Spin injection into semiconductors: theory and experiments Claas-Henrik Möller, Andreas Wittmann, Christian Heyn, and Dirk Grundler Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg Bad Honnef, 317. WEH-Seminar, 13 January 2004 Motivation Outline Theoretical issues of spin injection in ferromagnet/semiconductor hybrid structures Novel hybrid device for spin transport • preparation of ferromagnet/semiconductor hybrid structures on the cleaved edge of an InAs heterostructure • spin-transport experiments (011) orientation • field-effect transistor on the cleaved edge with ferromagnetic contacts Summary Fe (Co) ion t ta n rie o 1) 0 (0 III-V semiconductor Spin injection via spin filtering across epitaxial interfaces η η η η •Similar results for Fe/InAs(001): M. Zwierzycki et al., Phys. Rev. B 67, 092401 (2003). Spin effects in ballistic FM / 2DES / FM hybrid structures with narrow-gap semiconductors R Lateral spin valve FM spin injector 2DES FM spin detector ∆R -Bc2 -Bc1 Bc1 Bc2 L B Positive spin valve effect Ez Spin precession due to Rashba field BR Rashba coefficient α represents strength of BR BR Spin R kx -Bc2 -Bc1 Bc1 Bc2 −∆R B Ez here: ∆Θ = 180° generally: ∆Θ ~ αL S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990). Positive and negative spin-valve effect possible, depends on α and L Diffusive transport theory: fundamental obstacle Conductivity mismatch prohibits spin injection into bulk semiconductor (“bad metal“): η ≈0 ∆R/R ~ 10-7 A diffusive conductor A ballistic conductor The Landauer formula w, L << λe w, L > λe • few scatterers • many scatterers • no scatterer w σw G = L 2 L 1− T ≈ π λe T 2-terminal conductance obeys Ohm‘s law. µ1 2e 2 G= ⋅ M ⋅T h 2e 2 G= ⋅M h T: average transmission probablity of an electron. µ1 here: contact and channel from same material. µ1 µ µ2 µ2 µ2 Exp.: R. de Picciotto et al., Nature 411, 51 (2001). Band-structure mismatch in epitaxial Fe|GaAs(001) interfaces ! ! ik!↑r! Ψ↑ (r ) = uk ,↑ ( r ) e majority spins spin and ! ! ik!↓r! Ψ↓ (r ) = uk ,↓ ( r ) e minority spins Local density approximation with screened KKR method: => different symmetry of the majority and minority spin bands at the Fermi level (d-band electrons). O. Wunnicke, P. Mavropoulos, R.Zeller, P.H. Dederichs, and D. G., Phys. Rev. B 65, R241306 (2002). spin Spin filtering: Symmetry-enforced spin polarization Landauer-Büttiker formalism including overlap of Bloch wave functions at the interface. majority spins Transmitted current is spin polarized with η ~ 99 %. minority spins • Similar results for Fe/InAs(001): M. Zwierzycki et al., Phys. Rev. B 67, 092401 (2003). • Spin polarized current for (110) direction: L. Sacharow et al.,preprint; O. Wunnicke et al., cond-mat/0308138. Free-electron model gives: η ~ a few % ΔR = 2η 2e− L / Λs (M. Johnson, 1998) R ΔR ⇒ ≈ 1 % for L << ΛS R With C.-M. Hu and T. Matsuyama, Phys. Rev. Lett. 87, 066803 (2001); D. G., Phys. Rev. B 63, R161307 (2001). ! ! ! ik↑(↓ ) r! Ψ↑(↓ ) (r ) = uk ,↑(↓ ) (r ) e Prerequisites for magnetoresistance effects: ... planar interfaces ... in situ processing of interfaces ... low interface resistance, i.e., „ohmic“ contact, Schottky barrier is not useful ! (perspective) ! ... sub-micrometer length of the semiconductor channel ! ... ferromagnetic contacts with different coercive fields Bc ! => Ferromagnet/semiconductor hybrid structures on the cleaved edge of an InAs heterostructure Molecular beam epitaxy of strained InAs quantum wells 4 nm-wide InAs quantum well (modulation doped) - no Schottky barrier to metals - carrier density nS ~ 1011..1012/cm² (tunable) Surface - mobility: up to 350.000 cm²/Vs (4 K) => λe = 0.5 ... 1.5 µm z direction (001) Ch. Heyn, W. Hansen - Rashba coefficient: ! ~ 2 x 10-11 eVm ∆Θ = 180° after L ~ 0.15 µm Cleaved-edge overgrowth (CEO) z direction 1) InAs Quantum well Heterostructure 2) Cleaved Sample [100] [011] 4) Experiment: Ferromagnet/Semiconductor Hybridstructure for Spin-polarized Transport [011] on i t ec r i zd 3) Metal Deposition (Ferromagnet) 2DES (InAs) CEO of Au/InAs(2DES): C.H. Möller, O. Kronenwerth, D. G., W. Hansen, Ch. Heyn, and D. Heitmann, Appl. Phys. Lett. 80, 3988 (2002). Magnetic Field Prestructuring the 2DES for cleaved-edge overgrowth Predetermined breaking point Conventional RIE technique 2DES in InAs Cleavage Upright position Cleaved edge Step junction (ex situ processing) Cleaved edge Metal deposition Ion beam etching Photoresist mask Upright position Second metal deposition Photoresist removal • self-aligning process • angle defines separation • free choice of 2nd FM Final lithography and etching on cleaved edge Co contacts etched step 1 200 µm 2 3 4 2DES View on shadow gap (SEM picture) r t e p ac p u nt co h ~ 50 nm, l p a g 200nm low t c ta n o c er l = 0 ... 200 nm, dCo(Fe) = 5 ... 20 nm, λe > 0.5 µm Device configuration: Overview (011) orientation • planar surfaces • chemicals avoided at the interface (001) • submicron gap between source (FM1) and drain (FM2) • perspective of in situ processing of interfaces and epitaxial growth W = 10 ... 200 µm Transport in Co / InAs(2DES) / Co hybrid structures l ~ 140 nm, B⊥ B II 2DES: Spin precession for kx component h ~ 60 nm, λe ~ 0.5 µm. BR ky B ⊥ 2DES: Spin precession for kx and ky component BR kx B ⊥ 2DES B II 2DES R (Ω) 169.7 4.2 K 4.2 K 169.6 −∆R 169.5 -0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2 B (T) B (T) negative spin valve effect positive spin valve effect Fe / InAs(2DES) / Fe hybrid structures BII B⊥ B II 2DES: Spin precession for kx component B ⊥ 2DES: Spin precession for kx and ky component B ⊥ 2DES B II 2DES 0.02 K 415.8 415.6 416.6 416.4 R (Ω) R (Ω) 416.0 416.2 415.4 -0.2 -0.1 0.0 0.1 0.2 B (T) 0.02 K 416.0 -0.2 -0.1 0.0 0.1 0.2 B (T) negative spin valve effect positive spin valve effect Spin injection efficiency η in step-junction Co/InAs(2DES)/Co hybrid structures B II 2DES -∆R/R (%) • carrier density nS varied by illumination 0.06 0.04 0.02 ΔR = 2η 2e− L / Λ s R ∆R/R (%) 0.00 B ⊥ 2DES T = 4.2 K (M. Johnson, 1998) 0.06 0.04 ηexp ≈ 2 % for L << Λ S 0.02 Free − electron model : ηtheo ≈ a few % 0.00 0 1 2 3 4 5 6 7 8 11 -2 nS (10 cm ) Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) on a cleaved InAs heterostructure Top view Au gate electrode SEM of cross section 200µm z x SiO2 y Front view 2DES Cobalt 2DES 2µm (001) direction Gate-controlled magnetotransport experiment ill., VDC = +10 V = 25 Vrms Rdyn (a.u.) B II 2DES 1.284 T = 4.2 K 1.282 1.280 Rdyn (a.u.) unill., VDC = 0 V 1.306 1.304 1.302 ill. unill., VDC = -10 V no Rdyn (a.u.) VDC 1.950 1.947 1.944 -0.10 -0.05 0.00 0.05 0.10 B (T) Summary • Step-junction FM/InAs(2DES)/FM hybrid structures show negative and positive spin-valve behavior. This depends on the magnetization B⊥ of the ferromagnetic contacts. BII • Behavior is tuned by illumination and by a gate voltage. The recalculated spin polarization is 2 %, obtained without Schottky barrier. • Further experiments will involve in situ preparation on the cleaved edge and thus further improvement of the interface quality. We thank P. Dederichs, D. Heitmann and O. Wunnicke. We gratefully acknowledge financial support by BMBF and DFG.
© Copyright 2025 Paperzz