SOLUTIONS TO EXAM 1, MATH 10560 1. Suppose f (x) is a one-to-one function on its domain and f (2) = 8, f (8) = 3, f 0 (2) = 4, and f 0 (8) = 7. Find (f −1 )0 (8). Answer : 14 Solution: Since (f −1 )0 (f (x)) = f 01(x) , 8 = f (2) and f 0 (2) = 4 (f −1 )0 (8) = (f −1 )0 (f (2)) = 1 1 = . f 0 (2) 4 2. Solve the following equation for x: ln 5 − e2x = 1 . √ Answer : x = ln 5 − e Solution: ln(5 − e2x ) = 1 ⇐⇒ 5 − e2x = e ⇐⇒ e2x = 5 − e √ 1 ⇐⇒ 2x = ln(5 − e) ⇐⇒ x = ln(5 − e) ⇐⇒ x = ln 5 − e. 2 3. Find the equation of the tangent line to f (x) at x = 1 if √ f (x) = e x+6 . e7 Answer : y = e7 + 2 (x − 1) Solution: Notice that the slope of this tangent line is f 0 (x) and for x = 1 we have √ 1 1 0 x+6 1 f (x) x=1 = e = e7 . · ·√ 2 x x=1 2 The equation of the tangent line is 1 y = f (1) + f 0 (x)(x − 1) ⇐⇒ y = e7 + e7 (x − 1). 2 4. Evaluate the following definite integral. Z e 3 2x + x + 1 dx . x2 1 Answer : 1 + e2 − e−1 Solution: Z 1 e 2x3 + x + 1 dx = x2 = e Z 2x + 1 e x2 1 2 1 1 + 2 dx x x e + ln x|e1 + (−x−1 )1 = e + 1 − e−1 . 1 2 SOLUTIONS TO EXAM 1 5. A sample of radioactive material decays to 1/20 of its original amount in one day. How long would it take to decay to 1/100 of its original amount? Answer : ln(100) ln(20) 1 Solution: Let t be the time (measured in days) needed to decay to 100 . Then ( 1 t 1 − ln(100) ln(100) ) = ⇐⇒ t = = . 20 100 − ln(20) ln(20) 6. Calculate the following definite integral. Z 1 7x dx . x 0 7 +5 ln 2 Answer : ln 7 Solution: Using the u-substitution u = 7x + 5, so that du = ln 7 · 7x dx and then Z 12 Z 1 1 1 1 7x dx = · du = ln u|12 6 x ln 7 u ln 7 6 0 7 +5 1 12 ln 2 1 (ln 12 − ln 6) = (ln ) = . = ln 7 ln 7 6 ln 7 7. Find f 0 (x) for f (x) = ln(x4 + 2) + arcsin(x−1 ) . 3 Answer : x4x 4 +2 − Solution: √ 1 x4 −x2 f 0 (x) = = 4x3 1 −1 +p · 2 2 x +2 1 − (x−1 )2 x 1 4x3 −√ . +2 x4 − x2 x2 8. Calculate the following integral. Z arctan x dx . 1 + x2 2 x) +C Answer : (arctan 2 dx Solution: Use the u-substitution u = arctan x, then du = 1+x 2 and therefore Z Z arctan x 1 dx = udu = u2 + C 2 1+x 2 (arctan x)2 = +C 2 9. Evaluate Answer : Z 1 5 sec5 x − 13 sec3 x + C tan3 (x) sec3 (x)dx . SOLUTIONS TO EXAM 1 3 Solution: Set u = sec x, then du = tan x · sec xdx. By u-substitution we have: Z Z 3 3 tan (x) sec (x)dx = tan2 x · sec x2 · (tan x sec x)dx Z 1 1 = (1 − u2 )u2 du = u3 − u5 + C 3 5 1 1 = sec5 x − sec3 x + C. 5 3 2 Z x3 ln x dx. 10. Evaluate 1 Answer: 4 ln 2 − 15 16 Solution: Set u = ln x and dv = x3 dx, then du = x1 dx and v = 14 x4 . Using integration by parts we have: Z 2 Z 2 1 4 2 1 4 1 3 x ln x dx = ln x · x − x · dx 4 1 x 1 1 4 Z 2 1 = 4 ln 2 − x3 dx 4 1 15 = 4 ln 2 − . 16 11. Use logarithmic differentiation to find f 0 (x) if √ x cos3 (x + 7) f (x) = . (3x2 + 2)6 Solution: Since ln f (x) = 1 ln x + 3 ln cos(x + 7) − 6 ln(3x2 + 2), 2 f 0 (x) = f (x) · (ln f (x))0 and (ln f (x))0 = we have √ f 0 (x) = 1 3 6 + · − sin(x + 7) − 3 · 6x, 2x cos(x + 7) 3x + 2 x cos3 (x + 7) 1 36x ·( + 3 tan(x + 7) − 3 ) (3x2 + 2)6 2x 3x + 2 12. Evaluate the limit 1 lim (cos x) x2 . x→0 Solution: Note that 1 lim (cos x) x→0 1 x2 lim ln((cos x) x2 ) = ex→0 . 4 SOLUTIONS TO EXAM 1 Since 1 lim ln((cos x) x2 ) = lim x→0 x→0 ln cos x 0 = x2 0 − sin x cos x − tan x 0 = x→0 2x x→0 2x 0 − sec2 x 1 (L’Hospital) = lim =− , x→0 2 2 (L’Hospital) = lim we have = lim 1 lim (cos x) x→0 1 x2 lim ln((cos x) x2 ) = ex→0 1 = e− 2 . 13. Evaluate: x2 dx. 4 − x2 Solution: We use the trigonometric substitution x = 2 sin θ, then dx = 2 cos θdθ so that Z Z (2 sin θ)2 x2 √ p dx = · 2 cos θdθ 4 − x2 4 − (2 sin θ)2 Z Z 2 = 4 sin θdθ = 2(1 − cos 2θ)dθ Z √ = 2θ − sin 2θ + C x = 2 arcsin( ) − 2 sin θ cos θ + C 2 x 1p = 2 arcsin( ) − x · 4 − x2 + C. 2 2
© Copyright 2025 Paperzz