Filomat 31:8 (2017), 2355–2364 DOI 10.2298/FIL1708355Y Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Further Generalizations of Some Operator Inequalities Involving Positive Linear Map Changsen Yanga , Chaojun Yanga a Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control; College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Henan, P.R.China. Abstract. We obtain a generalized conclusion based on an α-geometric mean inequality. The conclusion is presented as follows: If m1 , M1 , m2 , M2 are positive real numbers, 0 < m1 ≤ A ≤ M1 and 0 < m2 ≤ B ≤ M2 for m1 < M1 and m2 < M2 , then for every unital positive linear map Φ and α ∈ (0, 1], the operator inequality below holds: p (M1 +m1 )2 ((M1 +m1 )−1 (M2 +m2 ))2α ) Φp (A]α B), p ≥ 2. (Φ(A)]α Φ(B))p ≤ 161 (m M )α (m M )1−α 2 2 1 1 Likewise, we give a second powering of the Diaz-Metcalf type inequality. Finally, we present p−th powering of some reversed inequalities for n operators related to Karcher mean and power mean involving positive linear maps. 1. Introduction Let B(H) stand for the C∗ -algebra of all bounded linear operators acting on a complex Hilbert space H and I denote the identity operator. k·k denote the operator norm. An operator A is said to be positive if hAx, xi ≥ 0 for all x ∈ H and we write A ≥ 0. We identify T ≥ S(the same as S ≤ T) with T − S ≥ 0. A positive 1 invertible operator T is denoted by T > 0. The absolute value of T is denoted by |T| = (T∗ T) 2 , where T∗ stands for the adjoint of T. A linear map Φ : B(H) → B(H) is called positive (strictly positive) if Φ(A) ≥ 0 (Φ(A) > 0) whenever A ≥ 0 (A > 0), and Φ is said to be unital if Φ(I) = I. Take A, B > 0 and α ∈ [0, 1], the α-geometric mean A]α B −1 −1 1 1 is defined by A]α B = A 2 (A 2 BA 2 )α A 2 , when α = 12 , A] 1 B = A]B is said to be the geometric mean between 2 A and B. The geometric mean A]B of two positive operators A, B ∈ B(H) is characterized by Ando [2] ( " # ) A X ∗ A]B = max X = X ∈ B(H) : ≥0 . X B 2010 Mathematics Subject Classification. Primary 47A63 ; Secondary 46B10 Keywords. Positive linear map; α−geometric mean; operator inequality Received: 25 November 2015; Accepted: 20 February 2016 Communicated by Dragan S. Djordjević Research supported National Natural Science Foundation of China with grant (no. 11271112,11201127) and Technology and the Innovation Team in Henan Province (NO.14IRTSTHN023). Email addresses: yangchangsen0991@sina.com (Changsen Yang), cjyangmath@163.com (Chaojun Yang) C. Yang, C. Yang / Filomat 31:8 (2017), 2355–2364 2356 The definition above reveals the maximal characterization of geometric mean [16]. L The 2 × 2 operator matrix mentioned in this work is naturally understood as an operator acting on H H. In 1948, Kantorovich [9] introduced the famous Kantorovich inequality. In 1990, Marshall and Olkin [13] established an operator Kantorovich inequality. It is well known that tα is operator monotone function on [0, ∞) if and only if α ∈ [0, 1]. Since t2 is not an operator monotone function, we can not obtain A2 ≥ B2 directly by A ≥ B ≥ 0. In 2013, Lin [12] proved that the operator Kantorovich inequality is order preserving under squaring. In 2011, Seo gave an α-geometric mean inequality for positive linear map as follows: Theorem 1.1. [17] Let Φ : B(H) → B(K ) be a unital positive linear map and let A and B be positive operators such that 0 < m21 ≤ A ≤ M21 and 0 < m22 ≤ B ≤ M22 for some positive real numbers m1 < M1 and m2 < M2 . Then for α ∈ [0, 1] Φ(A)]α Φ(B) ≤ K(m, M, α)−1 Φ(A]α B), (1) m2 2 2 2 ) = m, ( M where we suppose ( M m1 ) = M and the generalized Kantorovich constant K(M, m, α) [7] is defined by 1 K(m, M, α) = mMα − Mmα α − 1 Mα − mα α (α − 1)(M − m) α mMα − Mmα for any real number α ∈ R. Motived by Lin’s idea [12], Fu obtained a second powering of the operator inequality (1): Theorem 1.2. [6] Let Φ : B(H) → B(K ) be a unital positive linear map and let A and B be positive operators such that 0 < m1 ≤ A ≤ M1 and 0 < m2 ≤ B ≤ M2 for some positive real numbers m1 < M1 and m2 < M2 . Then for α ∈ [0, 1] (Φ(A)]α Φ(B))2 ≤ (M +m 1 2 −1 2α 1 ) ((M1 +m1 ) (M2 +m2 )) 4(m2 M2 )α (m1 M1 )1−α 2 Φ2 (A]α B). (2) Next we present the Diaz-Metcalf type inequality. Theorem 1.3. [14] Let Φ be a positive linear map. If 0 < m21 ≤ A ≤ M21 and 0 < m22 ≤ B ≤ M22 for some positive real numbers m1 ≤ M1 and m2 ≤ M2 , then the following inequality holds: M2 m2 M2 m2 Φ(A) + Φ(B) ≤ + Φ(A]B). M1 m1 m1 M1 Pn Let A1 , · · · , An > 0 and ω = (w1 , . . . , wn ) is a probability vector: i=1 wi = 1 and wi > 0 for i = 1, . . . , n. For t ∈ (0, 1], the ω−weighted power mean Pt (ω; A1 , . . . , An ) (or Pt (ω; A))is defined as the unique solution of X= n X ωi (X]t Ai ). i=1 −1 For t ∈ [−1, 0), we define Pt (ω; A1 , . . . , An ) = P−t (ω; A−1 , . . . , A−1 n ) . Next we bring some basic properties of 1 the power mean that is useful to obtain the results in this work, for more details about power mean, see [11]. C. Yang, C. Yang / Filomat 31:8 (2017), 2355–2364 2357 Proposition 1.4. [11] The power mean satisfies the following properties: −1 (i) (sel f duality) P−t (ω; A−1 , · · · , A−1 = Pt (ω; A1 , · · · , An ). n ) 1 Pn Pn −1 (ii) (AGH wei1hted mean inequalities) ( i=1 ωi A−1 ≤ Pt (ω; A1 , · · · , An ) ≤ i=1 ωi Ai . i ) (iii) t ∈ (0, 1], Φ(Pt (ω; A)) ≤ Pt (ω; Φ(A)) f or any positive unital linear map Φ; t ∈ [−1, 0), Φ(Pt (ω; A)) ≥ Pt (ω; Φ(A)) f or any strictly positive unital linear map Φ. (iv) Pt (ω; A) ≤ Pt (ω; B) i f Ai ≤ Bi f or all i = 1, 2, · · · , n. The ω−weighted Karcher mean Λ(ω; A1 , . . . , An )(orΛ(ω; A)) of A1 , · · · , An > 0 is defined to be the unique positive definite solution of equation n X 1 1 ωi lo1(X− 2 Ai X− 2 ) = 0, i=1 where ω = (w1 , . . . , wn ) is a probability vector. Next we cite some basic properties of the Karcher mean as follows, for more details about Karcher mean, see [11]. Proposition 1.5. [11] The Karcher mean satisfies the following properties: −1 (i) (sel f duality) Λ(ω; A−1 , · · · , A−1 = Λ(ω; A1 , · · · , An ). n ) 1 Pn Pn −1 ≤ Λ(ω; A1 , · · · , An ) ≤ i=1 ωi Ai . (ii) (AGH wei1hted mean inequalities) ( i=1 ωi A−1 i ) (iii) Φ(Λ(ω; A)) ≤ Λ(ω; Φ(A)) f or any positive unital linear map Φ. (iv) (monotonicity) I f Bi ≤ Ai f or all 1 ≤ i ≤ n, then Λ(ω; B) ≤ Λ(ω; A). As mentioned in the abstract, we shall give a further generalization of Theorem 1.2 and Diaz-Metcalf type inequality in the following section, along with presenting p−th powering of some reversed inequalities for n operators related to Karcher mean and power mean involving positive linear maps. 2. Main Results Before giving our main results, let us first consider the following lemmas. Lemma 2.1. ( Choi inequality.) [5, 7] Let Φ be a unital positive linear map, then (C1 ) when A > 0 and −1 ≤ p ≤ 0, then Φ(A)p ≤ Φ(Ap ), in particular,Φ(A)−1 ≤ Φ(A−1 ); (C2 ) when A ≥ 0 and 0 ≤ p ≤ 1, then Φ(A)p ≥ Φ(Ap ); (C3 ) when A ≥ 0 and 1 ≤ p ≤ 2, then Φ(A)p ≤ Φ(Ap ). Lemma 2.2. [10] Let Φ be a unital positive linear map and A, B be positive operators. Then for α ∈ [0, 1] Φ(A]α B) ≤ Φ(A)]α Φ(B). Lemma 2.3. [4] Let A, B ≥ 0. Then the following norm inequality holds: kABk≤ 1 kA + Bk2 . 4 C. Yang, C. Yang / Filomat 31:8 (2017), 2355–2364 2358 Lemma 2.4. [3] Let A, B ≥ 0. Then for 1 ≤ r < +∞, kAr + Br k≤ k(A + B)r k. Now we are going to present the first main theorem of this paper. Theorem 2.5. Let Φ : B(H) → B(K ) be a unital positive linear map and let A and B be positive operators such that 0 < m1 ≤ A ≤ M1 and 0 < m2 ≤ B ≤ M2 for some positive real numbers m1 < M1 and m2 < M2 . Then for α ∈ [0, 1], p≥2 n 2 −1 2α op 1 (M1 +m1 ) ((M1 +m1 ) (M2 +m2 )) (3) (Φ(A)]α Φ(B))p ≤ 16 Φp (A]α B) (m M )α (m M )1−α 2 2 1 1 Proof. The desired inequality is equivalent to p p k(Φ(A)]α Φ(B)) 2 Φ− 2 (A]α B)k≤ 1 4 n (M +m 2 −1 2α 1 ) ((M1 +m1 ) (M2 +m2 )) (m2 M2 )α (m1 M1 )1−α 1 o p2 . (4) Note that (M1 − A)(m1 − A)A−1 ≤ 0, then M1 m1 A−1 + A ≤ M1 + m1 , and therefore M1 m1 Φ(A−1 ) + Φ(A) ≤ M1 + m1 . (5) Likewise, we can get M2 m2 Φ(B−1 ) + Φ(B) ≤ M2 + m2 . (6) Hence, by the property of weighted geometric mean, through (5) and (6), we obtain (M1 m1 Φ(A−1 ) + Φ(A))]α (M2 m2 Φ(B−1 ) + Φ(B)) ≤ (M1 + m1 )]α (M2 + m2 ). Using the subadditivity of weighted geometric mean, we get (m2 M2 )α (m1 M1 )1−α Φ−1 (A]α B) + Φ(A)]α Φ(B) ≤ (m2 M2 )α (m1 M1 )1−α (Φ(A−1 ]α B−1 )) + Φ(A)]α Φ(B) ≤ (m2 M2 )α (m1 M1 )1−α (Φ(A−1 )]α Φ(B−1 )) + Φ(A)]α Φ(B) = (m1 M1 Φ(A−1 ))]α (m2 M2 Φ(B−1 )) + Φ(A)]α Φ(B) ≤ (m1 M1 Φ(A−1 ) + Φ(A))]α (m2 M2 Φ(B−1 ) + Φ(B)), where the first inequality is obtained by Lemma 2.1, the second one is obtained by Lemma 2.2. Since αp p k(Φ(A)]α Φ(B)) 2 (m2 M2 ) 2 (m1 M1 ) p αp (1−α)p 2 p Φ− 2 (A]α B)k ≤ 14 k(Φ(A)]α Φ(B)) 2 + (m2 M2 ) 2 (m1 M1 ) (1−α)p 2 p Φ− 2 (A]α B)k2 p ≤ 14 k(Φ(A)]α Φ(B) + (m2 M2 )α (m1 M1 )1−α Φ−1 (A]α B)) 2 k2 = 14 kΦ(A)]α Φ(B) + (m2 M2 )α (m1 M1 )1−α Φ−1 (A]α B)kp ≤ 41 k(Φ(A) + m1 M1 Φ(A−1 ))]α (Φ(B) + m2 M2 Φ(B−1 ))kp ≤ 14 k(M1 + m1 )]α (M2 + m2 )kp = ((M1 +m1 )((M1 +m1 )−1 (M2 +m2 ))α )p , 4 C. Yang, C. Yang / Filomat 31:8 (2017), 2355–2364 2359 where the first inequality is obtained by Lemma 2.3, the second one is obtained by Lemma 2.4., so we have p p k(Φ(A)]α Φ(B)) 2 Φ− 2 (A]α B)k ≤ ((M1 +m1 )((M1 +m1 )−1 (M2 +m2 ))α )p 4(m2 M2 ) = 1 4 αp 2 (m1 M1 ) (1−α)p 2 n (M +m )2 ((M −1 2α 1 +m1 ) (M2 +m2 )) (m2 M2 )α (m1 M1 )1−α 1 1 o p2 . Hence the inequality (4) has been obtained. Remark 2.6. Inequality (2) is a special case of Theorem 2.5 by taking p = 2. Lemma 2.7. [1] Let A, B ≥ 0. Then A]B ≤ A+B . 2 Inspired by Theorem 2.5, we give a further generalization related to the Diaz-Metcalf type inequality as follows. Theorem 2.8. Let Φ be a unital positive linear map. If 0 < m21 ≤ A ≤ M21 and 0 < m22 ≤ B ≤ M22 for some positive real numbers m1 ≤ M1 and m2 ≤ M2 , then the following inequality holds: M 2 m2 M1 m1 Φ(A) + Φ(B) p ≤ 1 16 (M1 m1 (M22 +m22 )+M2 m2 (M21 +m21 ))2 √ 2 M2 M1 m1 m2 M21 m21 M2 m2 p Φp (A]B), p ≥ 2. (7) Proof. Obviously (7) is equivalent to M2 m2 k Φ(A) + Φ(B) M1 m1 2p p −2 Φ p 2 2 2 2 2 2 )) + m (M m (M + m ) + M m (M 1 1 2 2 1 2 2 1 1 (A]B)k≤ . √ 2 2 4 2 M2 M1 m1 m2 M1 m1 M2 m2 By the proof of (5), we have M21 m21 Φ(A−1 ) + Φ(A) ≤ M21 + m21 , which equals to M2 m2 m1 M1 Φ(A−1 ) + M2 m2 M1 m1 Φ(A) ≤ M 2 m2 2 M1 m1 (M1 + m21 ). (8) Similarly, we have M22 m22 Φ(B−1 ) + Φ(B) ≤ M22 + m22 . (9) By (8) and (9) we have √ M2 m2 2 M2 M1 m1 m2 M2 m2 Φ(A]B)−1 + ( M Φ(A) + Φ(B)) 1 m1 √ M2 m2 ≤ 2 M2 M1 m1 m2 M2 m2 Φ(A−1 ]B−1 ) + ( M Φ(A) + Φ(B)) 1 m1 √ M2 m2 ≤ 2 M2 M1 m1 m2 M2 m2 Φ(A−1 )]Φ(B−1 ) + ( M Φ(A) + Φ(B)) 1 m1 ≤ M2 M1 m1 m2 Φ(A−1 ) + M22 m22 Φ(B−1 ) + ≤ M 2 m2 2 M1 m1 (M1 + m21 ) + M22 + m22 , M2 m2 M1 m1 Φ(A) + Φ(B) C. Yang, C. Yang / Filomat 31:8 (2017), 2355–2364 2360 where the first inequality is obtained by Lemma 2.1, the second one is obtained by Lemma 2.2, the third one is obtained by Lemma 2.7, the last one is the result of combining (8) and (9). Since 2p √ p p 2 m2 (2 M2 M1 m1 m2 M2 m2 ) 2 Φ− 2 (A]B)k k M M1 m1 Φ(A) + Φ(B) 2p √ p p 2 m2 ≤ 14 k M + (2 M2 M1 m1 m2 M2 m2 ) 2 Φ− 2 (A]B)k2 Φ(A) + Φ(B) M 1 m1 p2 √ −1 2 m2 M M m m M m Φ (A]B) ≤ 14 k M k2 Φ(A) + Φ(B) + 2 2 1 1 2 2 2 M 1 m1 √ −1 p 2 m2 = 14 k M M1 m1 Φ(A) + Φ(B) + 2 M2 M1 m1 m2 M2 m2 Φ (A]B)k p M2 m2 (M21 +m21 )+M1 m1 (M22 +m22 ) ≤ 41 , M 1 m1 we have M2 m2 k Φ(A) + Φ(B) M1 m1 2p p −2 Φ p 2 2 2 2 2 2 1 (M1 m1 (M2 + m2 ) + M2 m2 (M1 + m1 )) (A]B)k≤ . √ 2 2 4 2 M2 M1 m1 m2 M m M2 m2 1 1 Corollary 2.9. In Theorem 2.8, put p = 2, we get 2 2 2 2 2 2 2 M2 m2 (M1 m1 (M2 + m2 ) + M2 m2 (M1 + m1 )) 2 Φ(A) + Φ(B) ≤ Φ (A]B), √ M1 m1 8 M2 M1 m1 m2 M21 m21 M2 m2 which can be seen as a squared operator inequality related to Diaz-Metcalf type inequality. Lemma 2.10. [8] For any bounded operator X, " # X ≥0 tI tI |X| ≤ tI ⇔ kXk≤ t ⇔ ∗ X (t ≥ 0) Theorem 2.11. Let A and B be positive operators on a Hilbert space H with 0 < m1 ≤ A ≤ M1 and 0 < m2 ≤ B ≤ M2 , Φ be a unital positive linear map on B(H). Then for 0 ≤ α ≤ 1 and p ≥ 2, p p p p (Φ(A)]α Φ(B)) 2 Φ− 2 (A]α B) + Φ− 2 (A]α B)(Φ(A)]α Φ(B)) 2 p n 2 −1 2α o 2 1 (M1 +m1 ) ((M1 +m1 ) (M2 +m2 )) ≤2 . (m2 M2 )α (m1 M1 )1−α Proof. By (4) and Lemma 2.10, we obtain n op 1 (M1 +m1 )2 ((M1 +m1 )−1 (M2 +m2 ))2α 2 I 4 α 1−α (m2 M2 ) (m1 M1 ) p p −2 Φ (A] B)(Φ(A)] Φ(B)) 2 α and α n op 1 (M1 +m1 )2 ((M1 +m1 )−1 (M2 +m2 ))2α 2 I 4 (m2 M2 )α (m1 M1 )1−α p p (Φ(A)] Φ(B)) 2 Φ− 2 (A] B) α α (10) p 1 4 p (Φ(A)]α Φ(B)) 2 Φ− 2 (A]α B) n (M +m )2 ((M +m )−1 (M +m ))2α o p2 1 1 1 1 2 (m2 M2 )α (m1 M1 )1−α 2 p 1 4 p Φ− 2 (A]α B)(Φ(A)]α Φ(B)) 2 n (M +m )2 ((M +m )−1 (M +m ))2α o p2 1 1 1 1 2 (m2 M2 )α (m1 M1 )1−α 2 Summing up these two operator matrices above, and putting ( )p 1 (M1 + m1 )2 ((M1 + m1 )−1 (M2 + m2 ))2α 2 t= , 4 (m2 M2 )α (m1 M1 )1−α ≥ 0 I ≥ 0 I C. Yang, C. Yang / Filomat 31:8 (2017), 2355–2364 p p 2361 p p X = Φ− 2 (A]α B)(Φ(A)]α Φ(B)) 2 + (Φ(A)]α Φ(B)) 2 Φ− 2 (A]α B), we have " 2tI X p p # X ≥0 2tI p p Since Φ− 2 (A]α B)(Φ(A)]α Φ(B)) 2 + (Φ(A)]α Φ(B)) 2 Φ− 2 (A]α B) is self-adjoint, (10) follows from the maximal characterization of geometric mean. Theorem 2.12. Let Φ be a unital positive linear map. If 0 < m21 ≤ A ≤ M21 and 0 < m22 ≤ B ≤ M22 for some positive real numbers m1 ≤ M1 and m2 ≤ M2 , p ≥ 2, then the following inequalities holds: p p p p (Φ(A)]α Φ(B)) 2 Φ− 2 (A]α B) + Φ− 2 (A]α B)(Φ(A)]α Φ(B)) 2 2p 2 2 2 2 2 1 (M1 m√1 (M2 +m2 )+M2 m2 (M1 +m1 )) ≤2 2 M M m m M2 m2 M m 2 1 1 2 1 1 2 (11) 2 Proof. By the method of proving Theorem 2.11, we can easily get (11). Next we present a p−th powering of a reversed HM-PM inequality for n operators. Theorem 2.13. Let 0 < m ≤ Ai ≤ M for i = 1, · · · n, M ≥ m, ω = (ω1 , · · · , ωn ) be a probability vector, t ∈ [−1, 0) ∪ (0, 1]. Then we have Pt (ω; A1 , · · · , An )p ≤ 1 16 n (M+m)2 op P n )−p , ( ωi A−1 Mm i p ≥ 2. (12) i=1 Proof. The inequality (12) is equivalent to p 2 kPt (ω; A1 , · · · , An ) ( n X ( )p 1 (M + m)2 2 . 4 Mm p 2 ωi A−1 i ) k≤ i=1 Since (5) implies Mm( n P i=1 ωi A−1 )+ i n P ωi Ai ≤ M + m. (13) i=1 Then by Proposition 1.4, we have Pt (ω; A1 , · · · , An ) + Mm( n P i=1 ≤ n P ωi Ai + Mm( i=1 n P i=1 ωi A−1 ) i ωi A−1 ) i ≤ M + m. Thus p p p kPt ω; A1 , · · · , An ) 2 (Mm) 2 (ωi A−1 )2 k i p p p ≤ 14 kPt (ω; A1 , · · · , An ) 2 + (Mm) 2 (ωi A−1 ) 2 k2 i p ≤ 41 k(Pt (ω; A1 , · · · , An ) + Mm(ωi A−1 )) 2 k2 i = 14 kPt (ω; A1 , · · · , An ) + Mm(ωi A−1 )kp i ≤ 14 (M + m)p . C. Yang, C. Yang / Filomat 31:8 (2017), 2355–2364 Therefore p 2 kPt (ω; A1 , · · · , An ) ( n X p 2 ωi A−1 i ) k≤ i=1 2362 ( )p 1 (M + m)2 2 . 4 Mm From [11] we know, power mean is increasing from [−1, 0) ∪ (0, 1]. Furthermore, lim Pt (ω; Φ(A)) = t→0 Λ(ω; Φ(A)). Therefore in Theorem 2.13 put t → 0, we obtain: Corollary 2.14. Let 0 < m ≤ Ai ≤ M for i = 1, · · · n, M ≥ m, ω = (ω1 , · · · , ωn ) be a probability vector. Then we have Λ(ω; A1 , · · · , An )p ≤ 1 16 n (M+m)2 op P n )−p , ( ωi A−1 Mm i p ≥ 2. (14) i=1 Lemma 2.15 presented a p-th powering of a reversed HM-KM inequality for n operators. Lemma 2.15. [7] (L-H inequality) If 0 ≤ α ≤ 1, A, B ≥ 0 and A ≥ B, then Aα ≥ Bα . Lemma 2.16. Let 0 < m ≤ Ai ≤ M for i = 1, · · · n, M ≥ m, ω = (ω1 , · · · , ωn ) be a probability vector. Then we obtain n P ωi Ai ≤ i=1 Proof. First we proof ( n P ω i Ai ) 2 ≤ ( i=1 n (m+M)2 P ωi A−1 )−1 . 4mM ( i i=1 n (m+M)2 2 P ) ( ωi A−1 )−2 . This inequality 4mM i i=1 n n X X (M + m)2 k ωi Ai . ωi A−1 i k≤ 4Mm i=1 i=1 equals to Now by k( n P ωi Ai )Mm( i=1 n P i=1 ≤ 14 k n P )k ωi A−1 i ωi Ai + Mm( i=1 n P i=1 ωi A−1 )k2 i ≤ 41 (M + m)2 , where the second inequality is obtained by (13). Hence we can get desired inequality by Lemma 2.15. We remark that the result of Lemma 2.16 is a special case of Theorem 1 in [15]. Theorem 2.17. Let Φ be a unital positive linear map, 0 < m ≤ Ai ≤ M for i = 1, · · · n, M ≥ m. ω = (ω1 , · · · , ωn ) be a probability vector, t ∈ (0, 1]. Then we have Pt (ω; Φ(A)) ≤ (m+M)2 4mM Φ(Λ(ω; A)). (15) Proof. By Proposition 1.4, 1.5 and Lemma 2.16 we get Pt (ω; Φ(A)) ≤ n X i=1 n n X X (m + M)2 (m + M)2 −1 ωi Φ(Ai ) = Φ( ωi Ai ) ≤ Φ(( ωi A−1 Φ(Λ(ω; A)). i ) )≤ 4mM 4mM i=1 i=1 From [11] we know Pt (ω; A) ≥ Λ(ω; A) when t ∈ (0, 1], and by Proposition 1.4, 1.5 we have Pt (ω; Φ(A)) ≥ Λ(ω; Φ(A)) ≥ Φ(Λ(ω; A)) . Thus (15) can be viewed as a reversed PM-KM inequality involving positive unital linear maps. C. Yang, C. Yang / Filomat 31:8 (2017), 2355–2364 2363 Corollary 2.18. Under the same conditions as in Theorem 2.13, one can obtain Φ(Pt (ω; A)) ≤ (m+M)2 4mM Λ(ω; Φ(A)). (16) Proof. By Proposition 1.4 and 1.5, we obtain Φ(Pt (ω; A)) ≤ Pt (ω; Φ(A))) ≤ (m + M)2 (m + M)2 Φ(Λ(ω; A)) ≤ Λ(ω; Φ(A)). 4mM 4mM Next we present p-th powering of (14) involving positive unital linear maps. Theorem 2.19. Let Φ be a unital positive linear map, 0 < m ≤ Ai ≤ M for i = 1, · · · n, M ≥ m. ω = (ω1 , · · · , ωn ) be a probability vector, t ∈ (0, 1], p ≥ 2. Then we have n 2 op 1 (M+m) (17) Φ(Λ(ω; A))p . Pt (ω; Φ(A))p ≤ 16 Mm Proof. The inequality (17) is equivalent to p 2 kPt (ω; Φ(A)) Φ(Λ(ω; A)) p −2 ( )p 1 (M + m)2 2 k≤ . 4 Mm By (13), we obtain Pt (ω; Φ(A)) + MmΦ(Λ(ω; A))−1 ≤ Pt (ω; Φ(A)) + MmΦ(Λ(ω; A)−1 ) ≤( n P ωi Φ(Ai )) + MmΦ( i=1 n P i=1 ωi A−1 ) i ≤ M + m. Then p p p kPt (ω; Φ(A)) 2 (Mm) 2 Φ(Λ(ω; A))− 2 k p p p ≤ 14 kPt (ω; Φ(A)) 2 + (Mm) 2 Φ(Λ(ω; A))− 2 k2 ≤ 14 kPt (ω; Φ(A)) + MmΦ(Λ(ω; A))−1 kp ≤ 14 (M + m)p . Therefore we have the desired inequality. Theorem 2.20. Let Φ be a strictly unital positive linear map, 0 < m ≤ Ai ≤ M for i = 1, · · · n, M ≥ m. ω = (ω1 , · · · , ωn ) be a probability vector, t ∈ [−1, 0). Then we have Λ(ω; Φ(A)) ≤ (m+M)2 4mM Φ(Pt (ω; A)). (18) Proof. By Proposition 1.4, Proposition 1.5 and Lemma 2.16 we get Λ(ω; Φ(A)) ≤ n X i=1 n n X X (m + M)2 (m + M)2 −1 ωi Φ(Ai ) = Φ( ωi Ai ) ≤ Φ(( ωi A−1 Φ(Pt (ω; A)). i ) )≤ 4mM 4mM i=1 i=1 From [11] we know Λ(ω; A) ≥ Pt (ω; A) when t ∈ [−1, 0), and by Proposition 1.4, 1.5 we have Λ(ω; Φ(A)) ≥ Φ(Λ(ω; A)) ≥ Φ(Pt (ω; A)) . Thus (18) can be viewed as a reversed PM-KM inequality as well. Next we give a p-th powering of (18). C. Yang, C. Yang / Filomat 31:8 (2017), 2355–2364 2364 Theorem 2.21. Let Φ be a strictly unital positive linear map, 0 < m ≤ Ai ≤ M for i = 1, · · · n, M ≥ m. ω = (ω1 , · · · , ωn ) be a probability vector, t ∈ [−1, 0), p ≥ 2. Then we have n 2 op 1 (M+m) (19) Λ(ω; Φ(A))p ≤ 16 Φ(Pt (ω; A))p . Mm Proof. Since Λ(ω; Φ(A)) + Φ(Pt (ω; A))−1 ≤ Λ(ω; Φ(A)) + Φ(Pt (ω; A)−1 ) = Λ(ω; Φ(A)) + Φ(P−t (ω; A−1 )) ≤( n P ωi Φ(Ai )) + MmΦ( i=1 n P i=1 ωi A−1 ) i ≤ M + m, so p p p kΛ(ω; Φ(A)) 2 (Mm) 2 Φ(Pt (ω; A))− 2 k p p p ≤ 14 kΛ(ω; Φ(A)) 2 + (Mm) 2 Φ(Pt (ω; A))− 2 k2 ≤ 14 kΛ(ω; Φ(A)) + MmΦ(Pt (ω; A))−1 kp ≤ 14 (M + m)p . Therefore we have p 2 kΛ(ω; Φ(A)) Φ(Pt (ω; A)) p −2 ( )p 1 (M + m)2 2 , k≤ 4 Mm which is equivalent (19). References [1] T. Ando, Concavity of certain maps on positive definite matrices and applications to hadamard products, Linear Algebra Appl. 26(1979) 203–241. [2] T. Ando, Topics on operator inequality, Hokkaido Univ. Lecture Note. Saporo, 1978. [3] R. Bhatia, Positive definite matrices, Princeton (NJ): Princeton University Press. 2007. [4] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308 (2000) 203–211. [5] M.D. Choi, A Schwarz inequality for positive linear maps on C∗ algebras, Illinois J. Math., 18 (1974) 565–574. [6] XiaoHui Fu, An operator α-geometric mean inequality, J.Math.Inequal. 9(3)(2015) 947–950. [7] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić method in operator inequalities, Monographs in inequalities 1, Element, Zágreb, 2005. [8] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991. [9] L.V Kantorovich, Functional analysis and applied mathematics (in Russian), Uspehi Matem. Nauk (N.S) 3(1948) 89–185. [10] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann. 246(1980) 205–224. [11] Y. Lim , M. Pálfia, Matrix power means and the Karcher mean, J.Funct.Anal., 262 (2012) 1498–1514. [12] M. Lin, On an operator Kantorovich inequality for positive linear maps, J. Math. Anal. Appl. 402(1)(2013) 127–132. [13] A.W. Marshall, I. Olkin, Matrix versions of the Cauchy and Kantorovich inequalities, Aequationes Math 40(1990) 89–93. [14] M. S. Moslehian, R. Nakamoto and Y. Seo, A Diaz-Matcalf type inequality for positive linear maps and its applications, Electron. J. Linear Algebra 22 (2011), 179–190. [15] J. Pečarić, J. Mićićhot, Order among power means of positive operators, Sci. Math. Japon. 57(1)(2003) 139–148. [16] W. Pusz, S.L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys. 8 (1975) 159–170. [17] Y. Seo,Reverses of Ando’s inequality for positive linear maps, Math. Inequal. Appl. 14(2011) 905–910.
© Copyright 2025 Paperzz