1 SKAmachinelearningperspec1ves SlavaVoloshynovskiy Stochas1cInforma1onProcessingGroup UniversityofGeneva Switzerland withcontribu,onof: D.Kostadinov,S.Ferdowsi,M.Diephuis,O.TaranandT.Holotyak 2 Outline MachinelearningchallengesinSKA Proposedapproach Extensions 3 Machinelearningreali1esandSKA Newperspec,vesofmachinelearningbasedimageprocessingdueto: § largeamountofcollectedobserva1ons(trainingdata) § newpowerfulcomputa1onalfacili1es § modernphasedantennaarrays § op1misa1onalgorithms 4 MainSKAchallenges § Challenge1:Imaging-reconstruc,on § Hugeamountofcomputa1onfor pair-wisecorrela1ons,calibra1on, reconstruc1on § Challenge2:Datatransferandstorage § Datatransferfromcorrelatorsto reconstruc1onservers,datacenters, SDPandendusers § Challenge3:Analy,cs § Automa1cprocessingofproduced data(recogni1on,mining,search, tracking,…) 5 Imaging–genericapproach Restora1on p(x) Priorson Priorson z H x (λ ) p ( x ( λ )) H p(y | x) y = Hx + z MAP x̂ x̂ = arg max p(y x)p(x) x Mainissue: p(x) Howtomodeltoobtain accurate,tractableandlow-complexitysolu1on? 6 Imaging–“machinelearning”approach Given:alotoftrainingdata Learn:sta1s1calmodelp(x) Physicalmodel x ( θ1, θ2,!θL ) Physicalphenomenon x { x ( λ1 )} { x ( λ2 )} Variousimagingconfigura1ons Radiowaves Microwaves { x ( λ3 )} Infrared { x ( λ4 )} Visible { x ( λ5 )} Ultraviolet { x ( λ6 )} X-Ray Trainingdata +Simula1ontools Faraday,ASKAP,CASA.. ALMA,EVLA,LOFAR,VLBI,…,SKA 7 “Hand-cra_ed”vsMachinelearning Imaging:mainapproaches “Hand-craUed”approaches Machinelearningbasedapproaches MAP MAP x̂ = arg max p(y x)p(x) x Smoothnessofsolu1on,localcorrela1ons….. x x(a) y = Hx + z y = Hx + z x̂ = arg min y − Hx x̂ = arg max p(y x)p(x a)p(a) 2 2 + λΩ ( x ) Ω ( x ) = −ln p ( x ) ⇒o_enunknown p(x) ⇒verydifficulttodescribeanaly1cally ⇒definedsolelybasedonhumanexper1se “Doubly”stochas1capproach x̂ = arg min y − Hx x(a) 2 2 + λΩx,a ( x, a ) + τΩa ( a ) Synthesisapproach x = Φa + e 2 ⇒ λΩx,a ( x, a ) = x - Φa 2 ⇒ powerfulbutNP-hard Transformlearning Wx = a + n 2 ⇒ λΩx,a ( x, a ) = Wx - a 2 ⇒ close-formsolu1on ⇒ scalable 8 ImportanceforSKA:scalabilitytoBigData Op,miza,onforSKA: ScalabilitytoBigData(bothdimension/sizeandamount) Low-complexitysolu,on(directproblemvsinverseone) Lesstrainingdataneeded Paralleliza,on 9 ImportanceforSKA:learningfor“adap1ve”imaging Op,miza,onforSKA: Imagingapertureadapta,ontotargeteddata Current:imagingarraygeometryandimagesarenotmatched(evenCS) Consequences: alotofmeasurementsarenotinforma,ve hugeamountofcomputa,onalloadoncorrelatorsandreconstruc,on enormousamountofdatatotransferandstore Ourproposal: Op,mizeimagingarraygeometrytodata(learningonfly) ( Ĥ, x̂ ) = arg min H,x(a) y − Hx 2 2 + λΩx,a ( x, a ) + τΩa ( a ) underconstraintsonanumberofantennaarrayelementsandtheirpossibleposi1ons 10 ImportanceforSKA:learningfor“adap1ve”imaging GeometrySpa1alspectrum(uv-plane)PSF(direc1onalantennapahern) 11 Imaging–learningfor“adap1ve”imaging Non-adap,vesystems Reconstruc1on ℑ x ! x y = Hx + z x̂ 12 Imaging–learningfor“adap1ve”imaging ⇒ Objec,ve:minimizetheloadoncorrelatorsadap,ve“light-weight”imaging ! -es1ma1onconfigura1on(trained) H i yi Es1ma1onof dominant components ℑ x Reconstruc1on x̂ ! x yj ! -adap1veconfigura1on H j 13 Imaging–learningfor“adap1ve”imaging Allelements“Matched”elementsResidual 14 Extensions § Sta,s,calimageprocessingandmachinelearningfor: § High-resolu1onimaging(reconstruc1on,single-imagesuper-resolu1on) § Imagecompression(machinelearningbasedcodebookes1ma1on) § Analy1csforBigData(fastsearchinbigdatacollec1ons,dataanalysis,mining ofdependenciesbetweenmul1modaldata,etc) § Designandop,miza,onoflargescaleimagingsystems § Minimiza1onofnumberofantennas,1me,etc
© Copyright 2025 Paperzz