source (Yeast extract and Peptone) simultaneously for maximum carotenoid production by Rhodotorula rubra. The optimal culture conditions for carotenoid biosynthesis by R. rubra in airlift bioreactor cultures with 2.5 inches of aquarium air stone under the pressure from air pump 0.5 kg/bar. It was found that supplementary of 10 g/l glucose as carbon source, supplementary of 1.5 g/l ammonium sulfate as nitrogen source for 96 hours, pH 7.0 temperature at 35 ๐C and supplementary of 1 g/l yeast extract as growth factor source in the medium provided the better yield of carotenoid content of 150.818 µg/g cell dry weight and the ability of antioxidants using DPPH maximum equal to 99.54%. Airlift bioreactor, could accumulate carotenoids at much higher levels and had a greater commercial potential for animal feed industry. Acknowledgement This study was financially supported by research and development private sector commercial. Commission on higher education and partnership Vision Bio Aqua Culture, Thailand. I would like to express profound appreciation and deep gratitude to all my supervisors for providing of laboratory facilities, convenience and valuable advice and suggestions on this research work. References An, G. H, D. B. Schuman, and E. A. Johnson. 1989. Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl. Environ. Microbiol. 55: 116–121. Andrew, J. and G. M. Young. 2001. Antioxidant and prooxidant properties of carotenoids. Archives of Biochemistry and Biophysics. 385 (1): 20–27. Aksu, Z. and A. T. Eren. 2005. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochemistry. 4: 2985–2991. Aksu, Z. and A. T. Eren. 2007. Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochemical Engineering. Journal. 35: 107–113. Bailey, J. E. and D. F. Ollis. 1986. Biochemical Engineering Fundamentals", McGraw-Hill, New York. Benemann, M. A. 1998. Microalgae aquaculture feeds. Journal of Applied Phycology. 4: 233–245. Bhosale, P. and R. V. Gadre. 2001. Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant", J. Ind. Microbiol. Biotechnol. 26: 327–332. Buzzini, P. and A. Martini. 2000. Production of carotenoids by strains of Rhodotorula glutinis cultured in rawmaterials of agro-industrial origin, Bioresour. Technol. 71: 41–44. Chan, L., P. F. Greenfield, and S. Reid. 1998. Optimizing fed-batch production of recombinant proteins using the baculovirus expression vector system. Biotechnology Bio Engineering. 59: 178-188. Chanchay, N., S. Sirisansaneeyakul, C. Chaiyasut and N. Poosaran. 2012. Optimal conditions for carotenoid production and antioxidation characteristics by Rhodotorula rubra. World Academy of Science, Engineering and Technology 68: 1934-1938. Chanchay, N., S. Sirisansaneeyakul, C. Chaiyasut and N. Poosaran. 2013. Optimal Condition for Growth of Rhodotorula rubra and Antioxidation Characteristics of Its Carotenoids. Doctor of Philosophy. Thesis. : Chiang Mai University, 124 p. Fontana, J. D., B. Czeczuga, and T. M. B. Bonfim. 1996. Bioproduction of carotenoids: The comparative use of raw sugarcane juice and depolymerized bagasse by Phaffla rhodozyma. Bioresource Technology. 58: 121–125. Foss, P., T. Storebakken, K. Schiedt, K. Liaaen-Jensen, E. Austreng, and K. Streiff. 1984. Carotenoids in diets for salmonids I: Pigmentation of rainbow trout with the individual optical isomers of astaxanthin in comparison with canthaxanthin. Aquaculture. 41: 213-226. Foti, M., C., Daquino, C. and Geraci, C. 2004. Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH radical in alcoholic solutions. J. Org. Chem. 69: 2309-2314. Garbayo, I., C. Vilchez, and J. E. Nava-Saucedo. 2003. Nitrogen, carbon and light-mediated regulation studies of carotenoid biosynthesis in immobilized mycelia of Gibberella fujikuroi. Enzyme and Microbial Technology. 33: 629–634. Garcia-Malea, M. C., C. Brindley, and E. Del Rio 2005. Modelling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply. Biochemical Engineering Journa. 26: 107–114. Goodwin, T. W. and H. G. Osman. 1954. Studies in carotenogenesis. 10. Spirilloxanthine synthesis by washed cells of Rhodospirillum rubrum. Biochemistry Journal. 53: 222–230. Guerin, M., M. E. Huntley and M. Olaizola 2003. Haematococcus astaxanthin: applications for human health and nutrition.Trends Biotechnol. 210–216. Ikonomou, B. and S. Agathose. 2001. Design of efficient medium for insect cell growth and recombinant protein production, in vitro Cell Dev. Biol. Anim. 37: 549-559. Johnson, E. A. and M. J. Lewis,. 1979. Astaxanthin formation by the yeast Phaffia rhodozyma, J. Gen. Microbiol.115: 173–183. Johnson, E. A. and W. A. Schroeder 1995. Microbial carotenoids production. Adv. Biochem. Eng, 53:119– 178. Kaiser, P, P. Surmann, G. Vallentin, and H. Fuhrmann. 2007. A small-scale method for quantitation of carotenoids in bacteria and yeasts. Journal of Microbiological Methods. 70: 142–149. Krinsky, N. I. 1998. The antioxidant and biological properties of the carotenoids. Annals of the New York Academy of Sciences. 854(20): 443–447. Macias-Sanchez, M. D., C. Mantell, and M. Rodriguez. 2005. Supercritical fluid extraction of carotenoids from Nannochloropsis gaditan. Journal of Food Engineering. 66: 245–251. Parajo, J. C., V. Santos, and M. Vazquez. 1996. Production of carotenoids by Rhodotorula rubra from Sauerkraut Brine. Journal of Fermentation and Bioengineering. 29: 570–572. Parajo, J. C., V. Santos, and M. Vazquez. 1998. Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose. Process Biochemistry. 33(2): 181–187. Po-Fung, I, and C. Feng. 2005. Production of astaxanthin by the microalga Chlorella zofingiensis in the dark. Process Biochemistry. 40: 733–738. Reynders, M. B., D. E. Rawlings and S. T. L. Harrison 1997. Demonstration of the Crabtree effect in Phaffia rhodozyma during continuous and fed-batch cultivation. Biotechnol. Lett. 19: 549–552. Sachindra, N. M. and N. S. Mahendrakar. 2005. Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresource Technology. 96: 1195–1200. Shuler, M. L. and F. Kargi. Bioprocess Engineering: Basic Concepts, Prentice Hall, Englewood Cliffs, NJ. Sotirios, K. and O. Vassiliki. 2006. Antioxidant properties of natural carotenoid extracts against the AAPHinitiated oxidation of food emulsions. Innovative Food Science and Emerging Technologies 7: 132–139. Steven, M., B. Carla, and Y. Ayako. 2000. -Carotene and selenium supplementation enhances immune response in aged humans. IntegrativeMedicine. 2(2/3): 85–92. Wilhelm, S. and S. Helmut. 1996. Lycopene: A biologically important carotenoid for humans. Archives of Biochemistry and Biophysics, 336 (1): 1–9. Yuan, S. H. and Jia. 2006. Optimization of cell growth and carotenoid production of Xanthophyllomyces dendrorhous through statistical experiment design. Biochemical Engineering Journal. 36: 182-189.
© Copyright 2025 Paperzz