ODE Lecture Notes Section 4.1 Page 1 of 6 Section 4.1: General Theory of nth Order Linear Equations Big Idea: The techniques and theorems regarding second-order linear differential equations can be extended to higher-order differential equations. Big Skill: You should be able to verify solutions, compute Wronskians, and determine linear independence of solutions. Usual form of an nth order linear differential equation: dny d n 1 y dy P0  t  n  P1  t  n 1   Pn 1  t   Pn  t  y  G  t  dt dt dt Assumptions:  The functions P0  t  , , Pn  t  , G  t  are continuous and real-valued on some interval I :   t   , and P0  t   0 for any t  I . Linear differential operator form: dny d n 1 y L  y   n  p1  t  n1  dt dt  pn1  t  dy  pn  t  y  g  t  dt Notes:  Solving an nth order equation ostensibly requires n integrations  This implies n constants of integration  Also implies n initial conditions to completely specify an IVP: n 1 n 1 o y  t0   y0 , y  t0   y0 , y    t0   y0  Theorem 4.1.1: Existence and Uniqueness Theorem (for nth-Order Linear Differential Equations) If the functions where p1 , , pn , and g are continuous on the open interval I, then exists exactly one solution y    t  of the differential equation dny d n1 y dy  p1  t  n1   pn 1  t   pn  t  y  g  t  that also satisfied the initial conditions n dt dt dt  n 1 y  t0   y0 , y  t0   y0 , y t0   y0 n1 . This solution exists throughout the interval I. Practice: 4 1. Determine an interval in which the solution of t  t  1 y    et y  4t 2 y  t is sure to exist. ODE Lecture Notes Section 4.1 Page 2 of 6 The Homogeneous Equation: n n 1 L  y   y    p1  t  y     pn1  t  y  pn  t  y  0 Notes:  If the functions y1 , y2 , , yn are solutions, then so is a linear combination of them, y  t   c1 y1  t   c2 y2 t     cn yn t  To satisfy the initial conditions, we get n equations in n unknowns: c1 y1  t0   c2 y2  t0    cn yn  t0   y0 c1 y1  t0   c2 y2  t0   c1 y1  n 1  t0   c2 y2 n1  t0   yn   y1 y1 n 1 y2 n 1 yn y2 n 1 0 yn n 1 , pn are continuous on the open interval I, if the functions , yn are solutions of y   p1  t  y  n W  y1 , y2 , n 1 Notes:  y  t   c1 y1  t   c2 y2 t   y  n   pn1  t  y  pn  t  y  0 , and if yn   0 for at least one point in I, then every solution of the differential equation can be written as a linear combination of y1 , y2 ,   t0   y0 n1 Note that a slightly modified form of Abel’s Theorem still applies: W  y1 , y2 , yn  t   c exp  p1  t  dt  Theorem 4.1.2: If the functions where p1 , y1 , y2 ,  cn yn This system will have a solution for c1 , c2 , , cn provided the determinant of the matrix of coefficients is not zero (i.e., Cramer’s Rule again). In other words, the Wronskian is nonzero, just like for second-order equations. y1 y2 yn W  y1 , y2 ,   cn yn  t0   y0  p1  t  y y1 , y2 ,  n 1  , yn .  cn yn t  is called the general solution of  pn1  t  y  pn  t  y  0 . , yn are said to form a fundamental set of solutions. ODE Lecture Notes Section 4.1 Page 3 of 6 Practice: 2. Verify that y1  t   1, y2  t   t , y3  t   cos t  , y4 t   sin t  are solutions of y    y  0 , and compute their Wronskian. 4 ODE Lecture Notes Section 4.1 Page 4 of 6 Linear Dependence and Independence:  The functions f1 , f 2 , , f n are said to be linearly dependent on an interval I if there exist constants k1 , k2 ,  , kn , NOT ALL ZERO, such that k1 f1  t   k2 f 2 t   FOR ALL t  I . The functions f1 , f 2 , dependent there. kn f n t   0 , f n are said to be linearly independent on I if they are not linearly Practice: 3. Determine if f1  t   1, f 2  t   t , f3  t   t 2 are linearly dependent or independent on   t   . If they are dependent, write a linear relationship between them. ODE Lecture Notes Section 4.1 Page 5 of 6 4. Determine if f1  t   1, f 2 t   t , f3 t   2  t are linearly dependent or independent on   t   . If they are dependent, write a linear relationship between them. ODE Lecture Notes Section 4.1 Theorem 4.1.3: If y1 , y2 , , yn is a fundamental set of solutions to y n  p1  t  y  n1  Page 6 of 6  pn1  t  y  pn  t  y  0 on an interval I, then y1 , y2 , , yn are linearly independent on I. Conversely, if y1 , y2 , , yn are linearly independent solutions of the equation, then they form a fundamental set of solutions on I. The Nonhomogeneous Equation: n n 1 L  y   y   p1  t  y     pn1  t  y  pn  t  y  g  t  Notes:  If Y1(t) and Y2(t) are solutions of the nonhomogeneous equation, then L Y1  Y2   t   L Y1  t   L Y2  t   g t   g t   0    I.e., the difference of any two solutions of the nonhomogeneous equation is a solution of the homogeneous equation. So, the general solution of the nonhomogeneous equation is: y  t   c1 y1  t   c2 y2  t    cn yn t   Y t  , where Y(t) is a particular solution of the nonhomogeneous equation. We will see that the methods of undetermined coefficients and reduction of order can be extended from second-order equations to nth-order equations.
© Copyright 2025 Paperzz