ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ١ﻭ ﻣﺤﺎﺳﺒﻪ ﺁﻥ ﺩﺭ ﺑﺎﺯﯼﻫﺎﯼ ﭼﻨﺪ ﺑﺎﺯﻳﮑﻨﯽ ٢ ﺳﻴﺪﺍﺑﻮﺍﻟﻘﺎﺳﻢ ﻣﻴﺮﺭﻭﺷﻨﺪﻝ Mirroshandel@ce.sharif.edu ﭼﮑﻴﺪﻩ .ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ،ﻳﮏ ﻣﻔﻬﻮﻡ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﺑﺮﺍﯼ ﻧﺸﺎﻥ ﺩﺍﺩﻥ ﻋﻘﻼﻳﻲ ﺑﻮﺩﻥ ﻳﮏ ﺑﺎﺯﯼ ﺍﺳﺖ ﮐﻪ ﻳﮏ ﺗﻮﺯﻳﻊ ﻋﻤﻮﻣﯽ ﺭﺍ ﺩﺭ ﻧﻤﺎﻳﻪﻫﺎﯼ ﺍﺳﺘﺮﺍﺗﮋﯼ ٣ﻧﺸﺎﻥ ﻣﯽﺩﻫﺪ .ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ،ﺍﺑﺘﺪﺍ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﻣﻌﺮﻓﯽ ﻣﯽﺷﻮﺩ ﻭ ﺳﭙﺲ ﻳﮏ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺎ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ٤ﺍﺭﺍﺋﻪ ﺧﻮﺍﻫﺪ ﺷﺪ ﮐﻪ ﻣﯽﺗﻮﺍﻥ ﺁﻥ ﺭﺍ ﺩﺭ ﺑﺎﺯﻱﻫﺎﻳﻲ ﮐﻪ ﺑﻪ ﺻﻮﺭﺕ ﻓﺸﺮﺩﻩ ٥ﻗﺎﺑﻞ ﺍﺭﺍﺋﻪ ﻫﺴﺘﻨﺪ ،ﺍﻋﻤﺎﻝ ﻭ ﺣﺪﺍﻗﻞ ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﺎﺯﯼ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﮐﺎﺭﺍ ﭘﻴﺪﺍ ﻧﻤﻮﺩ .ﺍﺯ ﺍﻳﻦ ﺩﺳﺘﻪ ﺍﺯ ﺑﺎﺯﯼﻫﺎ ﻣﯽﺗﻮﺍﻥ ﺑﻪ ﺑﺎﺯﯼﻫﺎﻳﻲ ﻧﻈﻴﺮ ﺑﺎﺯﯼﻫﺎﯼ ﮔﺮﺍﻓﻴﮑﯽ ،ﺑﺎﺯﯼﻫﺎﯼ ﭼﻨﺪ ﻣﺎﺗﺮﻳﺴﯽ ،٦ﺑﺎﺯﯼﻫﺎﯼ ﺑﯽﻧﺎﻡ ٧ﻭ ﺑﺎﺯﯼﻫﺎﯼ ﺯﻣﺎﻥﺑﻨﺪﯼ ﺍﺷﺎﺭﻩ ﻧﻤﻮﺩ .ﺩﺭ ﺍﺩﺍﻣﻪ ﺑﺮﺍﯼ ﺍﻳﻦ ﺑﺎﺯﯼﻫﺎ ،ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ ﻣﺤﺎﺳﺒﻪ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﻣﻮﺭﺩ ﺑﺮﺭﺳﯽ ﻗﺮﺍﺭ ﺧﻮﺍﻫﺪ ﮔﺮﻓﺖ ﻭ ﺧﻮﺍﻫﻴﻢ ﺩﻳﺪ ﮐﻪ ﺩﺭ ﻣﺠﻤﻮﻉ ﭘﻴﺪﺍ ﻧﻤﻮﺩﻥ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﺩﺍﺭﺍﯼ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ NP-hardﺍﺳﺖ. ﮐﻠﻤﺎﺕ ﮐﻠﻴﺪﯼ :ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ،ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ،ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ ،ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﻭ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ١ﻣﻘﺪﻣﻪ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ ،ﻳﮏ ﻣﻔﻬﻮﻡ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﺩﺭ ﻣﻮﺭﺩ ﻋﻘﻼﻳﻲ ﺑﻮﺩﻥ ﺩﺭ ﻧﻈﺮﻳﻪ ﺑﺎﺯﯼﻫﺎ ﺍﺳﺖ .ﻣﯽﺗﻮﺍﻥ ﺳﻪ ﺩﻟﻴﻞ ﺑﺮﺍﯼ ﺍﻳﻦ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﺑﻮﺩﻥ ﺍﺭﺍﺋﻪ ﻧﻤﻮﺩ :ﻫﻤﻪ ﺍﺯ ﺍﻳﻦ ﻣﻔﻬﻮﻡ ﺍﺳﺘﻔﺎﺩﻩ ﻣﯽﮐﻨﻨﺪ؛ ﺑﺴﻴﺎﺭﯼ ﺍﺯ ﺑﻬﺒﻮﺩﻫﺎ ﻭ ﺗﻌﻤﻴﻢﻫﺎ ﺑﺎ ﺍﻳﻦ ﻣﻔﻬﻮﻡ ﻣﻘﺎﻳﺴﻪ ﻣﯽﺷﻮﻧﺪ؛ ﻭ ﺩﺭ ﻧﻬﺎﻳﺖ ،ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ ﺑﺎ ﺩﺍﺷﺘﻦ ﺑﻌﻀﯽ ﺍﺯ ﻣﺴﺎﺋﻞ ﻣﺮﺗﺒﻂ ﮐﻪ ﻫﻤﭽﻨﺎﻥ ﺟﺰ ﻣﺴﺎﺋﻞ ﺑﺎﺯ ٨ﻣﺤﺴﻮﺏ ﻣﯽﺷﻮﻧﺪ ،ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﮏ ﻭﺍﺳﻂ ﺑﻴﻦ ﻧﻈﺮﻳﻪ ﺑﺎﺯﯼﻫﺎ ﻭ ﺍﻟﮕﻮﺭﻳﺘﻢﻫﺎ ﻋﻤﻞ ﻣﯽﮐﻨﺪ )ﻫﻤﺎﻧﻄﻮﺭ ﮐﻪ ﺍﺧﻴﺮﺍ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ ﻣﺤﺎﺳﺒﻪ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ ﺗﺮﮐﻴﺒﯽ ٩ﺣﺘﯽ ﺩﺭ ﻳﮏ ﺑﺎﺯﯼ ﺩﻭ ﻧﻔﺮﻩ PPAD-Completeﺍﺳﺖ ].([۱ ﻫﻤﺎﻧﻄﻮﺭ ﮐﻪ ﮔﻔﺘﻪ ﺷﺪ ،ﭼﻨﺪﻳﻦ ﺑﻬﺒﻮﺩ ﻭ ﺗﻌﻤﻴﻢ ﺑﺮﺍﯼ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ ﺑﻮﺟﻮﺩ ﺁﻣﺪﻩ ﺍﺳﺖ .ﺍﺻﻠﯽﺗﺮﻳﻦ ﺁﻧﻬﺎ ،ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺍﺳﺖ .ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ ﺗﺮﮐﻴﺒﯽ ،ﻳﮏ ﺗﻮﺯﻳﻊ ﺩﺭ ﻓﻀﺎﯼ ﺍﺳﺘﺮﺍﺗﮋﯼﻫﺎﺳﺖ ﮐﻪ ﻧﺎﻫﻤﺒﺴﺘﻪ ﺍﺳﺖ )ﺯﻳﺮﺍ ﺣﺎﺻﻠﻀﺮﺏ ﺍﺣﺘﻤﺎﻝ ﺗﻮﺯﻳﻊﻫﺎﯼ ﻣﺴﺘﻘﻞ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺳﺖ( ،ﺩﺭ ﺣﺎﻟﯽ ﮐﻪ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ،ﻳﮏ ﺗﻮﺯﻳﻊ ﻋﻤﻮﻣﯽ ﺩﺭ ﻧﻤﺎﻳﻪﻫﺎﯼ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺍﺳﺖ .ﺍﻟﺒﺘﻪ ﮐﺎﻣﻼ ﻣﺸﺨﺺ ﺍﺳﺖ ﮐﻪ ﺍﻳﻦ ﻧﻘﻄﻪ ،ﺩﺍﺭﺍﯼ ﺧﺼﻮﺻﻴﺖ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﺍﺳﺖ :ﺍﮔﺮ ﻳﮏ ﻧﻤﺎﻳﻪ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺍﺯ ﺍﻳﻦ ﺗﻮﺯﻳﻊ ﺍﻧﺘﺨﺎﺏ ﺷﻮﺩ )ﺍﺣﺘﻤﺎﻻ ﺍﻳﻦ ﮐﺎﺭ ﺗﻮﺳﻂ ﻳﮏ ﻋﺎﻣﻞ ﺧﺎﺭﺟﯽ ﻣﻮﺭﺩ ﺍﻋﺘﻤﺎﺩ ﻃﺮﻓﻴﻦ ﺍﻧﺠﺎﻡ ﺧﻮﺍﻫﺪ ﺷﺪ ﻭ ﺍﻳﻦ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺑﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺑﻪ ﺻﻮﺭﺕ ﺟﺪﺍﮔﺎﻧﻪ ﺍﻋﻼﻡ ﻣﯽﺷﻮﺩ( ،ﺁﻧﮕﺎﻩ ﻫﻴﭻ ﻳﮏ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺗﻤﺎﻳﻠﯽ ﺑﻪ ﺍﻧﺘﺨﺎﺏ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺩﻳﮕﺮ ﻧﺪﺍﺭﻧﺪ ،ﺯﻳﺮﺍ ﺑﺎ ﺍﻳﻦ ﻓﺮﺽ ﮐﻪ ﺑﻘﻴﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺯ ﺍﻳﻦ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺗﺒﻌﻴﺖ ﮐﻨﻨﺪ ،ﺍﺳﺘﺮﺍﺗﮋﯼ ﭘﻴﺸﻨﻬﺎﺩﯼ، ﻣﻨﺎﺳﺐﺗﺮﻳﻦ ﻣﻨﻔﻌﺖ ﺭﺍ ﺑﻪ ﻫﻤﺮﺍﻩ ﺧﻮﺍﻫﺪ ﺩﺍﺷﺖ. ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺩﺍﺭﺍﯼ ﭼﻨﺪﻳﻦ ﺧﺼﻮﺻﻴﺖ ﻣﻬﻢ ﻭ ﺩﺭ ﻋﻴﻦ ﺣﺎﻝ ﻣﻔﻴﺪ ﺍﺳﺖ :ﺍﻳﻦ ﻧﻘﻄﻪ ،ﻳﮏ ﻣﻔﻬﻮﻡ ﮐﺎﻣﻼ ﻣﻨﻄﻘﯽ ،ﺳﺎﺩﻩ ﻭ ﻣﺤﺘﻤﻞ ﺍﺳﺖ؛ ﺩﺭ ﻣﻮﺭﺩ ﺑﺎﺯﯼﻫﺎﻳﻲ ﺑﺎ ﺗﻌﺪﺍﺩ ﺑﺎﺯﻳﮑﻦ ﻣﺤﺪﻭﺩ ﻭ ﺗﻌﺪﺍﺩ ﮐﻨﺶﻫﺎﯼ ﻣﺤﺪﻭﺩ ﺣﺘﻤﺎ ﻣﻮﺟﻮﺩ ﺍﺳﺖ )ﺯﻳﺮﺍ ﺑﻪ ﺳﺎﺩﮔﯽ ﻣﯽﺗﻮﺍﻥ ﻓﻬﻤﻴﺪ ﮐﻪ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺍﺳﺖ(؛ ﺩﺭ ﻋﻤﻞ ﺩﺍﺭﺍﯼ ﺳﺎﺩﮔﯽ ﻭ ﻃﺒﻴﻌﯽ ﺑﻮﺩﻧﯽ ﺍﺳﺖ ﮐﻪ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ ﻓﺎﻗﺪ ﺁﻥ ﺍﺳﺖ ][۲؛ ﻭ ﻣﯽﺗﻮﺍﻥ ﺁﻥ ﺭﺍ ﺩﺭ ﺯﻣﺎﻥ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺑﺮﻧﺎﻣﻪﺳﺎﺯﯼ ﺧﻄﯽ ١٠ﺑﺪﺳﺖ ﺁﻭﺭﺩ ،ﺯﻳﺮﺍ ﻧﺎﻣﺴﺎﻭﯼﻫﺎﻳﻲ ﮐﻪ ﺑﺮﺍﯼ ﻧﺸﺎﻥ ﺩﺍﺩﻥ ﺧﺼﻮﺻﻴﺖ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﮑﺎﺭ ﻣﯽﺭﻭﻧﺪ ،ﺧﻄﯽ ﻫﺴﺘﻨﺪ. ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﺻﻠﯽ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﺮ ﺍﺳﺎﺱ ﺗﻐﻴﻴﺮ ﺩﺭ ﺍﺛﺒﺎﺕ ﻭﺟﻮﺩ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺩﺭ ] [٣ﻋﻤﻞ ﻣﯽﮐﻨﺪ .ﺩﺭ ﺍﻳﻦ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﺯ ﺗﺮﮐﻴﺐ ﺩﻭﮔﺎﻧﮕﯽ ﺑﺮﻧﺎﻣﻪﺳﺎﺯﯼ ﺧﻄﯽ ،١١ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﻟﻴﭙﺴﻮﻳﺪ ١٢ﻭ ﻣﺤﺎﺳﺒﺎﺕ ﻣﺮﺑﻮﻁ ﺑﻪ ﻭﺿﻌﻴﺖ ﭘﺎﻳﺪﺍﺭ ١٣ﺩﺭ ﺯﻧﺠﻴﺮﻩ ﻣﺎﺭﮐﻮﻑ ﺍﺳﺘﻔﺎﺩﻩ ﻣﯽﺷﻮﺩ ﺗﺎ ﺑﺘﻮﺍﻥ ﺑﻌﻀﯽ ﺍﺯ ﻧﻘﺎﻁ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺭﺍ ﭘﻴﺪﺍ ﻧﻤﻮﺩ. ﺣﺎﻝ ﻳﮏ ﺳﻮﺍﻝ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻣﺤﺎﺳﺒﻪ ﭘﻴﭽﻴﺪﮔﯽ ﻧﻘﺎﻁ ﺗﻌﺎﺩﻝ ﭼﻪ ﺍﻫﻤﻴﺘﯽ ﺩﺍﺭﺩ؟ ﭘﺎﺳﺦ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻧﻘﺎﻁ ﺗﻌﺎﺩﻝ ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩ ﻋﻘﻼﻳﻲ ﺑﻮﺩﻥ ﺑﺎﺯﯼ ﻫﺴﺘﻨﺪ ،ﻣﺪﻝﻫﺎﻳﻲ ﺭﺍ ﺑﺮﺍﯼ ﺭﻓﺘﺎﺭ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺭﺍﺋﻪ ﻣﯽﮐﻨﻨﺪ ﻭ ﻧﺸﺎﻥﺩﻫﻨﺪﻩ ﻗﺪﺭﺕ ﻣﺪﻝ ﻧﻤﻮﺩﻥ ﺑﺎﺯﯼ ﻫﺴﺘﻨﺪ ] .[۲ ،۱ﺩﺭ ﻭﺍﻗﻊ ﻗﺪﺭﺕ ﻣﺤﺎﺳﺒﻪ ﺩﺭ ﻣﻮﺭﺩ ﻳﮏ ﻣﺴﺎﻟﻪ ،ﻣﻴﺰﺍﻥ ﺳﻮﺩﻣﻨﺪﯼ ﺁﻥ ﻣﺴﺎﻟﻪ ﺭﺍ ﺩﺭ ﮐﺎﺭﺑﺮﺩﻫﺎ ﻧﺸﺎﻥ ﻣﯽﺩﻫﺪ ،ﻫﻤﺎﻧﻄﻮﺭ ﮐﻪ ﻳﮑﯽ ﺍﺯ ﺑﺰﺭﮔﺎﻥ ﻋﻠﻮﻡ ﮐﺎﻣﭙﻴﻮﺗﺮ ﮔﻔﺘﻪ ﺍﺳﺖ" :ﺍﮔﺮ ﮐﺎﻣﭙﻴﻮﺗﺮ ﺷﻤﺎ ﻧﺘﻮﺍﻧﺪ ﺣﻞ ﻳﮏ ﻣﺴﺎﻟﻪ ﺭﺍ ﭘﻴﺪﺍ ﮐﻨﺪ ،ﺑﺎﺯﺍﺭ ﻗﻄﻌﺎ ﻧﺨﻮﺍﻫﺪ ﺗﻮﺍﻧﺴﺖ" ].[۱ ﺩﺭ ﺍﺩﺍﻣﻪ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ،ﺩﺭ ﺑﺨﺶ ،۲ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺩﻗﻴﻖﺗﺮ ﺑﺮﺭﺳﯽ ﺷﺪﻩ ﻭ ﺗﻌﺮﻳﻒ ﺭﺳﻤﯽ ﺁﻥ ﺍﺭﺍﺋﻪ ﺧﻮﺍﻫﺪ ﺷﺪ. ﺳﭙﺲ ﺩﺭ ﺑﺨﺶ ،۳ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﺑﻪ ﺻﻮﺭﺕ ﺍﺟﻤﺎﻟﯽ ﻣﻌﺮﻓﯽ ﺷﺪﻩ ﻭ ﭼﻨﺪ ﻣﺜﺎﻝ ﺍﺯ ﺁﻧﻬﺎ ﺷﺮﺡ ﺩﺍﺩﻩ ﺧﻮﺍﻫﺪ ﺷﺪ .ﺩﺭ ﺑﺨﺶ ،۴ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﺑﺘﺪﺍﻳﻲ ﭘﻴﺪﺍ ﻧﻤﻮﺩﻥ ﺑﻌﻀﯽ ﺍﺯ ﻧﻘﺎﻁ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺍﺭﺍﺋﻪ ﻣﯽﺷﻮﺩ ﻭ ﺩﺭ ﺑﺨﺶ ،۵ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﯽﺷﻮﺩ ﮐﻪ ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﺮﺍﯼ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﺩﺍﺭﺍﯼ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺍﺳﺖ .ﺍﻟﮕﻮﺭﻳﺘﻢ ﻣﺮﺗﺒﻂ ﺑﺮﺍﯼ ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﻭ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ ﻣﺮﺗﺒﻂ ﺑﺎ ﺁﻥ ﺩﺭ ﺑﺨﺶ ۶ﺍﺭﺍﺋﻪ ﺧﻮﺍﻫﺪ ﺷﺪ .ﺩﺭ ﺍﻧﺘﻬﺎ ﺩﺭ ﺑﺨﺶ ،۷ﺑﻪ ﻧﺘﻴﺠﻪ ﮔﻴﺮﻱ ﻣﻲﭘﺮﺩﺍﺯﻳﻢ. ٢ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺩﺭ ﻧﻈﺮﻳﻪ ﺑﺎﺯﯼﻫﺎ ،ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﻳﮏ ﻣﻔﻬﻮﻡ ﺣﻞ ﻣﺴﺎﻟﻪ ﺍﺳﺖ ﮐﻪ ﺍﺯ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻣﺸﻬﻮﺭ ﻧﺶ ،ﺑﺴﻴﺎﺭ ﻋﻤﻮﻣﯽﺗﺮ ﺍﺳﺖ .ﺍﻳﻦ ﻣﻔﻬﻮﻡ ﺍﻭﻟﻴﻦ ﺑﺎﺭ ﺩﺭ ﺳﺎﻝ ۱۹۷۴ﺗﻮﺳﻂ ﺭﻳﺎﺿﻴﺪﺍﻧﯽ ﺑﻪ ﻧﺎﻡ ﺭﺍﺑﺮﺕ ﺍﻭﻣﺎﻥ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ ] .[۴ﺍﻳﺪﻩ ﺍﺻﻠﯽ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ،ﮐﻨﺶ ﻣﻮﺭﺩ ﻧﻈﺮ ﺧﻮﺩ ﺭﺍ ﺑﺮ ﺍﺳﺎﺱ ﺩﺭﻳﺎﻓﺘﺶ ﺍﺯ ﻳﮏ ﻋﻼﻣﺖ ١٤ﻋﻤﻮﻣﯽ ﺍﻧﺠﺎﻡ ﻣﯽﺩﻫﺪ .ﺩﺭ ﺍﺳﺘﺮﺍﺗﮋﯼ ،ﺑﺎﺯﺍﯼ ﻫﺮ ﺩﺭﻳﺎﻓﺘﯽ ﮐﻪ ﺍﻧﺠﺎﻡ ﻣﯽﺷﻮﺩ ،ﻳﮑﯽ ﺍﺯ ﮐﻨﺶﻫﺎﯼ ﻣﻤﮑﻦ ﺑﺎﺯﻳﮑﻦ ﺗﺨﺼﻴﺺ ﺩﺍﺩﻩ ﻣﯽﺷﻮﺩ .ﺣﺎﻝ ﺍﮔﺮ ﻫﻴﭻ ﺑﺎﺯﻳﮑﻨﯽ ﻧﺨﻮﺍﻫﺪ ﺍﺯ ﺍﺳﺘﺮﺍﺗﮋﯼ ﭘﻴﺸﻨﻬﺎﺩﯼ ﺳﺮﭘﻴﭽﯽ ﮐﻨﺪ ،ﺑﻪ ﺍﻳﻦ ﺗﻮﺯﻳﻊ ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﮔﻔﺘﻪ ﻣﯽﺷﻮﺩ .ﺩﺭ ﺍﺩﺍﻣﻪ ﺗﻌﺮﻳﻒ ﺭﺳﻤﯽ ﺍﻳﻦ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻣﻄﺮﺡ ﺧﻮﺍﻫﺪ ﺷﺪ ﻭ ﺳﭙﺲ ﻣﺜﺎﻝﻫﺎﻳﻲ ﺍﺯ ﺁﻥ ﺍﺭﺍﺋﻪ ﻣﯽﺷﻮﺩ. ١,٢ﺗﻌﺮﻳﻒ ﺭﺳﻤﯽ ﻳﮏ ﺑﺎﺯﯼ ﮐﻪ ﺗﻌﺪﺍﺩ ﻣﺘﻨﺎﻫﯽ ﺑﺎﺯﻳﮑﻦ ﺩﺍﺭﺩ ) nﺑﺎﺯﻳﮑﻦ (1, 2, …, n :ﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ .ﻓﺮﺽ ﮐﻨﻴﺪ ﮐﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ، p ≤ nﺩﺍﺭﺍﯼ ﺗﻌﺪﺍﺩ ﻣﺘﻨﺎﻫﯽ ﺍﺯ ﺍﺳﺘﺮﺍﺗﮋﯼﻫﺎ ﻳﺎ ﺍﻧﺘﺨﺎﺏﻫﺎ ﺑﺎﺷﺪ ) S pﺍﺳﺘﺮﺍﺗﮋﯼ ﺑﺎﺯﻳﮑﻦ pﺍﻡ ﺭﺍ ﻧﺸﺎﻥ ﻣﯽﺩﻫﺪ ﻭ ﺑﺮﺍﯼ ﻫﺮ ﺑﺎﺯﻳﮑﻦ pﺩﺍﺭﻳﻢ .( S p ≥ 2 :ﺑﻪ ﻣﺠﻤﻮﻋﻪ ، S = ∏n S pﻧﻤﺎﻳﻪﻫﺎﯼ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺍﻃﻼﻕ ﻣﯽﺷﻮﺩ .ﻣﺠﻤﻮﻋﻪ p =1 Sq n q≠ p ∏ ﺑﺎ S − pﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﯽﺷﻮﺩ m .ﻫﻢ ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩ ﺑﻴﺸﻴﻨﻪ S pﺑﺮﺍﯼ ﺗﻤﺎﻣﯽ ﺑﺎﺯﻳﮑﻨﺎﻥ pﺍﺳﺖ .ﺗﺎﺑﻊ ﻣﻨﻔﻌﺖ ١٥ p ﺑﺎﺯﻳﮑﻦ pﻫﻢ ﺑﺎ uﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﯽﺷﻮﺩ ﮐﻪ ﻳﮏ ﻧﮕﺎﺷﺖ ﺍﺯ Sﺑﻪ ﺍﻋﺪﺍﺩ ﻃﺒﻴﻌﯽ ﺍﺳﺖ. ﻳﮏ ﺗﻮﺯﻳﻊ ﺭﻭﯼ ،Sﻳﮏ ﺑﺮﺩﺍﺭ ﻧﺎﻣﻨﻔﯽ ﺍﺯ ﺍﻋﺪﺍﺩ ﺣﻘﻴﻘﯽ ﺍﺳﺖ ﮐﻪ ﻫﺮ ﮐﺪﺍﻡ ﺍﺯ ﺍﻳﻦ ﺍﻋﺪﺍﺩ ﺑﺮﺍﯼ ﻳﮏ ﻧﻤﺎﻳﻪ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺩﺭ Sﺑﮑﺎﺭ ﻣﯽﺭﻭﺩ ﻭ ﺣﺎﺻﻞ ﺟﻤﻊ ﺍﻳﻦ ﺍﻋﺪﺍﺩ ﺑﺮﺍﺑﺮ ۱ﺍﺳﺖ .ﻳﮏ ﺗﻮﺯﻳﻊ xﺭﻭﯼ Sﺩﺍﺭﺍﯼ ﺧﺎﺻﻴﺖ ﺣﺎﺻﻠﻀﺮﺑﯽ ﺍﺳﺖ ﺍﮔﺮ ﺑﺮﺍﯼ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ،pﻳﮏ ﺗﻮﺯﻳﻊ x pﺩﺭ S pﺑﺮﺍﯼ ﺗﻤﺎﻣﯽ ) s = (s1 , s 2 , ..., s nﻭﺟﻮﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ ﻭ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ: p Sp x n p =1 ∏ = xs ﺣﺎﻝ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻪ ﺍﻳﻦ ﺻﻮﺭﺕ ﺗﻌﺮﻳﻒ ﻣﯽﺷﻮﺩ :ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﻳﮏ ﺗﻮﺯﻳﻊ xﺭﻭﯼ Sﺍﺳﺖ ،ﺑﻪ ﻧﺤﻮﯼ ﮐﻪ ﺑﺮﺍﯼ ﺗﻤﺎﻣﯽ ﺑﺎﺯﻳﮑﻨﺎﻥ pﻭ ﺗﻤﺎﻣﯽ ﺍﺳﺘﺮﺍﺗﮋﯼﻫﺎﯼ i, j ∈ S pﺩﺍﺷﺘﻪ ﺑﺎﺷﻴﻢ :ﺍﮔﺮ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺍﻧﺘﺨﺎﺏ ﺷﺪﻩ ﺍﺯ x ﺑﺮﺍﯼ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ،pﺑﺮﺍﺑﺮ iﺑﺎﺷﺪ ،ﻣﻨﻔﻌﺖ ﻣﻮﺭﺩ ﺍﻧﺘﻈﺎﺭ pﺑﺎ ﺑﺎﺯﯼ ﮐﺮﺩﻥ iﮐﻤﺘﺮ ﺍﺯ ﺑﺎﺯﯼ ﮐﺮﺩﻥ jﻧﺸﻮﺩ: ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﯽﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺷﻬﻮﺩﯼ ﺑﺮ ﺍﺳﺎﺱ ﺗﻌﺮﻳﻒ ﺑﺎﻻ ﮔﻔﺖ ﮐﻪ ﺩﺭ ﺻﻮﺭﺗﯽ ﮐﻪ ﻳﮏ ﻋﺎﻣﻞ ﻣﻮﺭﺩ ﺍﻃﻤﻴﻨﺎﻥ ،ﻳﮏ ﻧﻤﺎﻳﻪ ﺍﺳﺘﺮﺍﺗﮋﯼ sﺭﺍ ﺍﺯ ﺗﻮﺯﻳﻊ ﺍﻧﺘﺨﺎﺏ ﮐﻨﺪ ﻭ ﺑﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺑﻪ ﺻﻮﺭﺕ ﻣﺠﺰﺍ ﺍﻋﻼﻡ ﻧﻤﺎﻳﺪ ،ﺩﻳﮕﺮ ﻫﻴﭻ ﺑﺎﺯﻳﮑﻨﯽ ﺗﻤﺎﻳﻠﯽ ﺑﻪ ﺗﻐﻴﻴﺮ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺧﻮﺩ ﻧﺨﻮﺍﻫﺪ ﺩﺍﺷﺖ )ﻳﻌﻨﯽ ﺩﺭ ﻣﻮﺭﺩ ﺑﺎﻻ ،ﺑﺎﺯﻳﮑﻦ ،pﺍﺳﺘﺮﺍﺗﮋﯼ jﺭﺍ ﺑﻪ ﺍﺳﺘﺮﺍﺗﮋﯼ iﺗﺮﺟﻴﺢ ﻧﺨﻮﺍﻫﺪ ﺩﺍﺩ( .ﺩﺭ ﭘﺎﻳﺎﻥ ﻣﯽﺗﻮﺍﻥ ﮔﻔﺖ ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ )ﺗﺮﮐﻴﺒﯽ( ،ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺁﻥ ﺗﻮﺯﻳﻊ ﺑﻪ ﺻﻮﺭﺕ ﺣﺎﺻﻠﻀﺮﺑﯽ ﺍﺳﺖ. ٢,٢ﻣﺜﺎﻝﻫﺎﻳﻲ ﺍﺯ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﻳﮏ ﻣﺜﺎﻝ ﮐﻼﺳﻴﮏ ﺑﺮﺍﯼ ﺍﻳﻦ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ،ﺑﺎﺯﯼ ﭘﺮﻧﺪﻩ ١٦ﺍﺳﺖ ﮐﻪ ﺷﺎﻣﻞ ﺩﻭ ﺑﺎﺯﻳﮑﻦ ﺍﺳﺖ .ﻫﺮ ﮐﺪﺍﻡ ﺍﺯ ﺩﻭ ﺑﺎﺯﻳﮑﻦ ﺩﻭ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺩﺍﺭﻧﺪ (۱ :ﻣﺒﺎﺭﺯﻩ )(D؛ (۲ﺍﻧﺼﺮﺍﻑ ) .(Cﺍﻟﺒﺘﻪ ﻣﯽﺗﻮﺍﻥ ﺍﻳﻦ ﺑﺎﺯﯼ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺩﻭ ﺭﺍﻧﻨﺪﻩ ﺑﺎ ﻋﺠﻠﻪ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺖ ﮐﻪ ﺩﺭ ﻳﮏ ﭼﻬﺎﺭﺭﺍﻩ ﻗﺮﺍﺭ ﺩﺍﺭﻧﺪ ﻭ ﺩﻭ ﺍﻧﺘﺨﺎﺏ ﺩﺍﺭﻧﺪ (۱ :ﻋﺒﻮﺭ )(G؛ (۲ﺗﻮﻗﻒ ) .(Sﻣﻘﺪﺍﺭ ﻣﻨﻔﻌﺖ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺑﺎﺯﺍﯼ ﺍﻧﺠﺎﻡ ﻫﺮ ﮐﺪﺍﻡ ﺍﺯ ﺍﺳﺘﺮﺍﺗﮋﯼﻫﺎ ﺩﺭ ﺟﺪﻭﻝ ﺯﻳﺮ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ: P2 )C (S )D (G )(5, 1 )(0, 0 )D (G )(4, 4 )(1, 5 )C (S P1 ۵ﺗﻮﺯﻳﻊ ﺯﻳﺮ ،ﺑﺮﺍﯼ ﺍﻳﻦ ﺑﺎﺯﯼ ،ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﻣﺤﺴﻮﺏ ﻣﯽﺷﻮﻧﺪ: ﺗﻮﺯﻳﻊﻫﺎﯼ ﺍﻭﻝ ﻭ ﺩﻭﻡ ،ﺩﻭ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ ﺧﺎﻟﺺ ﺭﺍ ﻧﺸﺎﻥ ﻣﯽﺩﻫﻨﺪ .ﺗﻮﺯﻳﻊ ﺳﻮﻡ ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ ﺗﺮﮐﻴﺒﯽ ﺍﺳﺖ ﮐﻪ ﻫﺮ ﺩﻭ ﺑﺎﺯﻳﮑﻦ ﺑﺎ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺗﺮﮐﻴﺒﯽ } {۱/۲ ،۱/۲ﻋﻤﻞ ﻣﯽﮐﻨﻨﺪ .ﺗﻮﺯﻳﻊ ﭼﻬﺎﺭﻡ ،ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺭﺍ ﻧﺸﺎﻥ ﻣﯽﺩﻫﺪ ﮐﻪ ﻣﺜﻞ ﭘﺮﺗﺎﺏ ﺳﮑﻪ )ﻳﺎ ﭼﺮﺍﻍ ﺭﺍﻫﻨﻤﺎﻳﻲ ﺩﺭ ﺑﺎﺯﯼ ﻋﺒﻮﺭ ﻣﺎﺷﻴﻦﻫﺎ( ﻋﻤﻞ ﻣﯽﮐﻨﺪ ﻭ ﺑﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺭﺍ ﭘﻴﺸﻨﻬﺎﺩ ﻣﯽﮐﻨﺪ ﻭ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻫﻢ ﺗﻤﺎﻳﻠﯽ ﺑﻪ ﺳﺮﭘﻴﭽﯽ ﺍﺯ ﺍﻳﻦ ﺍﺳﺘﺮﺍﺗﮋﯼ ﻧﺨﻮﺍﻫﻨﺪ ﺩﺍﺷﺖ .ﻣﺸﺨﺺ ﺍﺳﺖ ﺩﺭ ﺻﻮﺭﺕ ﻣﺤﺎﺳﺒﻪ ﺍﻣﻴﺪ ﺭﻳﺎﺿﯽ ﻣﻨﻔﻌﺖ ،ﺍﻳﻦ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻣﻨﺎﺳﺐﺗﺮ ﺍﺯ ﻧﻘﺎﻁ ﺗﻌﺎﺩﻝ ﻧﺶ ﻋﻤﻞ ﺧﻮﺍﻫﺪ ﻧﻤﻮﺩ .ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﭘﻨﺠﻢ ،ﺟﻤﻊ ﻣﻨﻔﻌﺖﻫﺎﯼ ﻣﻮﺭﺩ ﺍﻧﺘﻈﺎﺭ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺭﺍ ﺑﻴﺸﻴﻨﻪ ﻣﯽﮐﻨﺪ ﮐﻪ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺑﻴﺸﻴﻨﻪﺳﺎﺯﯼ ﺧﻄﯽ ١٧ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺳﺖ. ٣ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﮐﻪ ﻣﯽﺗﻮﺍﻥ ﺑﻪ ﺁﻧﻬﺎ ﺑﺎﺯﯼﻫﺎﯼ ﭘﺮﺍﮐﻨﺪﻩ ١٨ﻧﻴﺰ ﺍﻃﻼﻕ ﮐﺮﺩ ،ﺑﺎﺯﯼﻫﺎﻳﻲ ﻫﺴﺘﻨﺪ ﮐﻪ ﺩﺭ ﺁﻥ ﺑﻌﻀﯽ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﻣﻨﻔﻌﺖﻫﺎ ﺑﻪ ﺻﻮﺭﺕ ﺻﺮﻳﺢ ﺩﺍﺩﻩ ﻣﯽﺷﻮﺩ ﻭ ﺳﺎﻳﺮ ﻣﻮﺍﺭﺩ ﺻﻔﺮ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﻣﯽﺷﻮﺩ )ﺷﺒﻴﻪ ﺑﻪ ﻳﮏ ﻣﺎﺗﺮﻳﺲ ﭘﺮﺍﮐﻨﺪﻩ(. ﺣﺎﻝ ﺍﮔﺮ ﺑﺨﻮﺍﻫﻴﻢ ﻳﮏ ﺑﺎﺯﯼ ﻓﺸﺮﺩﻩ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺭﺳﻤﯽ ﺗﻌﺮﻳﻒ ﻧﻤﺎﻳﻴﻢ ،ﺑﺎﻳﺪ ﮔﻔﺖ :ﻳﮏ ﺑﺎﺯﯼ ﻓﺸﺮﺩﻩ )G = (I, T, U ﻣﺎﻧﻨﺪ ﺳﺎﻳﺮ ﻣﺴﺎﻳﻞ ﻣﺤﺎﺳﺒﺎﺗﯽ ﺑﺎ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻭﺭﻭﺩﯼﻫﺎ ) (Iﺗﻌﺮﻳﻒ ﻣﯽﺷﻮﺩ T .ﻭ Uﻫﻢ ﺩﻭ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺎ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﻫﺴﺘﻨﺪ .ﺑﺎﺯﺍﯼ ﻫﺮ T(z) ، z ∈ Iﻳﮏ ﻧﻮﻉ ١٩ﺑﺮﻣﯽﮔﺮﺩﺍﻧﺪ ﮐﻪ ﺑﺮﺍﯼ nﺑﺎﺯﻳﮑﻦ ،ﻳﮏ nﺗﺎﻳﻲ ﻣﺮﺗﺐ ) (t1 , t 2 , ..., t nﺭﺍ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ ﮐﻪ ﻧﺸﺎﻥﺩﻫﻨﺪﻩ ﻣﺠﻤﻮﻋﻪ ﺍﺳﺘﺮﺍﺗﮋﯼﻫﺎﯼ ﻣﻤﮑﻦ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺳﺖ .ﺩﺭ ﺻﻮﺭﺗﯽ ﮐﻪ nﻭ t pﻫﺎ ﻧﺴﺒﺖ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﺑﺎ zﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ ،ﮔﻔﺘﻪ ﻣﯽﺷﻮﺩ ﺑﺎﺯﯼ ﺩﺍﺭﺍﯼ ﻧﻮﻉ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﺍﺳﺖ .ﺗﺎﺑﻊ )U(z, p, s ﻣﻘﺪﺍﺭ ﻣﻨﻔﻌﺖ ﺑﺎﺯﻳﮑﻦ pﺭﺍ ﺑﺎﺯﺍﯼ ﻭﺭﻭﺩﯼ zﻭ ﺑﺎ ﺍﻧﺠﺎﻡ ﺍﺳﺘﺮﺍﺗﮋﯼ ( s = (s1 , s 2 , ..., s n ) ) sﺗﻮﺳﻂ ﺑﺎﺯﻳﮑﻨﺎﻥ ،ﻧﺸﺎﻥ ﻣﯽﺩﻫﺪ. ﺩﺭ ﺍﻳﻨﺠﺎ ﭼﻨﺪ ﻣﺜﺎﻝ ﺍﺯ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﺍﺭﺍﺋﻪ ﺧﻮﺍﻫﺪ ﺷﺪ .ﺑﺎﺯﯼﻫﺎﯼ ﻣﺘﻘﺎﺭﻥ ﺍﻭﻟﻴﻦ ﺩﺳﺘﻪ ﺍﺯ ﺍﻳﻦ ﺑﺎﺯﯼﻫﺎ ﻫﺴﺘﻨﺪ ﮐﻪ ﻧﺨﺴﺘﻴﻦ ﺑﺎﺭ ﺗﻮﺳﻂ ﻧﺶ ﻭ ﻓﻦ ﻧﻴﻮﻣﺎﻥ ﻣﻮﺭﺩ ﺑﺮﺭﺳﯽ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪﺍﻧﺪ ] .[۲ﺩﺭ ﺍﻳﻦ ﺩﺳﺘﻪ ،ﺑﺎﺯﻳﮑﻨﺎﻥ ﺷﺒﻴﻪ ﺑﻪ ﻫﻢ ﻭ ﻏﻴﺮ ﻗﺎﺑﻞ ﺗﺸﺨﻴﺺﺍﻧﺪ ﻭ ﻣﻨﻔﻌﺖ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﻭﺍﺑﺴﺘﻪ ﺑﻪ ﺍﻧﺘﺨﺎﺏ ﺍﻭ ﻭ ﺗﻌﺪﺍﺩ ﺍﻧﺘﺨﺎﺏﻫﺎﻳﯽ ﺩﺍﺭﺩ ﮐﻪ ﺳﺎﻳﺮ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺯ ﺍﺳﺘﺮﺍﺗﮋﯼﻫﺎﯼ ﻣﺘﻔﺎﻭﺕ ﺍﻧﺠﺎﻡ ﺩﺍﺩﻩﺍﻧﺪ .ﺩﺳﺘﻪ ﺑﻌﺪﯼ ،ﺑﺎﺯﯼﻫﺎﯼ ﺑﯽﻧﺎﻡ ﻫﺴﺘﻨﺪ ﮐﻪ ﻳﮏ ﺗﻌﻤﻴﻢ ﺑﺮﺍﯼ ﺑﺎﺯﯼﻫﺎﯼ ﻣﺘﻘﺎﺭﻥ ﻣﺤﺴﻮﺏ ﻣﯽﺷﻮﻧﺪ ﮐﻪ ﺩﺭ ﺁﻥ ،ﺗﺎﺑﻊ ﻣﻨﻔﻌﺖ ﺧﺎﺹ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺗﻌﺮﻳﻒ ﻣﯽﺷﻮﺩ .ﺩﺳﺘﻪ ﺳﻮﻡ ،ﺑﺎﺯﯼﻫﺎﯼ ﮔﺮﺍﻓﻴﮑﯽ ﻫﺴﺘﻨﺪ ﮐﻪ ﺩﺭ ﺁﻥ ﻳﮏ ﺷﺒﮑﻪ ﻣﺘﺼﻞ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺩﺍﺭﻳﻢ ﻭ ﻣﻨﻔﻌﺖ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺑﻪ ﺍﻧﺘﺨﺎﺏ ﺧﻮﺩ ﻭ ﻫﻤﺴﺎﻳﮕﺎﻧﺶ ﻭﺍﺑﺴﺘﻪ ﺍﺳﺖ .ﺑﺎﺯﯼﻫﺎﯼ ﭼﻨﺪ ﻣﺎﺗﺮﻳﺴﯽ ﺩﺳﺘﻪ ﺑﻌﺪﯼ ﺍﺯ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﻫﺴﺘﻨﺪ ﮐﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﻳﮏ ﺑﺎﺯﯼ ﺩﻭ ﻧﻔﺮﻩ ﺑﺎ ﺳﺎﻳﺮ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﻧﺠﺎﻡ ﻣﯽﺩﻫﺪ ﻭ ﻣﻨﻔﻌﺖ ﺑﺎﺯﻳﮑﻦ ﺑﺮﺍﺑﺮ ﻣﻨﻔﻌﺖ ﻣﺠﻤﻮﻉ ﺑﺎﺯﯼﻫﺎﯼ ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﺧﻮﺍﻫﺪ ﺑﻮﺩ .ﺑﺎﺯﯼﻫﺎﯼ ﺩﻳﮕﺮﯼ ﻧﻈﻴﺮ ﺑﺎﺯﻱﻫﺎﯼ ﺍﺑﺮﮔﺮﺍﻓﻴﮑﯽ،٢٠ ﺑﺎﺯﯼﻫﺎﯼ ﺍﺯﺩﺣﺎﻡ ٢١ﻭ ﺑﺎﺯﯼﻫﺎﯼ ﺯﻣﺎﻥﺑﻨﺪﯼ ﻣﺜﺎﻝﻫﺎﯼ ﺩﻳﮕﺮﯼ ﺍﺯ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﻫﺴﺘﻨﺪ. ٤ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﺑﺘﺪﺍﻳﻲ ﭘﻴﺪﺍ ﻧﻤﻮﺩﻥ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺭﻭﯼ ﺩﻭﮔﺎﻥ ) (Dﺍﺯ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﻋﻤﻞ ﻣﯽﮐﻨﺪ ﮐﻪ ﺷﺎﻣﻞ ﺗﻌﺪﺍﺩ ﺯﻳﺎﺩﯼ ﻣﺘﻐﻴﺮ ﺑﺎ ﺩﺭﺟﻪ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﻭ ﺗﻌﺪﺍﺩ ﺯﻳﺎﺩﯼ ﻣﺤﺪﻭﺩﻳﺖ ﺑﺎ ﺩﺭﺟﻪ ﻧﻤﺎﻳﻲ ﺍﺳﺖ .ﺑﺎ ﻭﺟﻮﺩ ﺍﻳﻨﮑﻪ ﺩﺭ ﺍﺛﺒﺎﺕ ﻭﺟﻮﺩ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﻧﺘﻴﺠﻪﮔﻴﺮﯼ ﻣﯽﺷﻮﺩ ﮐﻪ ﺣﻞ ) (Dﻧﺎﻣﻤﮑﻦ ﺍﺳﺖ ،ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﻟﻴﭙﺴﻮﻳﺪ ] [۵ﺭﻭﯼ ﺁﻥ ﺍﻋﻤﺎﻝ ﻣﯽﺷﻮﺩ .ﺣﺎﻝ ﺍﺯ ﻣﺤﺎﺳﺒﺎﺕ ﺯﻧﺠﻴﺮﻩ ﻣﺎﺭﮐﻮﻑ ﺩﺭ ﻫﺮ ﻣﺮﺣﻠﻪ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﻟﻴﭙﺴﻮﻳﺪ ﺍﺳﺘﻔﺎﺩﻩ ﻣﯽﺷﻮﺩ ﺗﺎ ﻳﮏ ﺗﺮﮐﻴﺐ ﻣﺤﺪﺏ ﺍﺯ ﻣﺤﺪﻭﺩﻳﺖﻫﺎﯼ ) (Dﮐﻪ ﻣﺘﻨﺎﻗﺾ ﻫﺴﺘﻨﺪ ،ﭘﻴﺪﺍ ﺷﻮﺩ .ﺩﺭ ﭘﺎﻳﺎﻥ ﺍﻟﮕﻮﺭﻳﺘﻢ ،ﻳﮏ ﺗﻌﺪﺍﺩ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺍﺯ ﺍﻳﻦ ﺗﺮﮐﻴﺐﻫﺎ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ ﮐﻪ ﺣﻞﺷﺎﻥ ﻧﺎﻣﻤﮑﻦ ﺍﺳﺖ ﻭ ﺁﻧﻬﺎ ﺭﺍ ) (D′ﻣﯽﻧﺎﻣﻴﻢ .ﺣﻞ ﮐﺮﺩﻥ ﺩﻭﮔﺎﻥ ﺍﻳﻦ ﺑﺮﻧﺎﻣﻪ ﺧﻄﯽ ﺟﺪﻳﺪ )ﺗﺤﺖ ﻋﻨﻮﺍﻥ ) ،( (P ′ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ "ﺗﺮﮐﻴﺐ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺍﺯ ﺣﺎﺻﻠﻀﺮﺏﻫﺎ" ٢٢ﺑﺪﺳﺖ ﻣﯽﺩﻫﺪ. ﺍﻟﺒﺘﻪ ﺑﺮﺍﯼ ﺣﻞ ﮐﺮﺩﻥ ، P′ﺍﺣﺘﻴﺎﺝ ﺑﻪ ﻳﮏ ﺗﮑﻨﻴﮏ ﺧﺎﺹ ﻣﺴﺎﻟﻪ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﺑﺮﺍﯼ ﺗﻤﺎﻣﯽ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﭼﻨﻴﻦ ﺗﮑﻨﻴﮏﻫﺎﻳﯽ ﮐﻪ ﺩﺭ ﺯﻣﺎﻥ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﻗﺎﺑﻞ ﺍﻋﻤﺎﻝ ﻫﺴﺘﻨﺪ ،ﻭﺟﻮﺩ ﺩﺍﺭﺩ ،ﻣﺜﻼ ﻣﯽﺗﻮﺍﻥ ﺍﺯ ﺗﮑﻨﻴﮏ ﺧﻄﯽ ﺑﻮﺩﻥ ﺍﻣﻴﺪ ٢٣ﺩﺭ ﺑﺎﺯﯼﻫﺎﯼ ﭼﻨﺪﻣﺎﺗﺮﻳﺴﯽ ﻭ ﺍﺑﺮﮔﺮﺍﻓﻴﮑﯽ ،ﺍﺯ ﺗﮑﻨﻴﮏ ﺑﺮﻧﺎﻣﻪﺳﺎﺯﯼ ﭘﻮﻳﺎ ﺩﺭ ﺑﺎﺯﯼﻫﺎﯼ ﺯﻣﺎﻥﺑﻨﺪﯼ ﻭ ﺍﺯﺩﺣﺎﻡ ﻳﺎ ﺍﺯ ﺗﮑﻨﻴﮏ ﺗﻌﺮﻳﻒ ﺍﻣﻴﺪ ﺩﺭ ﺩﺍﻣﻨﻪﻫﺎﯼ ﮐﻮﭼﮏ ﺑﺮﺍﯼ ﺑﺎﺯﯼﻫﺎﯼ ﮔﺮﺍﻓﻴﮑﯽ ﻭ ﺍﺑﺮﮔﺮﺍﻓﻴﮑﯽ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ .ﺩﺭ ﺍﺩﺍﻣﻪ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺎ ﺟﺰﺋﻴﺎﺕ ﺑﻴﺸﺘﺮﯼ ﻣﻮﺭﺩ ﺑﺮﺭﺳﯽ ﻗﺮﺍﺭ ﺧﻮﺍﻫﺪ ﮔﺮﻓﺖ: ١,٤ﺍﺛﺒﺎﺕ ﻭﺟﻮﺩ ﺩﺭ ﺍﻳﻨﺠﺎ ،ﺍﺯ ﺗﻐﻴﻴﺮﺍﺗﯽ ﮐﻪ ﺩﺭ ﺍﺛﺒﺎﺕ ﻭﺟﻮﺩ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ] [۳ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ ،ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ. ﻗﻀﻴﻪ :۱ﻫﺮ ﺑﺎﺯﯼ ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺩﺍﺭﺩ. ﺍﺛﺒﺎﺕ :ﺑﺮﻧﺎﻣﻪ ﺧﻄﯽ ﺯﻳﺮ ﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ: ﻣﺤﺪﻭﺩﻳﺖﻫﺎﯼ ﺑﻴﺎﻥ ﺷﺪﻩ ﺩﺭ ) (Pﻫﻤﺎﻥ ﻣﺤﺪﻭﺩﻳﺖﻫﺎﯼ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺍﺳﺖ ﮐﻪ ﺑﺮﺍﯼ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﻭ ﻫﺮ ﺯﻭﺝ ﺍﺳﺘﺮﺍﺗﮋﯼﻫﺎ ﺑﺮﻗﺮﺍﺭ ﺍﺳﺖ .ﺑﺮﻧﺎﻣﻪ ) (Pﻳﺎ ﺧﻴﻠﯽ ﺳﺎﺩﻩ ﺍﺳﺖ )ﺑﺎ ﻧﻘﻄﻪ ﺑﻴﺸﻴﻨﻪ (۰ﻭ ﻳﺎ ﻧﺎﻣﺤﺪﻭﺩ ﺍﺳﺖ ﮐﻪ ﺍﻳﻦ ﺣﺎﻟﺖ ﺩﻗﻴﻘﺎ ﻭﻗﺘﯽ ﺍﺗﻔﺎﻕ ﻣﯽﺍﻓﺘﺪ ﮐﻪ ﺑﺎﺯﯼ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ،ﻃﺒﻖ ﺩﻭﮔﺎﻧﮕﯽ ،ﺑﺮﺍﯼ ﺍﺛﺒﺎﺕ ﻗﻀﻴﻪ ﮐﺎﻓﯽ ﺍﺳﺖ ﻧﺸﺎﻥ ﺩﻫﻴﻢ ﮐﻪ ﺩﻭﮔﺎﻥ )(P ﻫﻤﻴﺸﻪ ﻧﺎﻣﻤﮑﻦ ﺍﺳﺖ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﻟﻢ ﺯﻳﺮ ﻣﻄﺮﺡ ﻣﯽﺷﻮﺩ: ﻟﻢ :۱ﺑﺎﺯﺍﯼ ﻫﺮ ، y ≥ 0ﻳﮏ ﺗﻮﺯﻳﻊ ﺣﺎﺻﻠﻀﺮﺑﯽ xﻭﺟﻮﺩ ﺩﺍﺭﺩ ﺑﻪ ﻧﺤﻮﯼ ﮐﻪ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ. xU T y = 0 : ﺑﺎ ﺩﻗﺖ ﻣﯽﺗﻮﺍﻥ ﻓﻬﻤﻴﺪ ﮐﻪ ، xU T yﻳﮏ ﺗﺮﮐﻴﺐ ﻣﺤﺪﺏ ﺍﺯ ﻣﺤﺪﻭﺩﻳﺖﻫﺎﯼ ﺳﻤﺖ ﭼﭗ ﺑﺮﻧﺎﻣﻪ ) (Dﺍﺳﺖ ﻭ ﺑﻨﺎﺑﺮﺍﻳﻦ ﻫﺮ yﻣﻤﮑﻦ ،ﺑﺎﻳﺪ ﺩﺍﺭﺍﯼ ﻣﻘﺪﺍﺭﯼ ﻣﻨﻔﯽ ﺑﺎﺷﺪ ،ﭘﺲ ﻣﯽﺗﻮﺍﻥ ﮔﻔﺖ ﮐﻪ ﺣﻞ ) (Dﻧﺎﻣﻤﮑﻦ ﺧﻮﺍﻫﺪ ﺑﻮﺩ ،ﺯﻳﺮﺍ ﻳﮑﯽ ﺍﺯ ﻣﺤﺪﻭﺩﻳﺖﻫﺎﯼ ﺁﻥ ﺑﻪ ﻣﺜﺒﺖ ﺑﻮﺩﻥ yﺍﺷﺎﺭﻩ ﺩﺍﺭﺩ .ﺍﻟﺒﺘﻪ ﺑﺮﺍﯼ ﺍﺛﺒﺎﺕ ﻟﻢ ۱ﺍﺯ ﻣﺤﺎﺳﺒﺎﺕ ﻭﺿﻌﻴﺖ ﭘﺎﻳﺪﺍﺭ ﺩﺭ ﺯﻧﺠﻴﺮﻩ ﻣﺎﺭﮐﻮﻑ ﺍﺳﺘﻔﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ ﮐﻪ ﺑﺪﻟﻴﻞ ﻣﺤﺪﻭﺩﻳﺖ ﻓﻀﺎ ﺍﺯ ﺑﻴﺎﻥ ﺁﻥ ﺻﺮﻓﻨﻈﺮ ﻣﯽﺷﻮﺩ )ﺑﻪ ] [۱ﻣﺮﺍﺟﻌﻪ ﺷﻮﺩ(. ٢,٤ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﻟﻴﭙﺴﻮﻳﺪ ﺣﺎﻝ ﺑﺎﻳﺪ ﺍﻳﻦ ﺍﺛﺒﺎﺕ ﻭﺟﻮﺩ ﺭﺍ ﺑﻪ ﺳﻤﺖ ﻳﮏ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺎ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﻣﺘﻤﺎﻳﻞ ﻧﻤﻮﺩ .ﺍﻳﺪﻩ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﻟﻴﭙﺴﻮﻳﺪ ﺑﺮ ﺩﻭﮔﺎﻥ ) (Dﮐﻪ ﻣﺸﺨﺺ ﺷﺪ ﻧﺎﻣﻤﮑﻦ ﺍﺳﺖ ،ﺍﻋﻤﺎﻝ ﺷﻮﺩ .ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺧﺼﻮﺻﻴﺎﺕ ) (Dﮐﻪ ﺩﺍﺭﺍﯼ ﺗﻌﺪﺍﺩ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﻣﺘﻐﻴﺮ ﻭ ﺗﻌﺪﺍﺩ ﻧﻤﺎﻳﻲ ﻣﺤﺪﻭﺩﻳﺖ ﺍﺳﺖ )ﺑﺮﻧﺎﻣﻪ ) (Pﺍﺯ ﺍﻳﻦ ﺟﻬﺖ ﺑﺮﻋﮑﺲ ) (Dﺍﺳﺖ( ،ﺍﻟﮕﻮﺭﻳﺘﻢ ﺍﻟﻴﭙﺴﻮﻳﺪ ﺑﺮﺍﯼ ﺍﻋﻤﺎﻝ ﺭﻭﯼ ) (Dﻣﻨﺎﺳﺐ ﺍﺳﺖ .ﺩﺭ ﻫﺮ ﻣﺮﺣﻠﻪ ،iﻳﮏ ﺭﺍﻩ ﺣﻞ ﮐﺎﻧﺪﻳﺪ yiﻭﺟﻮﺩ ﺩﺍﺭﺩ؛ ﺍﺯ ﻟﻢ ۱ﺍﺳﺘﻔﺎﺩﻩ ﻣﯽﺷﻮﺩ ﺗﺎ xiﯼ ﺑﺪﺳﺖ ﺁﻳﺪ ﮐﻪ ﻧﺎﻣﺴﺎﻭﯼ xiU T y ≤ − 1ﺭﺍ ﻧﻘﺾ ﮐﻨﺪ .ﭘﺲ ﺍﺯ ﺁﻥ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻭﺍﺭﺩ ﻣﺮﺣﻠﻪ ﺑﻌﺪﯼ ﻣﯽﺷﻮﺩ .ﭘﺲ ﺍﺯ ﺍﺗﻤﺎﻡ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺩﺭ ﮔﺎﻡ Lﺍﻡ ) Lﺑﻪ ﺻﻮﺭﺕ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﺍﺳﺖ( ،ﺗﻌﺪﺍﺩ Lﺗﻮﺯﻳﻊ ﺣﺎﺻﻠﻀﺮﺑﯽ x1 , x2 , ..., x Lﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﺑﺎﺯﺍﯼ i ≤ Lﻧﺎﻣﺴﺎﻭﯼ [xiU T ] y ≤ − 1ﺗﻮﺳﻂ yiﻧﻘﺾ ﻣﯽﺷﻮﺩ .ﺍﻳﻦ ﻧﺘﻴﺠﻪ ﺑﻪ ﺍﻳﻦ ﻣﻌﻨﯽ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﻧﺎﻣﺴﺎﻭﯼ X) ، [XU T ] y ≤ − 1ﻣﺎﺗﺮﻳﺴﯽ ﺍﺳﺖ ﮐﻪ ﺭﺩﻳﻒﻫﺎﯼ ﺁﻥ xiﻫﺎ ﻫﺴﺘﻨﺪ( ،ﺧﻮﺩ Xﻳﮏ ﺑﺮﻧﺎﻣﻪ ﺧﻄﯽ ﻧﺎﻣﻤﮑﻦ ﺍﺳﺖ. ﺑﺎﺗﻮﺟﻪ ﺑﻪ ﻧﺎﻣﻤﮑﻦ ﺑﻮﺩﻥ ﺑﺮﻧﺎﻣﻪ ،Xﻣﯽﺗﻮﺍﻥ ﻧﺘﻴﺠﻪ ﮔﺮﻓﺖ ﮐﻪ ﺩﻭﮔﺎﻥ ﺁﻥ ﻳﻌﻨﯽ ﺑﺮﻧﺎﻣﻪ [UX ] α ≥ 0 , α ≥ 0 T ﻧﺎﻣﺤﺪﻭﺩ ﺍﺳﺖ .ﭼﻨﻴﻦ ﺑﺮﺩﺍﺭ ﻏﻴﺮ ﺻﻔﺮ ، αﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﻣﺪﻧﻈﺮ ﺭﺍ ﻓﺮﺍﻫﻢ ﻣﯽﮐﻨﺪ ﮐﻪ ﺩﺭ ﻭﺍﻗﻊ ﻳﮏ ﺗﺮﮐﻴﺐ ﻣﺤﺪﺏ ﺍﺯ xiﻫﺎﻳﻲ ﺍﺳﺖ ﮐﻪ ) (Pﺭﺍ ﺍﺭﺿﺎ ﻣﯽﮐﻨﻨﺪ. ٣,٤ﺗﺮﮐﻴﺒﺎﺕ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﺍﺯ ﺣﺎﺻﻠﻀﺮﺏﻫﺎ ﺩﺭ ﺍﻳﻦ ﺯﻳﺮﺑﺨﺶ ،ﻧﺘﻴﺠﻪ ﺍﺻﻠﯽ ﺑﺨﺶ ﭼﻬﺎﺭﻡ ﺍﺭﺍﺋﻪ ﻣﯽﺷﻮﺩ ﮐﻪ ﻳﮏ ﻗﻀﻴﻪ ﺗﻘﻮﻳﺖ ﺷﺪﻩ ﺑﺮﺍﯼ ﻗﻀﻴﻪ ﻭﺟﻮﺩ )ﻗﻀﻴﻪ (۱ ﺍﺳﺖ .ﻧﺘﺎﻳﺞ ﺍﻟﮕﻮﺭﻳﺘﻤﯽ ﺁﻥ ﺩﺭ ﺑﺨﺶ ﺑﻌﺪ ﺍﺭﺍﺋﻪ ﺧﻮﺍﻫﺪ ﺷﺪ. ﻗﻀﻴﻪ :۲ﻫﺮ ﺑﺎﺯﯼ ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺩﺍﺭﺩ ﮐﻪ ﺣﺎﺻﻞ ﺗﺮﮐﻴﺐ ﻣﺤﺪﺏ ﺍﺯ ﺗﻮﺯﻳﻊﻫﺎﯼ ﺣﺎﺻﻠﻀﺮﺑﯽ ﺍﺳﺖ ﮐﻪ ﺗﻌﺪﺍﺩ ﺁﻥ ﺑﻪ ﺻﻮﺭﺕ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺍﺳﺖ. ﺑﺮﺍﯼ ﻣﺸﺎﻫﺪﻩ ﺍﺛﺒﺎﺕ ﺑﻪ ] [۲ ،۱ﺭﺟﻮﻉ ﺷﻮﺩ. ٥ﻣﺤﺎﺳﺒﻪ ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﻳﮏ ﺑﺎﺯﯼ ﻓﺸﺮﺩﻩ Gﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ G .ﺩﺍﺭﺍﯼ ﺧﺎﺻﻴﺖ ﺍﻣﻴﺪ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ٢٤ﺍﺳﺖ ،ﺍﮔﺮ ﻳﮏ ﺍﻟﮕﻮﺭﻳﺘﻢ εﺑﺎ ﭘﻴﭽﻴﺪﮔﯽ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﻭﺟﻮﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ ﮐﻪ ﺑﺎ ﺩﺍﺩﻥ p ≤ n ، z ∈ Iﻭ ﻳﮏ ﺗﻮﺯﻳﻊ ﺣﺎﺻﻠﻀﺮﺑﯽ } ، {x s : s ∈ Sﺑﺘﻮﺍﻧﺪ ﺩﺭ ﺯﻣﺎﻥ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﺍﻣﻴﺪ ﻣﻨﻔﻌﺖ u p sﺭﺍ ﺑﺎ ﺩﺍﺩﻥ ﺗﻮﺯﻳﻊ ﺣﺎﺻﻠﻀﺮﺑﯽ ﻣﻮﺭﺩ ﻧﻈﺮ ﻣﺤﺎﺳﺒﻪ ﮐﻨﺪ: ﻗﻀﻴﻪ :۳ﻓﺮﺽ ﮐﻨﻴﺪ Gﻳﮏ ﺑﺎﺯﯼ ﻓﺸﺮﺩﻩ ﺑﺎﺷﺪ ﮐﻪ ﺩﺍﺭﺍﯼ ﻧﻮﻉ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺑﺎﺷﺪ ﻭ ﺧﺎﺻﻴﺖ ﺍﻣﻴﺪ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ .ﺁﻧﮕﺎﻩ ﺑﺎﺯﯼ ﺩﺍﺭﺍﯼ ﻳﮏ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﺎ ﭘﻴﭽﻴﺪﮔﯽ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺧﻮﺍﻫﺪ ﺑﻮﺩ. ﺑﺮﺍﯼ ﻣﺸﺎﻫﺪﻩ ﺍﺛﺒﺎﺕ ﺑﻪ ] [۱ﺭﺟﻮﻉ ﺷﻮﺩ. ﻣﯽﺗﻮﺍﻥ ﻧﺸﺎﻥ ﺩﺍﺩ ﮐﻪ ﺗﻤﺎﻣﯽ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﮐﻪ ﻧﻮﻉ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺩﺍﺭﻧﺪ ،ﺩﺍﺭﺍﯼ ﺧﺎﺻﻴﺖ ﺍﻣﻴﺪ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﻫﺴﺘﻨﺪ ] .[۱ﺩﺭ ﺑﺨﺶ ﺑﻌﺪ ﺧﻮﺍﻫﻴﻢ ﺩﻳﺪ ﮐﻪ ﺑﻬﻴﻨﻪﺳﺎﺯﯼ ﺩﺭ ﻧﻘﺎﻁ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ،ﺩﺭ ﺑﺴﻴﺎﺭﯼ ﺍﺯ ﺍﻳﻦ ﺑﺎﺯﯼﻫﺎ ﻣﺴﺎﻟﻪﺍﯼ NP-hardﺍﺳﺖ. ٦ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﺩﺭ ﺑﺨﺶ ﻗﺒﻞ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪ ﮐﻪ ﭼﮕﻮﻧﻪ ﻣﯽﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﮐﺎﺭﺍ ﺑﻌﻀﯽ ﺍﺯ ﻧﻘﺎﻁ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺭﺍ ﺑﺮﺍﯼ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﺑﺪﺳﺖ ﺁﻭﺭﺩ .ﺣﺎﻝ ﻳﮏ ﺳﻮﺍﻝ ﻣﻬﻢﺗﺮ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺁﻳﺎ ﻣﯽﺗﻮﺍﻥ ﺩﺭ ﺯﻣﺎﻥ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ،ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﺭﺍ ﺑﺮﺍﯼ ﺍﻳﻦ ﺑﺎﺯﯼﻫﺎ ﺑﺪﺳﺖ ﺁﻭﺭﺩ ﻳﺎ ﺧﻴﺮ .ﺩﺭ ﺍﺩﺍﻣﻪ ﺍﻳﻦ ﻣﺴﺎﻟﻪ ﻣﻮﺭﺩ ﺑﺮﺭﺳﯽ ﻗﺮﺍﺭ ﺧﻮﺍﻫﺪ ﮔﺮﻓﺖ. ١,٦ﺗﻌﺮﻳﻒ ﻣﺴﺎﻟﻪ ﺣﺎﻝ ﺍﮔﺮ ﺑﺨﻮﺍﻫﻴﻢ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﻳﻢ ،ﺑﺎﻳﺪ ﺑﺘﻮﺍﻧﻴﻢ ﺟﻤﻊ ﻣﻨﻔﻌﺖﻫﺎﯼ ﻣﻮﺭﺩ ﺍﻧﺘﻈﺎﺭ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺭﺍ ﺑﻴﺸﻴﻨﻪ ﮐﻨﻴﻢ ،ﻳﻌﻨﯽ ﺑﺎﻳﺪ ﺑﻪ ﺑﺮﻧﺎﻣﻪ ﺧﻄﯽ ﺍﻭﻟﻴﻪ ) ،(Pﺭﺍﺑﻄﻪ ﻧﺸﺎﻥﺩﻫﻨﺪﻩ p us p ∑ ﺍﺳﺖ ﻭ ﻣﺤﺪﻭﺩﻳﺖ = 1 s ∑x s max ∑ u s xs s∈S ﺍﺿﺎﻓﻪ ﺷﻮﺩ ،ﮐﻪ ﺩﺭ ﺍﻳﻦ ﺭﺍﺑﻄﻪu s ، ﻫﻢ ﻭﺟﻮﺩ ﺩﺍﺭﺩ .ﻣﺤﺪﻭﺩﻳﺖ ﺟﺪﻳﺪ ﺑﺎﻋﺚ ﻣﯽﺷﻮﺩ ﻣﺘﻐﻴﺮ ﺟﺪﻳﺪ zﺩﺭ ﺩﻭﮔﺎﻥ ﻭﺍﺭﺩ ﺷﻮﺩ ﻭ ﻣﺤﺪﻭﺩﻳﺖ ﺟﺪﻳﺪ ﺯﻳﺮ ﺑﻪ ﺑﺮﻧﺎﻣﻪ ﺩﻭﮔﺎﻥ ﺍﺿﺎﻓﻪ ﺧﻮﺍﻫﺪ ﺷﺪ: )(1 ﺩﺭ ﺍﻳﻦ ﺭﺍﺑﻄﻪ U s ،ﻧﺸﺎﻥﻫﻨﺪﻩ ﺳﺘﻮﻥ ﻣﺎﺗﺮﻳﺲ Uﺍﺳﺖ ﮐﻪ ﻣﺘﻨﺎﻇﺮ ﺑﺎ ﺍﺳﺘﺮﺍﺗﮋﯼ sﺍﺳﺖ .ﺩﺭ ﺑﺮﻧﺎﻣﻪ ﺧﻄﯽ ﺍﻭﻟﻴﻪ ﺗﻨﻬﺎ ﮐﺎﻓﯽ ﺑﻮﺩ ﺑﺮﺩﺍﺭ xﻏﻴﺮ ﺻﻔﺮ ﻭ ﻧﺎﻣﻨﻔﯽ ﺑﺪﺳﺖ ﺁﻳﺪ ﮐﻪ xU T y = 0ﺭﺍ ﺍﺭﺿﺎ ﻧﻤﺎﻳﺪ .ﺍﻣﺎ ﺩﺭ ﺍﻳﻦ ﺑﺮﻧﺎﻣﻪ ﺟﺪﻳﺪ ،ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺳﻤﺖ ﺭﺍﺳﺖ ﺭﺍﺑﻄﻪ ) (۱ﮐﻪ ﺩﻭ ﻣﺘﻐﻴﺮ yﻭ zﻭﺟﻮﺩ ﺩﺍﺭﻧﺪ ،ﺑﺮﺩﺍﺭ xﻣﯽﺗﻮﺍﻧﺪ ﻣﻨﻔﯽ ﻳﺎ ﻣﺜﺒﺖ ﺑﺎﺷﺪ ﻭ ﭼﻨﻴﻦ xﯼ ﺳﻮﺩﻣﻨﺪ ﻧﺨﻮﺍﻫﺪ ﺑﻮﺩ .ﺍﻳﻦ ﺑﺎﻋﺚ ﻣﯽﺷﻮﺩ ﺑﺮﺍﯼ ﺑﺴﻴﺎﺭﯼ ﺍﺯ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ،ﻣﺴﺎﻟﻪ NP-hardﺑﺎﺷﺪ. ﺍﻟﺒﺘﻪ ﺩﺭ ﻣﺜﺎﻝﻫﺎﯼ ﻣﻬﻤﯽ ﻧﻈﻴﺮ ﺑﻌﻀﯽ ﺍﺯ ﺑﺎﺯﯼﻫﺎﯼ ﮔﺮﺍﻓﻴﮑﯽ ﻭ ﺑﺎﺯﯼﻫﺎﯼ ﻣﺘﻘﺎﺭﻥ ،ﻣﺤﺪﻭﺩﻳﺖﻫﺎﯼ ﻧﻤﺎﻳﻲ ﺭﺍ ﻣﯽﺗﻮﺍﻥ ﺑﻪ ﺗﻌﺪﺍﺩ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺍﺯ "ﮐﻼﺱﻫﺎﯼ ﻣﺴﺎﻭﯼ" ٢٥ﮐﻪ ﺧﺎﺹ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺳﺖ ،ﺗﺒﺪﻳﻞ ﻧﻤﻮﺩ .ﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ﻣﯽﺗﻮﺍﻥ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﺭﺍ ﺩﺭ ﺯﻣﺎﻥ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺑﺪﺳﺖ ﺁﻭﺭﺩ .ﺩﺭ ﺍﺩﺍﻣﻪ ﺑﻪ ﺫﮐﺮ ﺩﻭ ﻗﻀﻴﻪ ﻣﻬﻢ ﺩﺭ ﻣﻮﺭﺩ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﺑﺴﻨﺪﻩ ﺧﻮﺍﻫﻴﻢ ﮐﺮﺩ. ﻗﻀﻴﻪ :۴ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﺑﺮﺍﯼ ﺑﺎﺯﯼﻫﺎﯼ ﺑﯽﻧﺎﻡ ﻭ ﺑﺎﺯﯼﻫﺎﯼ ﮔﺮﺍﻓﻴﮑﯽ ﺑﺎ ﻋﺮﺽ ﺩﺭﺧﺘﯽ ﻣﺤﺪﻭﺩ ،٢٦ﺩﺭ ﺯﻣﺎﻥ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﻗﺎﺑﻞ ﻣﺤﺎﺳﺒﻪ ﺍﺳﺖ ].[۱ ﻗﻀﻴﻪ :۵ﺩﺭ ﻣﻮﺭﺩ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﻣﻘﺎﺑﻞ ،ﻣﺤﺎﺳﺒﻪ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﺩﺍﺭﺍﯼ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ NP-hardﺍﺳﺖ: ﺑﺎﺯﯼﻫﺎﯼ ﮔﺮﺍﻓﻴﮑﯽ ﺩﻭﻗﺴﻤﺘﯽ ،٢٧ﭼﻨﺪ ﻣﺎﺗﺮﻳﺴﯽ ،ﺍﺑﺮﮔﺮﺍﻓﻴﮑﯽ ،ﺍﺯﺩﺣﺎﻡ ،ﺗﺎﺛﻴﺮ ﻣﺤﻠﯽ ،٢٨ﻃﺮﺍﺣﯽ ﺷﺒﮑﻪ ﻭ ﺑﺎﺯﯼﻫﺎﯼ ﺯﻣﺎﻥﺑﻨﺪﯼ ].[۱ ٧ﻧﺘﻴﺠﻪ ﮔﻴﺮﯼ ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ،ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﻣﻮﺭﺩ ﺑﺮﺭﺳﯽ ﻗﺮﺍﺭ ﮔﺮﻓﺖ ﻭ ﻣﺸﺨﺺ ﺷﺪ ﮐﻪ ﺍﻳﻦ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻳﮏ ﻣﻔﻬﻮﻡ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﺑﺮﺍﯼ ﻧﺸﺎﻥ ﺩﺍﺩﻥ ﻋﻘﻼﻳﻲ ﺑﻮﺩﻥ ﻳﮏ ﺑﺎﺯﯼ ﺍﺳﺖ ﻭ ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩ ﻳﮏ ﺗﻮﺯﻳﻊ ﻋﻤﻮﻣﯽ ﺩﺭ ﻧﻤﺎﻳﻪﻫﺎﯼ ﺍﺳﺘﺮﺍﺗﮋﯼ ﺍﺳﺖ .ﺩﺭ ﺍﺩﺍﻣﻪ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ ﭘﻴﺪﺍ ﻧﻤﻮﺩﻥ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺩﺭ ﻣﻮﺭﺩ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﻧﻈﻴﺮ ﺑﺎﺯﯼﻫﺎﯼ ﮔﺮﺍﻓﻴﮑﯽ ،ﭼﻨﺪ ﻣﺎﺗﺮﻳﺴﯽ ﻣﻮﺭﺩ ﺑﺮﺭﺳﯽ ﻗﺮﺍﺭ ﮔﺮﻓﺖ ﻭ ﺍﺛﺒﺎﺕ ﺷﺪ ﮐﻪ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ ﺩﺭ ﺍﻳﻦ ﺑﺎﺯﯼﻫﺎ ﺑﻪ ﺻﻮﺭﺕ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺍﺳﺖ. ﺳﭙﺲ ﻣﺴﺎﻟﻪ ﻳﺎﻓﺘﻦ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻫﻤﺒﺴﺘﻪ ﺑﻬﻴﻨﻪ ﺑﺮﺍﯼ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ﻣﻮﺭﺩ ﺑﺮﺭﺳﯽ ﻗﺮﺍﺭ ﮔﺮﻓﺖ ﻭ ﭼﻨﺪ ﻗﻀﻴﻪ ﺑﻴﺎﻥ ﻭ ﻣﺸﺨﺺ ﺷﺪ ،ﺑﻪ ﺟﺰ ﺩﺭ ﺑﺎﺯﯼﻫﺎﯼ ﮔﺮﺍﻓﻴﮑﯽ ﺑﺎ ﻋﺮﺽ ﺩﺭﺧﺘﯽ ﻣﺤﺪﻭﺩ ﻭ ﺑﺎﺯﯼﻫﺎﯼ ﺑﯽﻧﺎﻡ ﮐﻪ ﭘﻴﭽﻴﺪﮔﯽ ﭼﻨﺪ ﺟﻤﻠﻪﺍﯼ ﺩﺍﺭﻧﺪ ،ﺩﺭ ﺳﺎﻳﺮ ﺑﺎﺯﯼﻫﺎﯼ ﻓﺸﺮﺩﻩ ،ﺍﻳﻦ ﻣﺴﺎﻟﻪ ﺩﺍﺭﺍﯼ ﭘﻴﭽﻴﺪﮔﯽ ﺯﻣﺎﻧﯽ NP-hardﺍﺳﺖ. ﻣﺮﺍﺟﻊ 1. C. H. Papadimitriou, T. Roughgarden: Computing Correlated Equilibria in Multi-player )Games. Journal of ACM, vol. 55(3), (2008 2. C. H. Papadimitriou: Computing Correlated Equilibria in Multi-player Games. STOC 2005: )49-56 (2005 3. S. Hart , D. Schmeidler: Existence of Correlated Equilibria, Mathematics of Operations )Research, vol. 14 (1), pp.18-25, (1989 4. R. J. Aumann: Subjectivity and Correlation in Randomized Strategies. Journal of )Mathematical Economics, vol. 1(1), pp. 67—96 (1974 5. S. Arora: The Ellipsoid Algorithm for Linear Programming. Technical report, Princeton )University, (2005 ﺯﻳﺮﻧﻮﻳﺲﻫﺎ 1 Correlated Equilibria Multi-Player Games 3 Strategy Profiles 4 Polynomial-Time 5 Succinct 6 Polymatrix Games 7 Anonymous Games 8 Open Problems 9 Mixed Nash Equilibrium 10 Linear Programming 11 Linear Programming Duality 12 Ellipsoid Algorithm 13 Markov Chain Steady State 14 Signal 15 Utility 16 Chicken Game 17 Linear Maximization 18 Sparse Games 19 Type 20 Hyper-Graphical Games 21 Congestion Games 22 Polynomial Mixtures of Products 23 Linearity of Expectation 24 Polynomial Expectation Property 25 Equivalet Classes 26 Bounded Tree-Width 27 Bipartite 28 Local Effect Games 2
© Copyright 2025 Paperzz