Estimation Pr X ni The Model exp x x ; , ni ni n n i 1 exp n i i Pr X ni 1; n , i exp n i 1 exp n i Probability 1 0.8 0.6 0.4 0.2 0 -4 -3 -2 -1 0 n i 1 2 3 4 The Model for N Items — 1 Let X n X n1 , X n 2 , , X nI T denote a response vector for person n I Pr X n x n ; n , δ Pr X ni xni ; n , i i 1 I i 1 exp xni n i 1 exp n i The vector probability takes this form if we assume independence The Model for N Items — 2 I Pr X n x n ; n , δ exp xni n i i 1 I rn xni i 1 the raw score of person n 1 exp n i I exp xni n i I i 1 1 exp n i i 1 I exp rn n xni i i 1 I 1 exp n i i 1 Probabilities of scoring 2 for different response patterns 0.15 All modes at same location 0.13 Mode is ability that makes this pattern most likely Probability 0.11 0.09 0.07 Likelihood principle: Which ability maximises the probability of what was obtained? 0.05 0.03 0.01 -0.01 n Graphical Display of the likelihoods for a five item test 0.06 Probability 0.05 0.04 Pr Rn 0;n , δ Pr Rn 2; n , δ Pr Rn 3; n , δ Pr Rn 4; n , δ Pr Rn 1;n , δ 0.03 0.02 0.01 0 All items with difficulty parameter zero Pr Rn 5;n , δ n Estimation Methods • Approximate Methods – PROX – UFORM • • • Pair-wise Minimum Chi-square Maximum likelihood Maximum Likelihood Methods–1 • Joint maximum likelihood – – – also called unconditional maximum likelihood (UCON) method used in Quest, WinSteps, Facets, ConQuest, TAM Ability and difficulty estimates Maximum Likelihood Methods–2 • Marginal Maximum Likelihood – really a new model that invokes a population distribution assumption – Works well with more general models – ConQuest, TAM, default method Joint Maximum Likelihood N L X Pr X n x n ; n , δ n 1 N I exp xni n i n 1 i 1 1 exp n i N I exp xni n i N nI 1 i 1 1 exp n i n 1 i 1 I 1 exp n 1 i 1 rn xni score of person n i 1 N I N exp rn n si i i 1 n 1 N I n i si xni score of item i n 1 Maximising the Joint Likelihood — 1 X log L X I N exp rn n si i i 1 n 1 log N I 1 exp n i n 1 i 1 I N rn n si i i 1 n 1 N I log 1 exp n i n 1 i 1 Maximising the Joint Likelihood — 2 X t t I N rn n si i i 1 n 1 N I log 1 exp n i t n 1 i 1 I rt i 1 0 exp t i 1 exp t i Maximising the Joint Likelihood — 3 X u u I N rn n si i i 1 n 1 N I log 1 exp n i u n 1 i 1 N exp n u su n 1 1 exp n u 0 A total of N+I equations to be solved At the solution — 1 First derivatives are zero (called scores) What the student scored I rt i 1 exp t i 1 exp t i N su n 1 exp n u 1 exp n u What the model predicts It happens to be the expected score We only need the marginals! Student 1 Student 2 Student 3 … Item Score Item 1 Item 2 Item 3 0 1 1 1 We do not1 need to use1 this 0 0 1 … .. … 56 49 89 … … … … … … Student Score 23 34 15 … • Many sets of patterns will satisfy a given set of marginals • Estimates, errors, reliability do not depend on the patterns • Parameter estimates do not depend upon fit • Implications for the order debate Further Implications – Student and item scores are sufficient statistics for Rasch estimation. – Students with the same score will have the same ability estimate. – One-to-one match between raw score and Rasch ability estimate (when no missing data). – Use of score equivalence table. – So why (and when) do we need Rasch scores? At the solution: What must the distribution of estimates look like? First derivatives are zero (called scores) I rt i 1 exp t i 1 exp t i N su n 1 exp n u 1 exp n u The Resulting Ability Distribution Score 3 Score 4 Score 2 Score 5 Score 1 Score 0 Score 6 Proficiency on Logit Scale
© Copyright 2025 Paperzz