CHAPTER 7 FREE CONVECTION 7.1 Introduction • Applications: Solar collectors Pipes Ducts Electronic packages Walls and windows 7.2 Features and Parameters of Free Convection (1) Driving Force: Natural 1 Requirements: (i) Acceleration field, (ii) Density gradient Temperature gradient → density gradient (2) Governing Parameters: Two: (i) Grashof number GrL GrL = β g(Ts − T∞ )L3 ν 2 (7.1) β = coefficient of thermal expansion (compressibility), a property β= 1 T for ideal gas (2.21) 2 (ii) Prandtl number Pr Pr = c pµ k Rayleigh number Ra L β g(Ts − T∞ ) L3 β g(Ts − T∞ ) L3 Ra L = GrL Pr = Pr = 2 ν να (7.2) (3) Boundary Layer: laminar, turbulent or mixed Criterion: Ra x > 104 (4) Transition: Laminar to Turbulent Flow Criterion for vertical plates: Transition Rayleigh number 3 Rax t ≈ 109 (5) External vs. Enclosure free convection: (i) External: over: Vertical surfaces Inclined surfaces Horizontal cylinders Spheres (ii) Enclosure: in: 4 Rectangular confines Concentric cylinders Concentric spheres (6) Analytic Solution Requires simultaneous integration of continuity, momentum and energy 7.3 Governing Equations Approximations: (1) Density is constant except in gravity forces 5 (2) Boussinesq approximation: relate density change to temperature change (3) Negligible dissipation Assume: Steady state Two-dimensional Laminar Continuity: ∂u ∂v + =0 ∂x ∂y (7.1) x-momentum: 6 ∂u ∂u 1 ∂ ∂ 2u ∂ 2u u +v = β g (T − T∞ ) − ( p − p∞ ) + v ( 2 + 2 ) ∂x ∂y ρ ∞ ∂x ∂x ∂y (7.2) y-momentum: 1 ∂ ∂v ∂v ∂ 2v ∂ 2v u +v =− ( p − p∞ ) + v ( 2 + 2 ) ∂x ∂y ρ ∞ ∂y ∂x ∂y (7.3) Energy: ∂ 2T ∂ 2T ∂T ∂T u +v = α 2 + 2 ∂x ∂y ∂y ∂x (7.4) NOTE: (1) Gravity points in the negative x-direction (2) Flow and temperature fields are coupled 7 7.3.1 Boundary Layer Equations • Velocity and temperature boundary layers • Apply approximation used in forced convection y-component of the Navier-Stokes equations reduces to ∂ ( p − p∞ ) = 0 ∂y (a) External flow: Neglect ambient pressure variation in x ∂ ( p − p∞ ) = 0 ∂x (b) Furthermore, for boundary layer flow 8 ∂ 2u ∂x 2 << ∂ 2u ∂y 2 (c) x-momentum: ∂u ∂u ∂ 2u u +v = + βg (T − T∞ ) + v 2 ∂x ∂y ∂y (7.5) Neglect axial conduction ∂ 2T ∂x 2 << ∂ 2T ∂y 2 (d) Energy: (7.4) becomes ∂T ∂T ∂ 2T u +v =α 2 ∂x ∂y ∂y (7.6) 9 7.4 Laminar Free Convection over a Vertical Plate: Uniform Surface Temperature • Vertical plate • Uniform temperature Ts • Infinite fluid at temperature T∞ Determine: velocity and temperature distribution 7.4.1 Assumptions (1) Steady state (2) Laminar flow (3) Two-dimensional 10 (1) (2) (3) (4) (5) (9) Constant properties Boussinesq approximation Uniform surface temperature Uniform ambient temperature Vertical plate Negligible dissipation 7.4.2 Governing Equations Continuity: ∂u ∂v + =0 ∂x ∂y (7.1) x-momentum: 11 ∂u ∂u ∂ 2u u +v = + βg (T − T ∞ ) + v ∂x ∂y ∂y 2 (7.5) Energy: ∂θ ∂θ ∂ 2θ u +v =α 2 ∂x ∂y ∂y (7.7) where θ is a dimensionless temperature defined as T − T∞ θ= Ts − T∞ (7.8) 7.4.3 Boundary Conditions Velocity: (1) u( x ,0) = 0 (2) v ( x ,0) = 0 12 (3) u( x , ∞ ) = 0 (4) u(0, y ) = 0 Temperature: (5) θ ( x ,0) = 1 (6) θ ( x , ∞ ) = 0 (7) θ ( 0, y ) = 0 7.4.4 Similarity Transformation • Transform three PDE to two ODE • Introduce similarity variable η ( x , y ) y η( x, y) = C x 1/ 4 (7.8) 13 βg (Ts − T∞ ) C= 4v 2 1/ 4 (7.9) (7.9) into (7.8)7 Gr η= x 4 1/ 4 y x (7.10) Local Grashof number: Grx = β g(Ts − T∞ )x 3 ν 2 (7.11) Let 0 ( x , y ) = 0 (η ) (7.12) Stream function ψ satisfies continuity 14 u= ∂ψ ∂y (7.14) Using Blasius solution as a guide, ψ for this problem is 1 4 Grx ψ == 4v ξ (η ) 4 (7.15) ξ (η ) is an unknown function Introduce (7.15) into (7.13) and (7.14) Grx dξ u = 2v x dη (Grx )1 / 4 dξ v = 1/ 4 η − 3 ξ dη x ( 4) v (7.16) (7.17) 15 Combining (7.5), (7.7), (7.8), (7.12), (7.16), (7.17) 3 d ξ dη 2 2 3 + 3ξ d 2θ dη 2 dξ − 2 +θ = 0 2 dη dη d ξ + 3 Prξ dθ =0 dη (7.18) (7.19) NOTE • x and y are eliminated (7.18) and (7.19) • Single independent variable η Transformation of boundary conditions: Velocity: 16 dξ (0) (1) =0 dη (2) ξ (0) = 0 dξ (∞ ) (3) =0 dη (4) dξ (∞ ) =0 dη Temperature: (1) θ ( 0) = 1 (2) θ (∞ ) = 0 (3) θ (∞ ) = 0 17 NOTE: (1) Three PDE are transformed into two ODE (3) Five BC are needed (4) Seven BC are transformed into five (5) One parameter: Prandtl number. 7.4.5 Solution • (7.18) and (7.19) are solved numerically • Solution is presented graphically • Figs. 7.2 gives u(x,y) • Fig. 7.3 gives T(x,y) 18 19 20 7.4.5 Heat Transfer Coefficient and Nusselt Number Start with ∂T ( x ,0) −k ∂y h= Ts − T∞ (7.20) Express in terms of θ and η − k dT dθ (0) ∂η h= Ts − T∞ dθ dη ∂y Use (7.8) and (7.10) − k Gr x h= x 4 1/ 4 dθ ( 0 ) dη (7.21) 21 Define: local Nusselt number: hx Grx Nu x = = − k 4 1/ 4 dθ (0) dη (7.22) Average heat transfer coefficient 1 L h = ∫ h( x )dx L 0 (2.50) (7.21) into (2.50), integrate 4 k GrL h=− 3 L 4 1/ 4 dθ (0) dη (7.23) Average Nusselt number 22 hL 4 k GrL Nu L = =− k 3 L 4 1/ 4 dθ (0) dη Table 7.1 [1,2] (7.24) Pr dθ ( 0 ) dη • • • • • Is key factor in solution Depends on Prandtl number Values are listed in Table 7.1 Obtained from numerical solution d 2ξ (0) dη 2 0.01 0.03 0.09 0.5 0.72 0.733 1.0 1.5 2.0 3.5 5.0 7.0 10 100 1000 _ dθ ( 0 ) dη 0.0806 0.136 0.219 0.442 0.5045 0.508 0.5671 0.6515 0.7165 0.8558 0.954 1.0542 1.1649 2.191 3.9660 d 2ξ ( 0) dη 2 0.9862 0.676 0.6741 0.6421 0.5713 0.4192 0.2517 0.1450 in Table 7.1 gives surface velocity gradient and shearing stress 23 Special Cases Nu x = 0.600 ( PrRa x )1/4 , Nu x = 0.503 ( PrGrx )1/4 , Pr → 0 Pr → ∞ (7.24) (7.25) Example 7.1: Vertical Plate at Uniform Surface Temperature • 8cm × 8cm vertical plate in air at 10 oC • Uniform surface temperature = 70 oC • Determine the following at x = L = 8 cm: (1) u at y = 0.2 cm , (2) T at y = 0.2 cm (3) δ , (4) δ t 24 (5) Nu L , (6) h(L) (7) q ′s′ ( L ) , (8) qT Solution (1) Observations • External free convection • Vertical plate • Uniform surface temperature • Check Rayleigh number for laminar flow • If laminar, Fig. 7.2 for u(x,y) and Fig. 7.3 T(x,y) and δ t • Determine local Nu and h at x = L (2) Problem Definition 25 Determine flow and heat transfer characteristics for free convection over a vertical flat plate at uniform surface temperature. (3) Solution Plan • Laminar flow? Compute Rayleigh number • If laminar, use Figs. 7.2 and 7.3. • Use solution for Nu and h (4) Plan Execution (i) Assumptions (1) Newtonian fluid (2) Steady state (3) Boussinesq approximations (4) Two-dimensional 26 (5) Laminar flow ( Rax < 109 ) (6) Flat plate (7) Uniform surface temperature (8) No dissipation (9) No radiation. (ii) Analysis and Computation Compute the Rayleigh number: β g(Ts − T∞ ) L3 Ra L = να (7.2) g = gravitational acceleration = 9.81 m/s 2 L = plate length = 0.08 m 27 Ra L = Rayleigh number at the trailing end x = L Ts = surface temperature = 70o C T∞ = ambient temperature =10o C α = thermal diffusivity, m 2 /s β = coefficient of thermal expansion = 1 / T f K -1 ν = kinematic viscosity, m 2 /s Properties at T f Ts + T∞ (70 + 10)o C = 40o C Tf = = 2 2 k = thermal conductivity = 0.0271 W/m − o C Pr = 0.71 ν = 16.96 × 10 −6 m 2 /s 28 16.96 × 10 −6 m 2 /s = = 23.89 × 10 −6 m 2 /s α= Pr 0.71 ν β= 1 40o C + 273.13 = 0.0031934 K -1 Substituting into (7.2) Ra L = 0.0031934 ( K −1 )9.81(m/s 2 )(70 − 10)(K)(0.08) 3 (m 3 ) 16.96 × 10 − 6 (m 2 /s)23.89 × 10 − 6 (m 2 /s) = 2.3752 × 10 6 Thus the flow is laminar (1) Axial velocity u: Grx dξ u = 2v x dη (7.10) 29 Fig. 7.2: dξ vs. η dη Grx η= 4 1/ 4 y x (a) Ra L 2.3792 × 106 Grx = GrL = = = 3.351 × Pr 0.71 Use (a), evaluate η at x = 0.08 m and y = 0.002 m 3 .351 × 10 η = 4 6 1/4 0 .0032 ( m ) = 1 .21 0 . 08 ( m ) Fig. 7.2, at η = 1.21 and Pr = 0.71, gives 30 dξ x =u ≈ 0.27 dη 2ν Grx Solve for u u= 2ν GrL 0.27 L = 0.27 2(16.96 × 10 −6 2 6 )(m /s) 3.351 × 10 = 0.2096 m/s 0.08(m) (1) Temperature T: At η = 1.21 and Pr = 0.71, Fig. 7.3 gives T − T∞ θ = ≈ 0.43 Ts − T∞ T ≈ T∞ + 0.43(Ts − T∞ ) = 10(o C) + 0.43(70 − 10)(o C) = 35.8o C (3) Velocity B.L. thickness δ: 31 At y = δ , axial velocity u ≈ 0, Fig. 7.2 gives GrL η( x , δ ) ≈ 5 = 4 Solve for δ 1/ 4 δ L 1/ 4 4 δ = 5(0.08)(m ) 6 3.37321 × 10 = 0.0132 m = 1.32 cm (4) Temperature B.L. thickness δ t : At y = δ t , T ≈ T∞ , θ ≈ 0. Fig. 7.3 gives GrL η( x , δ t ) ≈ 4.5 = 4 1/ 4 δ L 32 Solve for δ t δ t = 4.5(0.08)(m ) 1/4 4 6 3.3511 × 10 = 0.0119 m = 1.19 cm (5) Local Nusselt number: hx Grx Nu x = = − k 4 1/4 dθ ( 0 ) dη (7.22) dθ ( 0 ) Table 7.1 gives at Pr = 0.71 dη dθ ( 0 ) = −0.5018 dη Nusselt Number: Use (7.22), evaluate at x = L = 0.08 m 33 NuL = hL k GrL =− 4 1/ 4 6 1 / 4 3.351 × 10 = 0.5018 dη 4 dθ ( 0 ) = 15.18 (6) Local heat transfer coefficient: at x = L = 0.08 m k 0.0271(W/m− o C) h( L) = NuL = 15.18 = 5.14 W/m 2 − o C L 0.08(m) (7) Heat flux: Newton’s law gives q ′s′ = h (T s − T∞ ) = 5 .14 ( W/m − o C ) ( 70 − 10 )( o C) = 308.4 W/m 2 (8) Total heat transfer: qT = hA(Ts − T∞ ) 34 4 k GrL h=− 3 L 4 4 (0.0271)(W/m − C) 3.351 × 10 o h=− 3 0.08(m) 4 1/4 dθ (0) dη 6 1/4 ( −0.5018 ) = 6.86 W/m 2 − o C qT = 6.86(W/m 2 − o C)0.08(m)0.08(m)(70 − 10)( o C) = 2.63 W (iii) Checking Dimensional check: Units for u, T , δ , δ t , Nu, h, q ′′ and qT are consistent Quantitative check: 35 (i) h is within the range given in Table 1.1 (ii) δ > δ t . This must be the case (5) Comments (i) Magnitudes of u and h are relatively small (ii) h( x ) < h ( x ) 7.5 Laminar Free Convection over a Vertical Plate: Uniform Surface Heat Flux • Vertical Plate • Uniform surface heat flux • Infinite fluid at temperature T∞ • Assumptions: Same as Section 7.4 36 • Governing equations: Same as Section 7.4 • Boundary conditions: Replace uniform surface temperature with uniform surface flux ∂ T ( x ,0 ) −k = q ′s′ ∂y • Surface temperature is variable and unknown: Ts ( x ) • Objective: Determine Ts ( x ) and Nu x • Solution: Similarity transformation (Appendix F) • Results: (1) Surface temperature 37 ν (q ′s′ ) Ts ( x ) − T∞ = − 5 x 4 β gk 2 θ (0) = constant, depends on Pr, 4 1/ 5 θ ( 0) given in Table 7.2 Table 7.2 [4] (2) Nusselt number β gq ′s′ 4 Nu x = − 2 x 5ν k 1/ 5 (7.27) 1 θ ( 0) (7.28) Correlation equation for θ ( 0) [5] 4 + 9 Pr + 10 Pr θ ( 0) = − 2 5 Pr 1/2 Pr θ ( 0) 0.1 1.0 - 2.7507 10 - 0.76746 100 - 0.46566 - 1.3574 1/ 5 (7.29) 38 Example 7.2: Vertical Plate at Uniform Surface Flux • 8cm × 8cm vertical plate in air at 10 oC • Uniform surface flux = 308.4 oC • Determine the following at x = 2, 4, 6 and 8 cm (1) Surface temperature (2) Nusselt number (3) Heat transfer coefficient Solution (1) Observations • External free convection • Vertical plate 39 • Uniform surface heat flux • Check Rayleigh number for laminar flow • If laminar: Equation (7.27) gives Ts ( x ) Equation (7.28) gives Nux Nux gives h(x) (2) Problem Definition Determine Ts ( x ) , in free convection Nux and h(x) for uniformly heated vertical plate (3) Solution Plan • Laminar flow? Compute Rayleigh number 40 • Use (7.27) for Ts ( x ) • Use (7.28) for • Nux Nux gives h(x) (4) Plan Execution (i) Assumptions (10) Newtonian fluid (11) Steady state (12) Boussinesq approximations (13) Two-dimensional 9 (14) Laminar flow ( Ra x < 10 ) (15) Flat plate 41 (16) Uniform surface heat flux (17) No dissipation (18) No radiation (ii) Analysis Rayleigh number: β g(Ts − T∞ ) L3 Ra L = να (7.2) Surface temperature: ν (q ′s′ ) Ts ( x ) − T∞ = − 5 x 4 β gk 2 4 1/ 5 θ ( 0) (7.27) Nusselt number: 42 β gq ′s′ 4 Nu x = − 2 x 5ν k 1/ 5 1 θ ( 0) (7.28) Heat transfer coefficient k h( x ) = Nu x x (a) Determine θ ( 0) : Table 7.2 or equation (7.29) 4 + 9 Pr + 10 Pr θ ( 0) = − 2 5 Pr 1/ 2 1/ 5 (7.29) (iii) Computations Properties at T f 43 Ts + T∞ Tf = 2 (b) where Ts ( L ) + T s ( 0 ) Ts = 2 (c) Ts (L) is unknown. Use iterative procedure: (1) Assume Ts (L) (2) Compute T f (3) Find properties at T f (4) Use (7.27) to calculate Ts (L) (5) Compare with assumed value in step (1) (6) Repeat until (1) and (5) agree 44 o Assume Ts ( L) = 130 C Ts ( L) + Ts (0) (130 + 10)( o C) Ts = = = 70o C 2 2 Ts + T∞ ( 70 + 10)o C Tf = = 40o C = 2 2 o Properties of air at 40 C : k = 0.0271 W/m − o C Pr = 0.71 ν = 16.96 × 10−6 m 2 /s 45 16.96 × 10 −6 m 2 /s α= = = 23.89 × 10 −6 m 2 /s Pr 0.71 ν 1 β= o = 0.0031934 K -1 40 C + 273.13 Substitute into (7.2) 0.0031934 ( K −1 )9.81(m/s 2 )(130 − 10)(K)(0.08) 3 (m 3 ) Ra L = 16.96 × 10 − 6 (m 2 /s)23.89 × 10 − 6 (m 2 /s) = 4.7504 × 10 6 • Flow is laminar Use (7.9) to determine θ (0) 46 4 + 9(0.71) + 10(0.71) θ ( 0) = − 2 5(0.71) 1/ 2 1/ 5 = −1.4928 Use (7.27) to compute Ts (L) o Ts (L) = 10( C) − 1/ 5 6 2 4 2 4 4 8 − (16.96× 10 ) (m /s )(308.4) (W /m ) o 5 (0.1)(m) ( − 1 . 4928 ) = 63 . 6 C 2 4 4 4 4 0.0031934(1/K)9.81(m/s )(0.0271) (W /m −K • Computed Ts (L) is lower than assumed value • Repeat procedure until assume Ts (L) ≈ computed Ts (L) Result: Ts ( L) = 63.2o C 47 Thus, T f = 23.3o C Properties of air 23.3o C k = 0.02601 W/m − o C Pr = 0.7125 25 ν = 15.55 × 10− 6 m 2 /s α = 21.825 × 10− 6 m 2 /s β = 0.003373 K -1 (7.29) gives θ ( 0) θ ( 0) = −1.4913 (7.27) gives Ts ( x ) 48 T s ( L ) = 10 ( o C ) − −6 (15.55 × 10 ) (m /s )(308.4) (W /m ) 5 2 4 4 4 4 0.003373 (1/K)9.81 (m/s )(0.02601) (W /m − K 2 4 2 4 4 8 1/5 (x1)(m) ( − 1 .4913 ) (7.28) gives Nu x 0.003373(1/K)9.81(m/s )308.4(W/m ) 4 4 Nux = − (x) (m ) −6 2 o 5(15.55 × 10 )(m /s)0.02601(W/m − C) 2 2 1/ 5 1 − 1.4913 (e) (a) gives h(x) 49 k 0.02601(W/m − o C) h( L) = NuL = NuL L x (m) (f) Use (d)-(f) to tabulate results at x = 0.02, 0.04, 0.06 and 0.08 m x(m) Ts ( x ) (o C) Nux 0.02 0.04 0.06 0.08 50.3 56.3 60.2 63.2 5.88 10.24 14.16 17.83 h( x )( W/m 2 − o C) 7.65 6.66 6.14 5.795 q′s′ ( W/m 2 ) 308.3 308.4 308.2 308.3 (iii) Checking 50 Dimensional check: Units for Ts , Nu and h are consistent. Quantitative check: (i) h is within the range given in Table 1.1 (ii) Compute q ′s′ using Newton’s law gives uniform surface flux (5) Comments (i) Magnitude of h is relatively small (ii) Surface temperature increases with distance along plate 7.6 Inclined Plates Two cases: 51 • • • Hot side is facing downward, Fig. 7.5a Cold side is facing upward, Fig. 7.5b Flow field: Same for both • Gravity component = gcos θ • Solution: Replace g by gcos θ in solutions of Sections 7.4 and 7.5 • Limitations θ ≤ 60o 7.7 Integral Method 52 • Obtain approximate solutions to free convection problems • Example: Vertical plate at uniform surface temperature 7.7.1 Integral Formulation of Conservation of Momentum • Simplifying assumption δ = δt (a) valid for Pr ≈ 1 Apply momentum theorem in x-direction to the element δ × dx 53 ∑ Fx = M x (out ) − M x (in ) ∑ Fx : • • • Mx + Wall stress Pressure Gravity (b) dM x dx dx pδ + d ( pδ )dx dx dy τ odx dx M x dW ρ gdxdy pδ ((pp++dp dp//22))ddδδ Fig. 7.7 dM x dp d pδ + p + dδ − pδ − ( pδ )dx − τ o dx − = M x + dx − M x 2 dx dx (c) Simplify − δ dp − τ o dx − dW = dM x dx dx (d) Wall stress: 54 τo = µ ∂u( x ,0 ) ∂y (e) Weight: • Variable density • Integrate weight of element dx × dy dW = dx δ ∫0 ρ gdy (f) x-momentum: • Constant density δ ( x) Mx = ρ ∫0 u2dy (g) Substitute(e), (f) and (g) into (d) 55 δ δ ∂u( x ,0 ) dp d −µ −δ − ∫ ρgdy = ρ ∫ u2dy ∂y dx 0 dx 0 (h) Combine pressure and gravity terms (B.L. flow) dp dp∞ = −ρ∞ g ≅ dx dx (i) Rewrite δ dp δ = − ρ ∞ gδ = − ∫ ρ ∞ gdy dx 0 (j) (j) into (h) ∂u( x ,0 ) −µ +g ∂y δ ∫0 d ( ρ ∞ − ρ )dy = ρ dx δ ∫0 u 2dy (k) Density change: 56 ρ ∞ − ρ = ρβ (T − T∞ ) (2.28) (2.28) into (k), assume constant ρ β ∂u( x ,0) −ν +βg ∂y δ ∫0 d (T − T∞ )dy = dx δ ∫0 u2 dy (7.30) NOTE: (1) no shearing force on the slanted surface (2) (7.30) applies to laminar and turbulent flow (3) (7.30) is a first order O.D.E. 7.7.2 Integral Formulation of Conservation of Energy Assume: 57 • • • • No changes in kinetic and potential energy Neglect axial conduction Neglect dissipation Properties are constant ∂T ( x ,0 ) d −α = ∂y dx NOTE: δ ( x) ∫0 u(T − T∞ )dy (7.31) Integral formulation of energy is the same for free convection and for forced convection 7.7.3 Integral Solution 58 • Vertical plate • Uniform temperature Ts • Quiescent fluid at uniform temperature T∞ Solution Procedure for Forced Convection: (1) Velocity is assumed in terms of δ ( x ) 59 (1) Momentum gives δ ( x ) (2) Temperature is assumed in terms δ t ( x ) (3) Energy gives δ t ( x ) Solution Procedure for Free Convection: Since we assumed δ = δ t , either momentum or energy gives δ t . To satisfy both, introduce another unknown in assumed velocity 60 Assumed Velocity Profile u( x , y ) = a 0 ( x ) + a 1 ( x ) y + a 2 ( x ) y 2 + a 3 ( x ) y 3 (a) Boundary conditions: (1) u( x ,0) = 0 (2) u( x , δ ) ≅ 0 (3) (4) ∂u( x , δ ) ≅0 ∂y ∂ 2 u( x ,0) ∂y 2 =− βg (Ts − T∞ ) ν • Setting y = 0 in the x-component, (7.2), to obtain condition (4) • 4 boundary conditions give an 61 (a) gives β g(Ts − T∞ ) y y2 δ y 1 − 2 + u= 2 2 δ δ 4ν Rewrite as 2 β g(Ts − T∞ ) 2 y y δ 1 − u= 2 δ δ 4ν (b) Introduce a second unknown in (b). Define β g(Ts − T∞ ) 2 δ uo ( x ) = 2 4ν (c) (b) becomes 62 y y u = uo ( x ) 1 − δ δ 2 (7.32) Assumed Temperature Profile T ( x , y ) = b0 ( x ) + b1 ( x ) y + b2 ( x ) y 2 (d) Boundary Conditions: (1) T ( x ,0) = Ts (2) T ( x , δ ) ≅ T∞ (3) ∂T ( x , δ ) ≅ 0 ∂y ≅ • 3 boundary conditions give bn 63 (d) becomes y T ( x , y ) = T∞ + (Ts − T∞ ) 1 − δ 2 (7.33) Heat Transfer Coefficient and Nusselt Number ∂ T ( x ,0 ) −k ∂y h= Ts − T∞ (7.20) (7.33) into (7.20) 2k h= δ ( x) (7.34) Local Nusselt number: 64 Nu x = hx x =2 k δ ( x) (7.35) Determine δ ( x ) Solution Use momentum: substitute (7.32) and (7.33) into (7.30) −ν uo δ + β g (Ts − T∞ ) δ ∫0 2 y d uo2 1 − δ dy = dx 2 δ δ ∫0 4 y y 1 − dy δ 2 (e) Evaluating the integrals [ ] u 1 d 2 1 uo δ = βg (Ts − T∞ ) δ − v o 105 dx 3 δ (7.36) Use energy: substitute(7.32) and (7.33) into (7.31) 65 d uo 2α (Ts − T∞ ) = (Ts − T∞ ) dx δ δ 1 δ ( x) ∫0 4 y y 1 − dy δ (f) Evaluating the integrals 1 d [uoδ ] = α 1 60 dx δ (7.37) • The two dependent variables are δ ( x ) and uo ( x ) • (7.36) and (7.37) are two simultaneous first order O.D.E. • Assume a solution of the form uo ( x ) = Ax m (7.38) δ ( x ) = Bx n (7.39) • Determine the constants A, B, m and n 66 • Substitute (7.38) and (7.39) into (7.36) and (7.37) 2m + n 2 2m + n−1 1 A A Bx = βg (To − T∞ )Bx n − vx m − n 105 3 B m+n 1 −n m + n − 1 ABx =α x 210 B (7.40) (7.41) To satisfy (7.40) and (7.41) at all values of x , the exponents of x in each term must be identical (7.40) requires 2m + n − 1 = n = m − n (g) Similarly, (7.41) requires that m + n − 1 = −n (h) 67 Solve (g) and (h) for m and n gives 1 1 m = , n= 4 2 (i) Introduce (i) into (7.40) and (7.41) 1 2 1 A A B = βg (To − T∞ )B − v 85 3 B (j) 1 1 AB = α 280 B (k) Solve (j) and (k) for A and B −1 / 2 20 − A = 5.17ν Pr + 21 β g(Ts − T∞ ) ν2 1/ 2 (l) and 68 1/ 4 20 B = 3.93 Pr -1/2 Pr + 21 β g(Ts − T∞ ) ν2 −1 / 4 (m) Substitute (i) and (m) into (7.39) 20 1 = 3.93 + 1 x 21 Pr δ 1/ 4 ( Ra x ) −1 / 4 (7.42) Introduce(7.42) into (7.35) −1 / 4 − 20 1 Nu x = 0.508 + 1 21 Pr ( Ra x )1 / 4 (7.43) 7.7.4 Comparison with Exact Solution for Nusselt Number Exact solution: Gr Nu x = − x 4 1/ 4 dθ (0) dη (7.22) 69 Rewrite above as Grx 4 −1 / 4 −1 / 4 − 20 1 Nu x = 0.508 + 1 21 Pr (4 Pr )1 / 4 (7.45) Rewrite integral solution (7.43) as Grx 4 −1 / 4 Nu x = − dθ (0) dη (7.44) • Compare right hand side of (7.45) with − dθ ( 0) / dη of exact solution (7.44) • Comparison depends on the Prandtl number 70 • Table 7.2 gives results Table 7.3 Limiting Cases Pr (1) Pr → 0 Nu x exact = 0.600 ( PrRa x )1/4 , Pr → 0 (7.25a) Nu x integral = 0.514( PrRa x )1 / 4 , Pr → 0 (7.46a) (2) Pr → ∞ Nu x exact = 0.503 ( Ra x )1/4 , 0.01 0.03 0.09 0.5 0.72 0.733 1.0 1.5 2.0 3.5 5.0 7.0 10 100 1000 _ dθ (0) dη 0.0806 0.136 0.219 0.442 0.5045 0.508 0.5671 0.6515 0.7165 0.8558 0.954 1.0542 1.1649 2.191 3.9660 Pr → ∞ Nu x integral = 0.508( Ra x )1 / 4 , Pr → ∞ 20 1 0.508 + 1 21 Pr −1 / 4 ( 4 Pr )1/4 0.0725 0.1250 0.2133 0.213 0.4627 0.5361 0.5399 0.6078 0.7031 0.7751 0.9253 1.0285 1.1319 1.2488 1.2665 4.0390 (7.25b) (7.46b) 71 NOTE: (1) Error ranges from 1% for Pr → ∞ to 14% for Pr → 0 (2) We assumed δ = δ t ( Pr = 1 ). Solution is reasonable for all Prandtl numbers 72
© Copyright 2025 Paperzz