Complexation and Reduction/Oxidation Reactions of Selected Flavonoids with Iron and Iron Complexes: Implications on In-Vitro Antioxidant Activity OH OH HO O OH OH O Quercetin 1 A quote by Dr. Barry Halliwell from the American Journal of Medicine1: “It is difficult these days to open a medical journal and not find some paper on the role of ‘reactive oxygen species’ or ‘free radicals’ in human disease.” “These species have been implicated in over 50 diseases. This large number suggests that radicals are not something esoteric, but that they participate as a fundamental component of tissue injury in most, if not all, human disease.” Despite a vast volume of research on flavonoids as antioxidants, the mechanism of their action is incomplete2. 1. 2. Halliwell, B. American Journal of Medicine. 1991, 91(3), 14. Burda S. and Wieslaw O. J. Agric. Food Chem. 2001, 49, 2774-2779. 2 Reactive Oxygen Species (ROS) O2 e - dioxygen + . O2 - H e- superoxide anion O2 e- H+ 2- .- [O + O ] . - 3H+ . hydroxyl radical H+ 2H+ oxide H2O2 hydrogen peroxide H2O + HO water 2O2- H+ HO2 hydroperoxide peroxide 2- e- HO2 • ROS are a minor product of the oxidative respiratory chain (~1-2%), mostly in the form of superoxide. • Excess production of ROS may result from iron overload and inflammation or immune responses. 2OH- hydroxide 2H2O water 3. Kaim w. and Schwederski B. “Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life.” J. Wiley and Sons, 1994, New York. 3 ROS Induced Damage R R O2 H2O + R H . R R . Hydrogen Abstraction 1. Initiation R OO OH R R R + R OO R 2. Propagation + R . R . R . OOH R R 3. Termination + R . . R R R R • Lipid peroxidation • DNA scission/crosslinking • Protein disruption and disintegration – Above damage has been correlated to Alzheimer’s and Parkinson’s disease, cancer, arthritis, diabetes, Lupus and many other age related degenerative diseases4. Lipid crosslinkage R 4. Pieta P. J. Nat. Prod. 2000, 63, 1035-1042. 4 Natural ROS Defenses 2O2 .- + 2H + SOD H2O2 + O2 catalase 2H2O2 2H2O + O2 glutathione peroxidase 2GSH + R-OOH GSSG + R-OH + H2O 5 Hydroxyl Radical and The Fenton Reaction • H2O2 + e- HO• + HO• Fe(II) Fe(III) + e- E°’ = 0.30 V, S.H.E., pH 7.0 E°’ = depends on complex • Fe(II) + H2O2 Fe(III) + HO• + HO– The impact of Ferrous salts on H2O2 reduction was discovered over 100 years ago.5 – The Fenton reaction in form above, including the hydroxyl radical, was suggested over 75 years ago.6 5. H.J.H. Fenton. J. Chem. Soc. 1894, 65, 889. 6. F. Haber and J.J. Weiss. Proc. Roy. Soc. London, Ser. A. 1934, 147, 332. 6 Peroxy-FeEDTA and the Fenton Reaction - [FeIIIEDTA-O2H]2- + e [FeIIEDTA-O2H]3- [FeIIEDTA-O2H]3- + H+ [FeIIIEDTA]- + HO + HO . - 7 Antioxidant Activity – – – – Enhance or mimic antioxidant enzymes. Direct scavenging of ROS. Repair damaged cellular components. Pro-oxidant metal deactivation. * The activity of a potential antioxidant is limited by the thermodynamic constants for its reactions involving complexation and reduction/oxidation. 8 Fenton Metal Deactivation [FeII(ATP)L] + H2O2 No Reaction +L FeIIATP+ H2O2 . FeIIIATP + HO + HO - +L (antioxidant) ATP (pro-oxidant ligand displacement) FeIIL + H2O2 No Reaction Quercetin deactivates the Fe-ATP complex7, although the precise mechanism is still unclear. The use of a strong chelate, like EDTA, should provide additional insight. 7. F. Cheng and K. Breen. Biometals. 2000, 13, 77-83. 9 Flavonoid Structure OH OH OH HO B 1' O 7 A A OH O OH Quercetin OH Taxifolin O 6' C OH 3 OH 5 4 5 OH 5' 2 6 3 B 1' O 7 6' C 6 1 8 5' 2 O 4' 2' Flavone 4' 2' 1 8 HO 3' 3' Base Structure O OH O HO O OH HO O OH 3' 3' Flavanonol 8 1 1' O 7 2 A B 8 5' C 1 1' O 7 6' 2 A 4' 2' Flavonol 4' 2' OH B OH OH Kaempferol O OH Myricetin O 5' 6' C 6 6 5 OH 4 OH 5 HO O HO O O HO Baicalein 3' Flavanone 8 1 1' O 7 2 A C 6 4' 2' 3 OH Isoflavone B 8 5' 6' 1 O O OH 2 A C 6 3' 1' 5 5 OH O 7 Chrysin O 4' HO O HO O O OH B 5' 2' OH 6' OH O Morin OH OH O Galangin 10 Flavonoid Facts • Flavonoids are found in higher vascular plants, particularly in the flower, leaves and bark. They are especially abundant in fruits, grains and nuts, particularly in the skins. • Beverages consisting of plant extracts (beer, tea, wine, fruit juice) are the principle source of dietary flavonoid intake. A glass of red wine has ~200 mg of flavonoids. • Typical flavonoid intake ranges from 50 to 800 mg/day, which is roughly 5, 50 and 100 times that of Vitamins C, and E, and carotenoids respectively. 4. P. Pieta. 11 Experimental Design • Observe Metal-Flavonoid binding interactions via shifts in the visible spectrum of the flavonoid when in the presence of the metal. • Investigate the electrochemical behavior of the FeEDTA, and peroxy-FeEDTA complexes for the purpose of assaying flavonoid antioxidant activity and elucidating flavonoid antioxidant mechanisms. • Measure the proton, metal and mixed-ligand binding constants for the flavonoids using potentiometry. • Correlate constants and observations to published antioxidant efficiency data for structure activity relationships and mechanism elucidation. 12 UV-visible Spectrophotometry 2.5 Ca, Naringenin Absorbance (AU) 2 1:3 (M:L) 1.5 1 1:1 (dashed), 0:1 (solid) 0.5 0 200 250 300 350 400 450 Wavelength (nm) 3.5 FeII, Quercetin Absorbance (AU) 3 2.5 1:3 2 1:1 1.5 0:1 1 • HP 8453 UV-vis diode array. 25 mM Metal, 2575 mM flavonoid, unbuffered and at pH 7.4 with 10 mM HEPES, 60/40 vol% water/dioxane. • Flavonoid-metal interaction is easily observed via shifts in the visible spectrum. 0.5 0 200 250 300 350 400 450 500 550 Wavelength (nm) 13 FeII FeIII CuII CaII ZnII Quercetin + + + - + 7.4 Galangin + + + - + 7.4 Fisetin + + + - + 7.4 Chrysin - - - - - Naringenin - - - - - Iron is the most abundant physiological transition metal; copper is second. Ca is the fifth most abundant element (by mass, behind O, C, H, and N) in the human body at ~ 1 kilogram present. Both Ca and Zn are commonly implicated in pro- and anti- oxidant processes. 14 Chelators HO Structure Activity Relationship suggests that the 4-keto, 3hydroxy moiety is important for chelation. Non-chelators OH O OH OH O HO Fisetin O OH OH Chrysin OH HO O O OH OH OH HO O Quercetin OH OH O O Naringenin O OH HO Galangin O This is in agreement with numerous other studies indicating the importance of the 3hydroxy group.8 Catechol moiety cannot be discounted without testing a flavonoid that lacks the 3-hydroxy group. 8. A. Arora et. al. Free Radical Biology and Medicine. 1998, 24(9)1355-1363. 15 Voltammetry O N O N O Gamry PC4 Potentiostat with CMS100 framework and CMS130 voltammetry software Fe O O O O O FeIIIEDTA + e- FeIIIEDTA + e- FeIIEDTA FeIIEDTA Conditions: -0.20 mM Fe(NO3)3 -0.10 M NaNO3 -20 mM HEPES pH 7.4 -25 mV/s, carbon disk -Ag/AgCl reference -Pt wire counter electrode 16 Why EDTA? • Its involvement in the Fenton reaction is well studied, and its binding constants, including very hard-to-find peroxy-mixedligand species, are readily available. • Although not physiologically present, it is a commonly used model for an amine and carboxylate containing metal chelate. • And it’s cheap too! 17 F e ( III)ED TA % fo mr a toi n re al tvi e to Fe 100 80 60 (HO)2-FeEDTA 40 FeHEDTA 20 0 0 4 8 12 pH F e ( II)ED TA 100 % fo mr a toi n re al tvi e to Fe HO-FeEDTA FeEDTA FeEDTA Fe 80 -0.1 mM FeII/III -0.1 mM EDTA 60 (HO)2-FeEDTA HO-FeEDTA 40 FeHEDTA 20 0 0 4 8 12 pH Hyperquad Speciation and Simulation software (HySS) by Peter Gans Formation Constants obtained from Robert M. Smith and Arthur E. Martell 18 19 Nernst Equation E = E0 - 0.059 x log [FeIIEDTA][OH-] [FeIIIEDTA-OH] E = 0.059(log[OH-]) + E0 - log [FeIIEDTA] [FeIIIEDTA-OH] 20 FeEDTA E1/2 pH Dependence E1/2 (V vs Ag/AgCl) 0 -0.05 FeEDTA -0.1 -0.15 FeEDTAOH/FeEDTA-(OH)2 -0.2 Linear (FeEDTAOH/FeEDTA-(OH)2) -0.25 -0.3 y = -0.0849x + 0.5574 R2 = 0.986 -0.35 0 5 10 15 pH 21 FeIIEDTA + H2O2 FeIIIEDTA + e- . - FeIIIEDTA + HO + HO FeIIEDTA H2O2 + e- . - HO + HO Conditions: -0.20 mM FeEDTA -0.10 M NaNO3 -20 mM HEPES, 7.4 -9.5 mM H2O2 -25 mV/s, C disk -Ag/AgCl reference -Pt wire counter electrode The electrocatalytic current (EC’) is highly dependant on pH, [H2O2] and [EDTA]. 22 1:1:540 1:1:140 1:1:40 1:1:10 1:1:10 Conditions: -0.10 mM Fe(NO3)3 -0.10 mM EDTA -1.0-54 mM H2O2 -0.10 M NaNO3 -20 mM HEPES pH 7.4 -25 mV/s, carbon disk -Ag/AgCl reference -Pt counter electrode -ratios are labeled according to Fe:EDTA:H2O2 23 FeIIIEDTA, H2O2 Speciation pH 7.4 % fo m r a toi n re al tvi e to Fe 100 80 FeEDTA 60 HOO-FeEDTA 40 HO-FeEDTA 20 0 4 6 8 pH 100 % fo m r a toi n re al tvi e to Fe Conditions: -0.10 mM FeEDTA (1:1) -4.0 mM H2O2 (top), 14 mM H2O2 (bottom). pH 7.4 HOO-FeEDTA FeEDTA 80 10 60 40 20 HO-FeEDTA 0 4 6 8 pH 10 24 1:10:540 1:10:140 1:10:40 1:10:10 Conditions: -0.10 mM Fe(NO3)3 -1.0 mM Na2EDTA -0.10 M NaNO3 -1.0-54 mM H2O2 -20 mM HEPES pH 7.4 -25 mV/s, carbon disk -Ag/AgCl reference -Pt counter electrode -ratios are labeled according to Fe:EDTA:H2O2 25 1:1:40 1:10:40 1:1:10 1:10:10 Another way of looking at the data is that at relatively low excesses of H2O2, the EC’ current is nearly independent of the Fe:EDTA ratio. Conditions: -0.10 mM Fe(NO3)3 -0.10/1.0 mM EDTA -1.0/4.0 mM H2O2 -0.10 M NaNO3 -20 mM HEPES pH 7.4 -25 mV/s, carbon disk -Ag/AgCl reference -Pt counter electrode -ratios are labeled according to Fe:EDTA:H2O2 26 140 1:1:540 120 1:1:140 80 60 40 0.8 0.4 0 -0.4 1:10:540 20 1:10:140 0 -0.8 -20 -1.2 current ( m A) 100 Conditions: -0.10 mM Fe(NO3)3 -0.10/1.0 mM EDTA -1.0-54 mM H2O2 -0.10 M NaNO3 -20 mM HEPES pH 7.4 -25 mV/s, carbon disk -Ag/AgCl reference -Pt counter electrode -ratios are labeled according to Fe:EDTA:H2O2 potential (V) At a relatively high excess of H2O2, the EC’ current exhibits a drastic dependence on the Fe:EDTA ratio. In contrast to the EC’ dependence on [H2O2], the effects of the Fe:EDTA ratio on the EC’ current could not be explained by speciation calculations. Kinetic factors may be important. 27 FeEDTA, Quercetin Composite 0.20 mM Fe(III)EDTA (1:1) 6 4 3 2 1 0 0.8 0.4 0 -0.4 current (m A, relative) 5 0.20 mM quercetin sum composite 0.20 mM Fe(III)EDTAquercetin (1:1:1) experimental 0.20 mM Fe(III)EDTAquercetin (1:1:1) -1 -0.8 potential (V, absolute) 28 29 Quercetin shifts the formal reduction potential, but what about the speciation of the peroxy-FeEDTA complex? 30 Formation Constant Refinement • Collect the experimental titration curve. • Simulate a titration curve using the same experimental concentrations and estimated formation constants. • Use non-linear least squares regression analysis to minimize the difference between the experimental data (pHexp) and the simulated curve (pHcalc). • When the curves match, the formation constants have been determined. • The curve fitting process provides a statistical evaluation of the data through sigma and Chisquare values. 31 Potentiometric Titrations •An ion selective electrode is used to monitor the concentration of a species as a titrate involved in competitive binding with another species which is added as a titrant. • Denver Instruments Titrator 280 auto titrator • Fisher Isotemp 1016D water bath • Accumet Model 20 pH Meter • Denver Instruments semimicro glass pH Ag/AgCl reference combination electrode. • 0.50-2.0 mM Flavonoid • 0.10 M NaNO3 ionic strength • 0.05 M NaNO3 titrant (standardized daily) • CO2 scrubbed water, N2 purged headspace • 60/40 vol% H2O/dioxane 32 OH Speciation and pH: data from c:\my documents\research\data\flavonoid ka's\fisetin 121101.ppd 100 90 11 HO 80 10 70 OH 60 9 O pH % formation relative to H OH 50 40 8 pka 7 11.906 6 11.773 30 20 10 0 Fisetin residuals in pH for selected data. Unweighted rms=2.86e-02 0.2 0.1 0.0 -0.1 -0.2 9.965 8.405 0 10 20 30 40 point number 50 60 70 sigma 1.54 chi2 11.9 33 Speciation and pH: data from C:\My Documents\chrysin 092402.ppd 100 HO 10 80 9 70 60 8 50 7 40 Chrysin OH O pH % formation relative to Chry 90 6 5 pka 4 11.406 30 20 10 0 residuals in pH for selected data. Unweighted rms=3.19e-02 7.983 0.1 0.0 -0.1 0 20 40 60 80 point number 100 120 sigma 1.62 chi2 73 34 Speciation and pH: data from c:\my documents\mark's\research\data\flavonoid ka's\galangin 121301.ppd 100 11 90 10 70 OH 9 60 OH pH % formation relative to H 80 HO 50 Galangin pka 8 40 O 30 11.694 7 20 10 10.684 6 0 8.232 residuals in pH for selected data. Unweighted rms=6.32e-03 0.02 0.0 -0.02 0 10 20 30 40 point number 50 60 sigma 0.53 chi2 10.7 70 35 OH Speciation and pH: data from c:\my documents\mark's\research\data\flavonoid ka's\kaempferol 121201.ppd 100 11 HO O 90 10 70 OH O Naringenin 9 60 50 8 pka pH % formation relative to H 80 40 11.324 30 7 10.034 20 10 6 0 8.238 residuals in pH for selected data. Unweighted rms=4.01e-02 0.2 0.1 0.0 -0.1 -0.2 0 10 20 30 40 point number 50 60 70 sigma 1.61 chi2 7.74 36 OH 80 HO OH 10 70 OH OH 9 O Morin 60 8 50 40 pH % formation relative to Mor Speciation and pH: data from c:\my documents\mark's\research\data\flavonoid ka's\morin 121401.ppd 100 11 90 7 pka 11.642 30 6 11.851 20 5 10 0 10.555 residuals in pH for selected data. Unweighted rms=3.79e-02 8.860 0.1 0.0 5.702 -0.1 0 20 40 60 80 point number 100 120 140 sigma 3.7 chi2 21.8 37 OH OH Speciation and pH: data from c:\my documents\mark's\research\data\flavonoid ka's\quercetin 022602b.ppd 100 10 HO 90 9 OH 70 8 OH 60 7 50 40 Quercetin pka 6 30 11.948 5 20 O pH % formation relative to H 80 12.378 10 4 0 11.211 residuals in pH for selected data. Unweighted rms=9.67e-02 0.5 9.667 0.0 8.331 -0.5 0 10 20 30 40 50 point number 60 70 80 90 sigma chi2 2.5 4.9 38 quercetin morin naringin galangin chrysin Fisetin pk1 8.331 5.702 8.238 8.232 7.983 8.405 pk2 9.667 8.860 10.034 10.684 11.406 9.965 pk3 11.211 10.555 11.324 11.694 pk4 11.948 11.642 pk5 12.378 11.851 11.773 11.906 39 Flavonoid Potentiometric Titration Curve 11.000 10.000 9.000 pH 8.000 7.000 6.000 Q only Q:Zn(II) 3:1 5.000 Q:Zn(II) 1:1 Q:Fe(II) 3:1 4.000 Q:Ca(II) 1:1 3.000 0.00 0.20 0.40 0.60 0.80 1.00 NaOH added (m l 0.0501 M) 40 Work in Progress • Complete spectroscopic studies in order reveal SAR. • Extend the EC’ assay to other flavonoids. • Obtain FeEDTA-flavonoid mixed ligand binding constants. 41 pH 7.4 % fo m r a toi n re al tvi e to Fe 100 FeEDTA 80 Q = quercetin Fe = ferric FeIII Q-FeEDTA 60 40 20 k= HO2-FeEDTA HO-FeEDTA [FeEDTA-H2Q] [FeEDTA][H2Q] =1013 0 4 6 8 10 pH pH 7.4 % fo m r a toi n re al tvi e to Fe 100 k= FeEDTA 80 [FeEDTA-H2Q] [FeEDTA][H2Q] =1010 HO2-FeEDTA 60 Assuming 0.1 mM FeIIIEDTA, 14 mM H2O2, and 0.1 mM quercetin 40 20 Q-FeEDTA HO-FeEDTA 0 4 6 8 pH 10 42 Summary • The mechanism of Flavonoid antioxidant activity by metal chelation is most likely two-fold: – Flavonoids that posses large enough affinity constants for the mixed FeEDTA-flavonoid complex formation disfavor the speciation of the highly reactive FeEDTAperoxy complex. – The newly formed FeEDTA-flavonoid complex shifts the metal based electrochemistry beyond the range for Fenton redox cycling. 43 Acknowledgements: Coworkers: Cheng Group Tom Brandt Jessica Poindexter Terry Hyatt Rob Bobier Kevin Breen Ryan Hutcheson Chemistry department ...and for moral support: The Engelmanns Financial: National Institute of Health Renfrew scholarship 44
© Copyright 2025 Paperzz