Kompleksitas 1 Kompleksitas log n Proc tambah (x,y:int) C=int C=x+y Proc kurang (x,y:int) C=int C=x-y Proc kali (x,y:int) C=int C=x*y Proc bagi (x,y:int) C=int If (y=0) then Output (“error”) Else C=x/y Func bool (x:int) Re:false If(x<=0) then Return Re Else Re=true Return Re Kompleksitas n log n Kompleksitas n Kompleksitas n2 Procedure cetak_array_2_dimensi(array[ ][ ] : integer ,maxB : integer, maxK :integer) i : integer j : integer For ( i = 1 to maxK) do For ( j = 1 to maxB ) Print(array[ i ][ j ]) end for end for Procedure input_array_2_dimensi(array[ ][ ] : integer ,maxB : integer, maxK :integer) i : integer j : integer For ( i = 1 to maxK) do For ( j = 1 to maxB ) input(array[ i ][ j ]) end for end for Procedure cari_array_2_dimensi(array[ ][ ] : integer ,maxB : integer, maxK :integer, x : integer) Algorithm ClosestPairPoints (P) dmin ← ∞ i : integer for i ← 1 to n-1 do j : integer for j ← i + 1 to n do For ( i = 1 to maxK) do d ← sqrt ((xi – xj) 2 + (yi – yj)2) For ( j = 1 to maxB ) if d < dmin If (array[i][j] == x ) dmin ← d Output (“Data ketemu pada array ”,I,” ”,j) end if end for end for Kompleksitas 2n Algorithm SelectionSort (A[0..n-1]) for i ← 0 to n-2 do Kompleksitas n! Algoritma TSP (Travel Salesman Problem) min ← i for j ← i + 1 to n-1 do if A[j] < A[min] min ← j swap A[i] and A[min] Algorithm BubbleSort (A[0..n-1]) for i ← 0 to n-2 do for j ← 0 to n – 2 – i do if A[j+1] < A[j] swap A[j] and A[j+1] Sumber https://en.wikipedia.org/wiki/Binary_search_algorithm http://www.codingeek.com/algorithms/linear-searchalgorithm-and-its-implementation-example/ http://bertzzie.com/knowledge/analisisalgoritma/KompleksitasAlgoritma.html#o-n-kompleksitaslinear http://faculty.simpson.edu/lydia.sinapova/www/cmsc250/ LN250_Levitin/L05-BruteForce.htm file:///D:/telkom/20130916_11KompleksitasAlgoritma.pdf https://en.wikipedia.org/wiki/Brute-force_search
© Copyright 2024 Paperzz