Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx Neutron Induced Cross Section Measurements Workshop on Nuclear Reaction Data for Advanced Reactor Technologies Trieste, Italy, 19 – 30 May 2008 peter.schillebeeckx@ec.europa.eu Joint Research Centre (JRC) IRMM - Institute for Reference Materials and Measurements Geel - Belgium http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ 1 Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • Neutron cross section measurements (Part 1) • Data reduction and uncertainties (Part 2) – Experimental observables – Definitions and terminology – Fitting a mathematical model to experimental data – Basic operations – AGS – Example ISO Guide, “Guide to the expression of uncertainty in measurement”, Geneva, Switzerland, ISO,1995 Mannhart, “A Small Guide to Generating Covariances of Experimental Data”, Juni 1981, PTB-FMRB-84 F.H. Fröhner, Nucl. Sci. Eng. 126 (1997) 1 -18 2 Experimental observables Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • Experimental observables – Transmission – Reaction yields • Definitions and terminology • Fitting a mathematical model to data • Basic operations • AGS • Examples 3 Transmission Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx SAMPLE IN Total BKG fit BKG points 2 10 1 10 0 10 -1 10 Texp NT -2 3 10 4 10 5 10 ' ' Cin B in C 'out B 'out 6 10 TOF / ns Total BKG fit BKG points 2 10 1 10 0 10 -1 10 -2 10 3 10 4 10 1.0 0.8 0.6 0.4 0.2 0.0 0 20000 40000 60000 80000 Neutron Energy / eV 5 10 TOF / ns Transmission 10 SAMPLE OUT 3 10 Response / (1/ns) 3 10 Response / (1/ns) 4 6 10 Transmission : data reduction Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 5 Sample in Sample out (1) Dead time correction (1) Dead time correction (2) Background subtraction (2) Background subtraction ' ' Cin Bin Texp NT C'out B 'out RRR Resonance shape analysis Texp (Tn ) R T (Tn , E n ) e tot (En ) dE n URR Correction for resonance structure n2 n tot ntot e e (1 var tot ...) 2 Texp e ntot Reaction yield : data reduction Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 6 Reaction measurement Flux measurement (1) Dead time correction (1) Dead time correction (2) Background subtraction (2) Background subtraction Cr' Br' Yexp Nr r C' B' RRR Resonance shape analysis Yexp (Tn ) Nr RT (Tn ,En ) r (En ) Yr (En ) dEn URR Correction for self-shielding and multiple scattering (Fc) (n,r ) Fc Yexp Dead time correction (1/2) 232 t tk ti t 1 DTC ( t i ) si 1 To ti-1 ti ti+1 si Time ti Nj j t k Th(n,) at 15 m 7 Before Correction 10 2 1 10 1.15 DTC 1.10 DTC t1 t2 t3 t4 Response (Counts / ns) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx To is the number of bursts 1.05 1.00 4 10 10 5 10 6 Time - Of - Flight / ns System dead time for on-line data processing (time-of-flight + amplitude): – Acqiris DC282 (digitizer) = 350 ns – CAEN N1728B (digitizer) = 560 ns – Conventional system DAQ2000 = 2800 ns (without amplitude similar to digitizers) Moore, Nucl. Instr. Meth. 169 (1980) 245 Mihailescu et al., submitted to NIM A Dead time correction (2/2) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 8 20 Response (Counts / ns) 232 Th(n,) at 15 m Before After (/ 100) 100 15 10 100000 10 200000 300000 200000 300000 20 1 0.1 100000 15 200000 300000 Time - Of - Flight / ns 10 100000 Background correction (1/3) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx Response (counts / ns) 10 9 0 Total Background filters Average Values Fit Black Resonance Filters Element -2 10 Ag 5.19 W 18.83 Co 132.00 Na 2850.00 S -4 10 1 10 2 10 3 10 4 10 5 10 6 10 Neutron Energy / eV Detection Principles Energy / eV 102710.00 Background correction (2/3) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx TOF - spectrum / (1/ns) 10 10 Black Resonance Filters 1 Exp. Fit. Black Resonances 10 10 10 0 Element -1 -2 102710 10 2850 132.00 18.83 5.19 eV -3 1 10 100 Time-Of-Flight / s 1000 Energy / eV Ag 5.19 W 18.83 Co 132.00 Na 2850.00 S 102710.00 Background measurement (3/3) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx BR- filters 11 detector Definitions and terminology Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • Experimental observables • Definitions and terminology – Probability and statistical quantities – Error and Uncertainty – Propagation of uncertainties • Fitting a mathematical model to data • Basic operations • AGS • Examples 12 Probability and statistical quantities Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 13 P(x) theoretical probability density function (PDF) of x P(x,y) theoretical probability density function of (x,y) • Mean x x x P( x) dx • Variance 2x ( x x )2 x x 2 P( x ) dx • Covariance 2xy ( x x )( y y ) x x y y P( x, y ) dxdy • Correlation ( x, y ) 2xy x y Observed statistical quantities Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 14 n observations x1, …, xn of variable x m observations (x1,x1) …, (xn,yn) of variable (x,y) • Sample mean 1 n x xi n i 1 • Sample variance s 2x • Sample covariance s 2xy • Sample correlation 2 1 n x x i n 1 i 1 1 n n xi x yi y n 1i 1j 1 r( x, y ) s xy sx sy Function of variables : linear function Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 15 n observations x1, …, xn of variable x • Linear function z = f(x1,…,xn) k z f(x i ) ai x i i1 • Mean k z f(x i ) ai i i1 • Variance 2z f ( x i ) f 2 a i2 2xi a i a j xix j i i j Function of variables : non-linear function Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • Taylor expansion 16 z f ( x i ) f ( i ) i (1st order !) f x i (x i i ) z f ( x i ) f ( i ) gi ( x i i ) gi i • Mean z f ( x i ) f ( i ) • Variance 2z f ( x i ) f 2 f x i gi2 2xi gi g j xix j i i j Matrix notation Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • Linear function z f (x) A x – Mean z A x – Variance Vz A Vx AT • Non-linear function z f ( x) f ( x ) G x ( x x ) (1st order Taylor !) – Mean z f ( x ) – Variance V z G x V x GTx 17 fi aik x k gx,ik fi x k sensitivity matrix design matrix Error and Uncertainty (ISO Guide) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • Uncertainty (dispersion (or width), always > 0) “Uncertainty is a parameter associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand” • Error (difference between two quantities, can be + or -) “Error is the result of a measurement minus a true value of the measurand” 18 Error Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx ' ' Cin Bin Texp NT C'out B 'out • Systematic error Mean that would result from an infinite number of measurements of the same measurand carried out under repeatability conditions minus a true value of the measurand. The expectation value of the error arising from a systematic effect = 0 • Random error Result of a measurement minus the mean that would result from an infinite number of measurements of the same measurand carried out under repeatability conditions. The expectation value of a random error = 0 19 Systematic error (ISO Guide) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • If a systematic error arises from a recognized effect, the effect can be quantified and a correction or correction factor should be applied. • The uncertainty on the correction factor should not be quoted as a systematic error. • One should not enlarge the uncertainty to compensate for a systematic effect that is not recognized! 20 Evaluation of uncertainty components Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 21 • Type A evaluation – Method of evaluation of uncertainty by the statistical analysis of series of observations – Is obtained from an observed frequency distribution • Type B evaluation – Method of evaluation of uncertainty by means other than the statistical analysis of series of observations. – Is obtained from an assumed probability density function (subjective probability) . – The evaluation is based on scientific judgement Theoretical distribution Experience from previous measurement data Data provided in calibration or other certificates • Propagation of uncertainties combined uncertainty V f Gx V x Gx T gx,ik fi x k non-linear problem : approximation! Example : Counting experiment Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 22 • Type A evaluation – Perform repeated measurements and record the number of events in time t – Calculate the uncertainty from the standard deviation of the observed frequency distribution 1 n s 2x x i x 2 n 1 i 1 • Type B evaluation : Poison statistics – The observed quantity is distributed as a Poison distribution – The uncertainty is defined by the standard deviation of a Poison distribution 2x x How to quote uncertainties Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 23 • Evaluation of uncertainty components – Type A : statistical analysis of repeated measurements – Type B : scientific judgement • All uncertainties are statistical ! (uncertainty due to counting statistics, uncertainty on the normalization, …) (correlated or not-correlated uncertainties) • Standard (ux) or expanded uncertainty s ( x u x ) with u x x n – Standard uncertainty : – Expanded uncertainty : p > 1 e.g. p = 1.96 p = 1 p = 0.68 P x x p p n p = 0.95 Fitting a mathematical model to data Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • Definitions and terminology • Experimental observables • Fitting a mathematical model to data – Least squares – Maximum likelihood – Generalized least squares method • Basic operations • AGS • Examples 24 Central limit theorem Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 25 Central limit theorem: The sum of a large number of independent and identically-distributed random variables will be approximately normally distributed If x1, …, xn are independent and identically distributed with mean x and variance 2 then : for large n : the distributi on of x x i n P x x , x dx i is the normal distributi on with parameters ( x , 1 x 2 1 x exp dx 2 x 2x with x n ) n Central limit theorem Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 26 General: based on maximum entropy principle Fröhner, Nucl. Sci. Eng. 126 (1997) 1 For observables x ( x1,..., xn ) with covariance matrix Vx which are identically distributed with mean x P x x , V x dx 1 1 1 exp ( x x )T V x ( x x ) dx det( 2V x ) 2 Fitting a mathematical model to data Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 27 Problem: n data points (x1,z1), …, (xn, zn) and a model function z f ( x, a) that in addition to the variable x also depends on k parameters a1,…,ak with n>k. Solution: (1) Least squares : find the vector a such that the curve fits best the given data in the least squares sense, that is, the weigthed sum of squares is minimized: 1 2 (a) (zexp f ( x, a))T V Z (zexp f ( x, a)) (2) Maximum likelihood: find the vector a that maximizes the likelihood function. When the PDF is the normal distribution : 1 1 P a z, V z da exp ( z exp f ( x, a))T V z ( z exp f ( x, a)) da 2 Least squares method is equivalent to Maximum likelihood Generalized least squares Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 28 Input from experiment : zexp and Vz, xexp and Vx • Linear model • Non-linear model (1st order Taylor) zm f ( x, a) Ga a V ( V z Gx V x G ) T x 1 ga,ij fi a j zm f ( x, a) f ( x, ao ) Ga (a ao ) gx,ij fi x j V ( V z Gx V x Gx ) 1 a (Ga V Ga )1(Ga V zexp ) T T 1 V a (Ga V Ga )1 T T 1 1 (a ao ) (Ga V Ga )1Ga V ( z exp f ( x, ao )) T T 1 V aao (Ga V Ga )1 T solved by iteration Van der Zijp (proceedings ESARDA) Basic operations Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • Definitions and terminology • Fitting a mathematical model to data • Basic operations (+ , - , x , ) – Background – Normalization – Fit correlated data • AGS • Examples 29 Background Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 30 Example: y vector dimension 2 z = f(y1, y2, b) z y b Vy uncorrelated uncertainties from counting statistics 2 y1 : Vy = 0 0 2y 2 2 Vb uncertainty on background (not correlated with Vy) : Vb = b 1 0 1 Vz = 0 1 1 2 y1 0 0 0 2y 0 2 0 1 0 0 b2 1 Vz A Vx AT a ik 0 1 1 fi x k 2 2 b y1 2 b 2y b2 2 b2 Background Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 31 (y1-b, y2-b) = (z1,z2) (z1+z2, z1-z2) 2 2 b y V( z 1 , z 2 ) 1 2 b 2 2 y b 2 b2 2 2 4 2 b y y V( z 1 z 2 , z 1 z 2 ) 1 2 2 2 y1 y2 2y 2y 1 2 2y 2y 1 2 2z z 2y 2y 4b2 1 2 1 2 2z z 2y 2y 1 2 1 2 Background Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 32 (y1-b, y2-b) = (z1,z2) (z1+z2, z1-z2) Covariance 2 z1 z 2 2 z1 z 2 Only diagonal terms 4 2y1 2y2 2b2 2y1 2y2 2b2 2 y1 2 y1 2 y2 2 y2 2 b Propagation of uncertainties : covariance Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 33 (y1-b, y2-b) = (z1,z2) (z1+z2, z1-z2) =(v1,v2) (v1+v2)=2z1 Covariance 2 2 4 2 b y y 22z Vv 1 v 2 1 1 1 2 2 2 1 y1 y2 2y 2y 1 2 2y 2y 1 2 Only diagonal terms 22z 2 2y 2 2y 4b2 2 2z 2 2z 1 1 2 1 2 1 1 4( 2y b2 ) 4 2z 1 1 Normalization Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 34 Example: y vector dimension 2 z = f(y1, y2, N) z Ny Vy uncorrelated uncertainties from counting statistics 2 y1 : Vy = 0 0 2y 2 2 VN uncertainty on normalization (not correlated with Vy) : VN = N N 0 y 1 Vz 0 N y 2 not -linear 2 y1 0 0 0 2y 0 2 0 N 0 0 2 y 1 N 0 2 2 2 2 N y N 1 y1 N y1 y 2 2 N y2 2 y1 y 2 N 2 2 2 2 N y y 2 N 2 Normalization Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 35 (Ny1, Ny2) = (z1,z2) = (z1z2, z1/z2) 2 N2 2 y 2 2 y y 1 2 N 1 N y 1 V( z 1 , z 2 ) 2 2 2 2 2 y y N y y 2 N 1 2 N 2 y12 2 2 4 2 2 4 2 2 2 2 2 2 2 2 N y N y 4N y y 2 y1 1 y2 1 2 N N y1 2 N y 2 y2 V( z 1z 2 , z 1 / z 2 ) 2 2 2 y y1 2 2 y1 2 2 2 1 N y N y y 2 2 4 1 2 2 y2 y2 y2 2 2z z N4 y 22 2y N4 y12 2y 4N2 y12 y 22 N 1 2 2z / z 1 2 1 2 2y y 1 1 2y 2 y 22 y 24 2 Normalization Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 36 (Ny1, Ny2) = (z1,z2) = (z1z2, z1/z2) Covariance 2z z 1 2 2z / z 1 2 2 N4 y 22 2y N4 y12 2y 4N2 y12 y 22 N 1 2 2y y 1 1 2y 2 y 22 y 24 2 Only diagonal terms 2 N4 y 22 2y N4 y12 2y 2N2 y12 y 22 N 1 2y 2 2 2 y 1 1 2y 2 N 2 y 22 y 24 N2 y12 y 22 Fit correlated data: common “offset “ uncertainty Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 37 z1 and z2 are observables of the same quantity K which are deduced from the experimental data (y1,y2) affected by a common “offset error” with uncertainty b and mean =0. The covariance matrix for (z1,z2)= (y1-0,y2-0) is : V( z1,z 2 ) 2 2 b y 1 2 b 2 b b2 2y 2 where y1 and y2 are the uncorrelated uncertainty components of y1 and y2 (e.g. due to counting statistics). The best value K is obtained by minimizing the expression: 2 (k ) ( z exp K ) T V (z1 ,z 1 2) ( z exp K ) Fit correlated data: common “offset” uncertainty Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx Solution : 2 (k ) ( z exp K ) T V (z1 ,z The best value k: 1 K 38 2) z 1 2y z 2 2y 2 1 2y 2y 1 with uncertainty : ( z exp K ) K2 2y 2y 1 b2 2 2y 2y 1 2 2 (weighted average) Fit correlated data: common “normalization” uncertainty Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 39 z1 and z2 are observables of the same quantity K which are deduced from the experimental data (y1,y2) affected by a common “normalization” with uncertainty N and mean N = 1. The covariance matrix for (z1,z2) = (N y1, N y2) with N = 1 is : V( z1,z 2 ) 2 y 2 2 1 N y 1 y 1y 2 2 N 2 2 y 2 N 2 y 1y 2 N 2y 2 where y1 and y2 are the uncorrelated uncertainty components (e.g. due to counting statistics). The best value k is obtained by minimizing the expression: 2 (k ) ( z exp K ) T V (z1 ,z 1 2) ( z exp K ) Fit correlated data: common “normalization” uncertainty Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx Solution : 40 2 (k ) ( z exp Z)T V (z1 , z ) ( z exp Z) 1 2 The best value K: with uncertainty : K z 1 2y z 2 2y 2 2y 1 2Z 2y 2 ( weighted average) 1 (y1 y 2 ) 2 2 N 2 2y 2y ( y 12 2y y 22 2y ) N 1 2 2 1 2 2y 2y ( y 1 y 2 ) 2 N 1 2 Only in case (y1 – y2)2N2 is small K approaches the weighted average. Known as : ”Peelle’s Pertinent Puzzle”, see Fröhner NSE 126 (1997) 1 Due to “non-linearities” Fit correlated data: common “normalizaton” uncertainty Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 41 Solution : treat the normalization as a separate observable Observables: (N’exp, y1, y2) with covariance matrix V(N’, y1, y2) The function is : (N’exp, y1,y2) = (N’,KN’, KN’) = f(N’,K) V(N',y1,y 2 ) 2 N' 0 0 0 2y 1 0 (note N’ = 1/N) 0 0 2y 2 (N’, K) are determined by minimizing: 2 (N' , K ) ((N' exp , y 1, y 2 ) (N' , N' K, N' K ) T V (N1',y ,y 1 2) ((N' exp , y 1, y 2 ) (N' , N' K, N' K )) Example Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 42 Two measurements (z1, z2) of variable Z each with 10% uncorrelated uncertainty and 20% uncertainty on the calibration factor N: z1 = 1.5 z2 = 1.0 Vz1,z 2 0.15 2 (1.15 x0.20 ) 2 2 1.0 x1.5 x0.20 0.1125 0.06 0.05 0.06 1.0 x1.5 x0.20 2 0.10 2 (1.0 x0.20 ) 2 Best value for Z ? Weighted average (only uncorrelated terms) : 1.154 0.083 Least square without covariance : 1.154 0.083 Least squares with covariance : 0.882 0.218 Least squares with calibration factor as parameter : 1.154 0.254 Least squares without covariance + adding uN afterwards : 1.154 0.245 Summary : Z = N (C – B) (1/2) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 43 • Uncertainties – VC : diagonal, uncorrelated uncertainties due do counting statistics Poison (Type B), or preferably by repeated measurements (Type A) – B : background subtraction introduces correlated uncertainties – N : normalization introduces correlated uncertainties • N and B can be considered as due to systematic effects. The value for B and N are the systematic corrections. These corrections have their uncertainties (or better covariance matrix) • Not correcting for N and/or B implies that the value Z can not be quoted ! Summary : Z = N (C – B) (2/2) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • Be careful with large uncertainties on the normalization. • Quote all the components involved in the data reduction process • Separate as much as possible the components which create correlated uncertainties • Include the normalization in the model 44 General : Zi = f(x1,…,xn, c1,…,cm) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 45 • xi : VX only uncorrelated uncertainties (counting statistics) • ci : Vc correlated uncertainties (normalization, background, …) x1 . . . xn Y c1 . . . c m fi gik Yk 2 x1 0 V Y ... 0 0 0 ... 0 ... 0 ... ... ... 0 ... 2x n ... 0 2x 0 2 0 0 ... 0 V c V Z G TY V Y G Y Experimental observables Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx T = f( NT,td, Cin, Bin, Cout, Bout) 46 Yr = f( Nr, r, td, Cr, Br, C, B) • C counting statistics (not correlated) • td utd from least square fit of time interval distribution • B least square fit (correlated uncertainties) • NT uNT 0.5 % (alternating sequences of “in-out” measurements) Borella et al., Phys. Rev. C 76 (2007) 014605 • r depends on method • Nr depends on method (related to r) (n,) for total energy principle with PHWT uNr 2% Borella et al. Nucl. Instr. Meth. A577, (2007) 626 AGS: Analysis of Generic TOF-Spectra Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx Reaction yield Cr' Br' Yexp N r C' B' 47 Transmission C’ dead time corrected counts B’ background contribution N normalization factor T exp N ' ' Cin Bin C'out B 'out Histogram operations + Covariance information (AGS) Yexp + covariance Texp + covariance input Reaction models : Resonance parameters + covariances Cross sections + covariances Uncertainty propagation in AGS Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 48 Z : function of vectors Z1,Z2, and parameter vector b: Z = F(b, Z1, Z2) Uncertainty propagation results in: T T F F F F F VZ VZ Vb 1 b b Z1 Z1 Z 2 AGS VZ 2 F Z 2 T ... VZ S Z S Z D Z T correlated part dimension: n x k uncorrelated part diagonal : n values n : length of vector Z k : number of common sources of uncertainties Uncertainty in AGS : Z1 = F(a1,Y1) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 49 Z1 = F( a1 , Y1 ) VZ1 F Va 1 a 1 T F F F VY 1 a Y Y 1 1 1 T Z1, Y1 a1 : dimension n : dimension k1 Va1 covariance matrix (symmetric & positive definite) VY1 Va1 = La1 La1T (Cholesky decomposition) F only diagonal terms Y1 La : lower triangular matrix only diagonal terms : DY1 = VY1 D Z1 F L a S a1 1 a1 F F D Y 1 Y Y 1 1 2Y1u VZ1 Sa1 Sa1 DZ1 T dimension: n x k1 T n values (diagonal) Example : Z = a Y Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 50 Z=aY F F VZ Va a a Va a a T F F VY Y Y VY T Z, Y a : dimension n : dimension 1 only diagonal terms : DY = VY Z only diagonal terms Y F Y a DZ a2 DY Sa Y a VZ S a S a T D Z dimension: n x 1 n values (diagonal) a 2 2Y u Uncertainty in AGS : Z = F(b, Z1, Z2) Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 51 Z, Z1, Z2 b Z = F( b , Z1 , Z2) Vb = Lb LbT Z Sb L b b VZ1 = Sa1 Sa1T + DZ1 VZ2 = Sa2 Sa2T + DZ2 dim Sa1 = n x k1 dim Sa2 = n x k2 T T F F F F F VZ VZ Vb 1 b b Z1 Z1 Z 2 VZ S b S b S Z Sb T F S a S a T 1 1 Z 1 F S a 1 Z1 F Z 2 S a 2 : dimension n : dimension kb T F F Z1 Z 2 S a S a T 2 2 F Z 2 VZ 2 T F Z 2 T T F F F D Z 1 Z1 Z1 Z 2 T F F F D Z D Z 1 Z1 Z1 Z 2 D Z 2 D Z 2 VZ S z S z D Z T dimension: n x k k = kb + k1 + k2 n values (diagonal) F Z 2 F Z 2 T T AGS, File format Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 52 Storage and calculus Covariance matrix n2 elements (e.g. 32k x 8 bytes 2n2 mult. & sum. /step (20 steps 8 Gb !) 8x1010 flops!) AGS representation n (k+1) elements (32k, 20 corr. n (k+1) mult. & sum./step (20 steps X Z Dz Sz 5 Mb) 7x103 flops) AGS commands Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx ags_mpty ags_getA ags_getE ags_getXY ags_addval ags_avgr ags_func ags_idtc ags_divi ags_mult ags_lico ags_ener ags_fit ags_fxyp ags_edit ags_list ags_putX ags_scan Write only commands Create an empty AGS file Import spectra from another AGS file Import/interpolate evaluated data from an ENDF file Import histogram data from an ASCII file Read/Write commands : Operations on spectra Add a constant value to all Y-values of a spectrum Average Y values per channel Calculates the Y values for a special function Determine the dead time correction of a TOF-spectrum Divide a spectrum by another Multiply a spectrum with another Linear combination of n spectra with n constants Build energy from TOF X-vector Non-linear fit of spectra User-programmed function Read Only commands Edit constants and scalers attached to a spectrum List Y values of spectra with common X values Export final result to an ASCII file Scan the contents of an AGS file 53 AGS, Script for transmission data Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 54 # create ags-file ags_mpty TRFAK # read sample out scaler=TOout,CMout ags_getXY TRFAK /SCALER=$scaler /FROM=spout.his /ALIAS=SOUT # read sample in scaler=TOin,CMin ags_getXY TRFAK /SCALER=$scaler /FROM=spin.his /ALIAS=SIN /LIKE=A01SOUT # dead time correction dtcoef=DTCOEF ags_idtc TRFAK,A01SOUT /DTIME=$dtcoef /LPSC=1 ags_idtc TRFAK,B01SIN /DTIME=$dtcoef /LPSC=1 # normalize to central monitor and divide by bin width ags_avgr TRFAK,C01SOUT /CMSC=2 ags_avgr TRFAK,D01SIN /CMSC=2 #calculate background contribution ags_func TRFAK /FUN=f01 /PARFILE=PAROUT /ALIAS=SBOUT /LIKE=A01SOUT ags_func TRFAK /FUN=f01 /PARFILE=PARIN /ALIAS=SBIN /LIKE=A01SOUT #subtract background ags_lico TRFAK,E01SOUT,G01SBOUT /ALIAS=SOUTNET /PAR=1.0,-1.0 ags_lico TRFAK,F01SIN,H01SBIN /ALIAS=SINNET /PAR=1.0,-1.0 #create transmission factor ags_divi TRFAK,I01SOUTNET,J01SINNET /ALIAS=TRFAK ' ' Cin Bin T ' C out B 'out Calculation of transmission factor Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx Sample in 10 Cout Bout Texp N 10 2 1 10 100 Time / s ' ' Cin B in C 'out B 'out 1000 10 4 10 3 10 2 1.0 Transmission factor 10 Sample out Bin 4 3 5 Cin Counts 10 5 Counts 10 55 0.8 0.6 0.4 0.2 0.0 1 10 100 1000 1 10 100 Time / s 1000 Output AGS_PUTX Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx Bin / Bin : 10.0 % Bout / Bout : 5.0 % N / N : 0.5 % 56 TT CV ==DD ZZ Z Z++SSSS XL 800 1600 2400 3200 . . . 16000 16800 17600 18400 19200 20000 20800 21600 . . . 964000 972000 980000 988000 XH 1600 2400 3200 4000 . . . 16800 17600 18400 19200 20000 20800 21600 22400 . . . 972000 980000 988000 996000 Z 0.999 0.999 0.999 0.999 . . . 0.899 0.818 0.701 0.594 0.501 0.504 0.581 0.707 . . . 0.999 1.037 1.001 1.010 Z 0.79E-2 0.86E-2 0.92E-2 0.97E-2 . . . 1.30E-2 1.24E-2 1.15E-2 1.06E-2 0.98E-2 1.00E-2 1.09E-2 1.22E-2 . . . 5.91E-2 6.09E-2 6.01E-2 5.92E-2 Zu 0.59E-2 0.67E-2 0.73E-2 0.78E-2 . . . 1.07E-2 1.02E-2 0.93E-2 0.84E-2 0.76E-2 0.77E-2 0.85E-2 0.98E-2 . . . 3.75E-2 3.89E-2 3.80E-2 3.77E-2 DZ S Zu2 Bin Bout N 0.35E-4 0.45E-4 0.54E-4 0.61E-4 . . . 1.15E-4 1.04E-4 0.86E-4 0.71E-4 0.57E-4 0.59E-4 0.73E-4 0.97E-4 . . . 14.06E-4 15.13E-4 14.46E-4 14.23E-4 0.14E-2 0.18E-2 0.21E-2 0.24E-2 . . . 0.51E-2 0.53E-2 0.54E-2 0.55E-2 0.56E-2 0.57E-2 0.58E-2 0.60E-2 . . . 3.98E-2 4.04E-2 4.05E-2 3.96E-2 -0.08E-2 -0.10E-2 -0.12E-2 -0.13E-2 . . . -0.25E-2 -0.24E-2 -0.21E-2 -0.18E-2 -0.15E-2 -0.16E-2 -0.19E-2 -0.23E-2 . . . -2.18E-2 -2.31E-2 -2.23E-2 -2.20E-2 0.50E-2 0.50E-2 0.50E-2 0.50E-2 . . . 0.45E-2 0.41E-2 0.35E-2 0.30E-2 0.25E-2 0.25E-2 0.29E-2 0.35E-2 . . . 0.50E-2 0.52E-2 0.50E-2 0.50E-2 AGS Output -> Covariance matrix Time-of-flight / ns Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx Time-of-flight / ns 57 Example : 232Th(n,) in URR CRP IAEA “Th-U fuel cycle” Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 4 10 ' C ' B 10 10 10 3 2 Y,exp N ' 1 C B N r C' 10 ' B 2 ' C' B r C B ' 10 1 ' B ' 2850 B’ = b0 + b1 132.00 TOFb2 B 0 (n, ) Fc Y ,exp 18.83 5.19 eV 0 1 10 100 1500 Time-Of-Flight / s A. Borella et al. NSE 152 (2006) 1-14 10 1000 ' B 1 0 1 ' B1 B' =aoB'0 + a1B'1 10 100 Time-Of-Flight / s 232Th(n,) 1000 500 0 0 B0 ' C 1 102710 10 Y ,exp Black Resonances n mbarn TOF - spectrum / (1/ns) 10 58 3 50 100 Neutron Energy / keV 150 Example : 232Th(n,) in URR Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 59 Correlated uncertainties due to background in capture data Emin Emax ,u keV keV mb (%) (%) 4 6 6 1107.9 0.49 0.17 1.00 0.60 0.57 0.58 0.55 0.53 0.62 0.58 0.56 0.61 0.58 0.54 0.51 1.00 0.55 0.56 0.53 0.51 0.60 0.57 0.55 0.60 0.56 0.53 0.49 8 934.2 0.44 0.19 8 10 845.1 0.43 0.21 1.00 0.54 0.51 0.49 0.58 0.55 0.52 0.57 0.54 0.51 0.47 10 15 749.1 0.38 0.15 1.00 0.52 0.50 0.59 0.56 0.54 0.59 0.55 0.52 0.49 15 20 638.7 0.39 0.18 1.00 0.48 0.57 0.54 0.52 0.56 0.53 0.50 0.47 20 30 571.3 0.36 0.14 1.00 0.55 0.52 0.50 0.54 0.51 0.48 0.45 30 40 490.3 0.32 0.18 1.00 0.61 0.59 0.64 0.61 0.57 0.54 40 50 429.6 0.31 0.19 1.00 0.56 0.61 0.58 0.54 0.51 50 60 382.9 0.33 0.22 1.00 0.59 0.56 0.52 0.49 60 80 311.4 0.30 0.18 1.00 0.61 0.57 0.54 80 100 242.5 0.33 0.22 1.00 0.54 0.51 100 120 217.8 0.33 0.23 1.00 0.48 120 140 201.6 0.33 0.24 1.00 A. Borella et al. NSE 152 (2006) 1-14 Example : 232Th(n,) in URR Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 60 dead time, background + normalization (1.5%) Emin Emax ,u keV keV mb (%) (%) 4 6 6 1107.9 1.70 0.17 1.00 0.85 0.85 0.86 0.86 0.87 0.88 0.88 0.88 0.89 0.89 0.88 0.88 1.00 0.88 0.89 0.89 0.89 0.91 0.91 0.91 0.92 0.92 0.91 0.91 8 934.2 1.64 0.19 8 10 845.1 1.63 0.21 1.00 0.89 0.89 0.90 0.91 0.91 0.91 0.92 0.92 0.91 0.91 10 15 749.1 1.61 0.15 1.00 0.90 0.91 0.93 0.92 0.93 0.93 0.93 0.93 0.92 15 20 638.7 1.61 0.18 1.00 0.91 0.92 0.92 0.93 0.93 0.93 0.93 0.92 20 30 571.3 1.59 0.14 1.00 0.93 0.93 0.93 0.94 0.93 0.93 0.93 30 40 490.3 1.56 0.18 1.00 0.95 0.95 0.96 0.95 0.95 0.95 40 50 429.6 1.56 0.19 1.00 0.95 0.96 0.95 0.95 0.95 50 60 382.9 1.55 0.22 1.00 0.96 0.96 0.95 0.95 60 80 311.4 1.55 0.18 1.00 0.96 0.96 0.96 80 100 242.5 1.56 0.22 1.00 0.96 0.95 100 120 217.8 1.55 0.23 1.00 0.95 120 140 201.6 1.55 0.24 1.00 A. Borella et al. NSE 152 (2006) 1-14 Importance of covariance data Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx 61 Application of reaction model to deduce model parameters: REFIT, SAMMY resolved resonance parameters FITACS average resonance parameters Minimize 2 as a function of parameters a (resonance parameters) 1 2 (a) ( z exp zM (a))T V z,exp( z exp zM (a)) Covariance of parameters a 1 V a (Ga V z,exp Ga )1 T Covariance of calculated ZM Vz,M Ga V a Ga T Average resonance parameters from data in URR Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx Zexp : Model : a : <> average capture cross section Generalized SLBW in URR 0 and 1 average radiation width for = 0 , 1 Zexp = 1.6% and = 0.0 Zu = 1.6 % Zc = 0.0 % 0 1 En / keV 5 50 100 62 1.18 % 1.00 0.95 % - 0.74 1.00 Zexp = 1.6% and = 0.9 Zu = 0.5 % Zc = 1.5 % 1.81 % 1.00 0.88 0.97 % 1.00 ,M (%) 0.48 0.33 0.35 Sirakov et al., Annals of Nuclear Energy, 2008doi:10.1016/j.anucene.2007.12.008, ,M (%) 0.88 0.80 0.97 Summary Workshop on Nuclear Reaction Data for Advanced Reactor Technologies – Trieste, 19 – 30 May, 2008, P. Schillebeeckx • Error ≠ uncertainty – Random error : expectation value = 0 – Systematic error (correction factor) : expectation value = 0 • All uncertainties are statistical • Evaluation of uncertainties – Type A : statistical analysis of repeated measurements – Type B : scientific judgment • Importance of covariance information • Quote all components involved in the data reduction process which create correlated uncertainties • AGS, reduction of TOF-data with propagation of correlated and uncorrelated uncertainties including full reporting of the reduction process 63
© Copyright 2025 Paperzz