Institut für Informatik Intelligente Autonome Systeme Technische Universität München Learning Organizational Principles in Human Environments Martin J. Schuster 27.04.2011 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Outline • Motivation: Object Allocation Problem • Organizational Principles in Kitchen Environments • Datasets • Learning Organizational Principles – Features – Classifiers – Feature Importance Measures • Evaluation • System Integration • Extensions to Probabilistic Modelling Methods – Degrees of Truth and Soft Evidence – Naive Bayesian Model – Markov Logic Networks • Conclusions and Outlook Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 2 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Motivation: Object Allocation Problem • Pick and place tasks important for assistive robots in human environments • High level tasks gain importance ⇒ Where to pick objects up and where to place them? • Scenario: Assistive robot in human kitchen environment – Return home from shopping with full shopping basket – Robot should “put things away” – ⇒ Infer locations where best place each object • ⇒ Learn and apply organizational principles – For a particular environment instance (user specific) – Governed by notion of similarities – Formulate as classification task Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 3 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Organizational Principles in Kitchens • Analysis of photographs, blogs, videos, etc. • Prevalent organizational principles: – Class in taxonomy, e.g. distinguish between food and non-food – Physical Constraints, e.g. size to fit into container – Purpose, e.g. coffee, coffee filters, sugar together • Additional Principles – Packaging, Safety • Translate criteria into similarities between pairs of objects Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 4 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Datasets Mockup Kitchen Datasets • Annotated location of each object • 10 datasets: 6/12 locations, 66 object classes, 152 objects each Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 5 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Datasets Real Kitchen Datasets • 2 datasets: 19/15 locations, 166/87 classes, 408/149 objects each Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 6 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Learning Organizational Principles Features • WUP similartiy: Root Thing wupSim(C1 , C2 ) = depth(LCS(C1 , C2 )) 1 (depth(C 1 ) + depth(C2 )) 2 SpatialThing 4 LCS 2 DrinkingVessel 4 • Purpose, meal relevance – several binary features Cup Glass • Size ∈ {s, m, l} • Shape ∈ {box, cylindric C1 CoffeeCup C2 SodaGlass flat, bag, other} Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 7 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Learning Organizational Principles Features • Aggregate WUP similarities maxWup(O, L) = max wupSim(class(O), class(O 0 )) O 0 ∈L avgWup(O, L) = X wupSim(class(O), class(O 0 )) |L| 0 O ∈L • Plot distances (mds) Mij := 1 − wupSim(Ci , Cj ) Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 8 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Learning Organizational Principles Classifiers • Maximum WUP similarity • Decision Trees • Boosted Decision Trees • Support Vector Machines • Naive Bayesian Classifier – NB discrete (Clustering) – NB continuous (Gaussian) – NB soft (Soft Evidence) • Markov Logic Networks ⇒ weight learning computationally too expensive for any reasonable complex models Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 9 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Learning Organizational Principles Feature Importance Measures • Feature importance (inverse normalized entropy): P f ∈dom(F ) PD (F = f | L) log(PD (F = f | L)) D IF (L) := 1− log(|dom(F )|) • Discriminative power (Hellinger distance): s Xp HFD (L1 , L2 ) = 1− PD (F = f | L1 )PD (F = f | L2 ) f ∈dom(F ) D H (F ) := −1 X |LD | 2 X HFD (Li , Lj ) Li ∈LD Lj ∈LD ,i<j Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 10 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Evaluation • Crossvalidation: train & test for each object class in each dataset • Maximum WUP similarity classifier: average correct classification rate of: – 88% for mockup kitchens dataset – 72% for real kitchens dataset • Decision Trees: average correct classification rate of: – 86% / 88% for mockup kitchens dataset with WUP similarity / all features – 79% / 74% for real kitchens dataset with WUP similarity / all features • ⇒ WUP similarity alone highly discriminative • standard classification methods perform sufficiently well • in real kitchens: subset of objects placed arbitrarily (noise) ⇒ 100% may not be possible to achieve in practice Martin J. Schuster 27.04.2011 all results Learning Organizational Principles in Human Environments 11 Evaluation Feature Importance P IFD (L) f ∈dom(F ) := 1− PD (F = f | L) log(PD (F = f | L)) log(|dom(F )|) 1.0 0.8 0.6 0.4 avgWup maxWup mealRelevance purpose shape size 0.2 0.0 1 2 3 4 5 6 7 8 9 10 11 12 Evaluation Discriminative Power HFD (L1 , L2 ) = s 1− Xp PD (F = f | L1 )PD (F = f | L2 ) f ∈dom(F ) D H (F ) := |L |−1 X D 2 L ∈L i X HFD (Li , Lj ) D Lj ∈LD ,i<j 1.0 0.8 0.6 0.4 0.2 0.0 avgWup maxWup mealRelevance purpose shape size Institut für Informatik Intelligente Autonome Systeme Technische Universität München System Integration Germandeli Website Germandeli Ontology KnowRob: Prolog Knowledge Base Object Locations High-level Task Ask & Tell Interface Robot Perception Kitchen Ontology Best Object Location Inference Similarity Computation Classification Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 14 Institut für Informatik Intelligente Autonome Systeme Technische Universität München System Integration KnowRob ?− h i g h l i g h t b e s t l o c a t i o n d t r e e ( o r g p r i n c i p l e s d e m o : ’ C o f f e e F i l t e r 1 ’ , Canvas ) . B e s t l o c a t i o n : knowrob : Drawer7 O b j e c t s a t l o c a t i o n knowrob : Drawer7 : WUP s i m i l a r i t y : o b j e c t ( c l a s s ) 0.87500: o r g p r i n c i p l e s d e m o : CoffeGround1 ( germandeli : Dallmayr Classic Ground Coffee 250g ) 0.75000: orgprinciples demo : EspressoBeans1 ( germandeli : illy Espresso Whole Beans 88 oz ) 0 . 7 0 5 8 8 : o r g p r i n c i p l e s d e m o : Sugar1 ( germandeli : Nordzucker Brauner Teezucker 500g ) 0 . 6 6 6 6 7 : o r g p r i n c i p l e s d e m o : Tea2 ( germandeli : Teekanne Rotbusch Tee Vanille 20 Bags ) Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 15 Institut für Informatik Intelligente Autonome Systeme Technische Universität München System Integration Context: High-level task 1. Empty shopping basket on table ⇒ separate the objects 2. Perceive and segment objects 3. Match objects with object classes in knowledge base 4. General knowledge about kitchens ⇒ handle certain types of objects 5. Our new algorithm ⇒ infer best place for each of the (remaining) kitchen objects 6. For each object: 6.1 6.2 6.3 6.4 Pick up object Move to inferred location, open container if necessary Search for free space inside location, if fails ⇒ infer a new location Place object inside location, close container if necessary Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 16 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods • Probabilistic generative methods – Probability distribution over classes – Insight into organizational structure through model parameters – Allow construction of more complex models • Naive Bayesian Model • Markov Logic Networks • Extensions to handle soft evidence – model continuous features (WUP similarities) Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 17 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Degrees of Truth and Soft Evidence • For a proposition R: distinguish between – Probability P(R) → probabilistic framework – Degree of truth T (R) → fuzzy logic framework – Degree of belief: expected value of degrees of truth → tendency to act as if R • No (available) implementation out there • Our approach: approximate degrees of truth as probabilities ⇒ handle them in (extended) probabilistic frameworks ⇒ soft evidence: binary features, true with a certain probability Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 18 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Naive Bayesian Model: C X1 • Independence assumption: P(X = x | C = c) = N Y X2 ... XN P(Xi = xi | C = c) i=1 • Classification (MAP inference): arg max P(X = x | C = c) · P(C = c) c∈C Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 19 Extensions to Probabilistic Modelling Methods Naive Bayesian Model Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Naive Bayesian Model: Soft Evidence • Inference: P(C = c | e) = P(C = c | Xh = xh , e) X P(Xh = xh , Xs = xs | C = c) · P(C = c) · P(Xs = xs | e) = P(Xh = xh , Xs = xs ) Q xs ∈ Xi ∈Xs dom(Xi ) compute P(Xs = xs | e) implicitly Q (e.g. Gibbs sampling) or approximate P(Xs = xs | e) ≈ Xi ∈Xs P(Xi = xi | ei ) assuming the independence of the pieces of soft evidence • Learning: use soft counts: P P(Xi = xi | C = c) = Martin J. Schuster 27.04.2011 e∈Tc P(Xi = xi | ei ) |Tc | Learning Organizational Principles in Human Environments 21 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Markov Logic Networks • First order logic (FOL) + soft constraints ⇒ Markov Logic Network (MLN) • Each FOL formula Fi is assigned a weight wi • Probability distribution over all possible worlds: P X exp 1 i wi ni (x) P wi ni (x) = P P(X = x) = exp 0 Z x 0 ∈X exp i wi ni (x ) i ni (x): the number of true groundings of Fi in world x. • Template for Markov Networks (graphical model): instantiation for a particular set of constants C Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 22 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Markov Logic Networks: Parameter Learning • Maximize probability P(X = x | w ) of world x given by the training data: ⇒ Maximize log-likelihood: L(X = x) = X wi ni (x) − log(Z ) i • Optimize model parameters w using L-BFGS ⇒ compute arg maxw L(X = x | w ) • Gradient: δ L(X = x) δwi = ni (x) − X = ni (x) − X x 0 ∈X Martin J. Schuster 27.04.2011 ni (x 0 ) · P(X = x 0 ) x 0 ∈X P exp ( k wk nk (x 0 )) P ni (x ) · P 00 x 00 ∈X exp ( k wk nk (x )) 0 Learning Organizational Principles in Human Environments 23 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Markov Logic Networks: Soft Evidence Weight Learning • Hard evidence: defines single world x with P(X = x) = 1 • Soft evidence: defines probability distribution P(X = x | e) over possible worlds x ∈ X • We developed four methods to handle soft evidence weight learning Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 24 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Markov Logic Networks: Soft Evidence Weight Learning Log-Likelihood with Weighting of Formulas (LL-ISE): • Approximate distribution of worlds with “soft world” ⇒ Formulas true to certain degree that corresponds to probabilities given by the soft evidence • Assumes independence of the pieces of the soft evidence (ISE) • Log-likelihood: X LLL-ISE (X = x) = wi ñi (x) − log(Z ) i • Gradient: P X exp ( k wk nk (x 0 )) δ 0 P LLL-ISE (X = x) = ñi (x) − ni (x ) · P 00 δwi x 00 ∈X exp ( k wk nk (x )) 0 x ∈X • Computation of Z computationally intractable (2|X | possible worlds) Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 25 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Markov Logic Networks: Soft Evidence Weight Learning Pseudo-Log-Likelihood with Weighting of Formulas (PLL-ISE): • Approximate the log-likelihood: product of conditional likelihoods of all variables Xk in world x, each given the values of its direct neighbors (Markov blanket) • Use soft-counts (similar to LL-ISE) • Pseudo log-likelihood: LPLL-ISE (X = x) = log N Y P(Xk = xk | MBx (Xk )) k=1 • Fast, but rough approximation ⇒ in many cases: no reasonable results Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 26 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Markov Logic Networks: Soft Evidence Weight Learning LL with Sampling and Weighting of Formulas (SLL-ISE): • Use soft counts for evidence “soft world” • Sample normalization Z̃ – Run MCSAT, take Markov chain states as samples exp( k wk nk (s)) – Sample s drawn with probability ∝ P(X = s) ≈ Z̃ ⇒ remove duplicate samples ⇒ high probability to draw samples with high contribution to Z̃ P • Log-Likelihood: ! LSLL-ISE (X = x) ≈ X i • Gradient: wi ñi (x) − log X exp s∈S Martin J. Schuster 27.04.2011 wk nk (s) k s∈S̄ X δ LSLL-ISE (X = x) ≈ ñi (x) − δwi X ni (s) |S| Learning Organizational Principles in Human Environments 27 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Markov Logic Networks: Soft Evidence Weight Learning LL with Double Sampling and Weighting of Worlds (DSLL-WW): • Draw samples from distribution of worlds defined by soft evidence – Maximize weighted average of probabilities of sampled worlds ⇒ drop assumption of independent soft independence – Samples in Se drawn with ≈ P(X = s | e) • Sample Z̃ as in SLL-ISE • Log-Likelihood: LDSLL-WW (e) = log !! X 1 X · exp wk nk (s) − log(Z̃ ) |Se | s∈Se k • Gradient: δ LDSLL-WW (e) δwi Martin J. Schuster 27.04.2011 = X ni (s) s∈Se |Se | − X ni (s) s∈S̄ |S̄| Learning Organizational Principles in Human Environments 28 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Conclusions and Outlook • Organizational principles are manifestations of clusterings governed by similarity • WUP similarity highly informative • Standard classification methods (e.g. decision trees) adequate • We provide open source implementation within KnowRob • MLNs: Developed new weight learning algorithms for soft evidence – Computationally still too expensive for practical use here – Further reduction of complexity necessary • Outlook: – More features (spatial relations, . . . ) – Other human environments – Integration in robotic system to solve complex everyday tasks Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 29 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Thank you for your attention! Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 30 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Crossvalidation Results Mockup Kitchens Dataset max. avgWup max. maxWup DecisionTrees Boosted DecisionTrees SVM NB Discrete NB Continuous NB Soft avgWup and maxWup mean std 77.45% 20.85% 87.52% 17.91% 86.61% 12.46% 87.68% 13.95% 77.46% 24.11% 78.37% 15.64% 69.97% 28.63% 42.16% 39.38% all features mean std — — — — 88.12% 14.16% 89.50% 9.92% 89.49% 17.68% 85.69% 15.56% 82.61% 17.75% 82.32% 18.73% back to evaluation Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 31 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Crossvalidation Results Real Kitchens Dataset max. avgWup max. maxWup avgWup and maxWup Dr 1 Dr 2 mean 48.19% 70.24% 59.22% 72.29% 71.43% 71.86% DTrees Boosted DTrees SVM 84.94% 84.94% 57.23% 73.81% 71.43% 69.05% 79.37% 78.18% 63.14% 79.52% 80.72% 73.49% 69.05% 69.05% 76.19% 74.28% 74.89% 74.84% NB Discrete NB Continuous NB Soft 50.00% 41.57% 13.86% 50.00% 58.33% 50.00% 50.09% 49.95% 31.93% 57.83% 60.24% 65.66% 64.29% 63.10% 59.52% 61.06% 61.67% 62.59% Dr 1 — — all features Dr 2 mean — — — — back to evaluation Martin J. Schuster 27.04.2011 Learning Organizational Principles in Human Environments 32 Institut für Informatik Intelligente Autonome Systeme Technische Universität München Extensions to Probabilistic Modelling Methods Markov Logic Networks: Soft Evidence Weight Learning Comparison: Independent soft evidence Soft evidence world Approximative Sampling-based Runtime Applicable for complex models Martin J. Schuster 27.04.2011 LL-ISE X X – PLL-ISE X X X ++ SLL-ISE X X X X + (X) DSLL-WW X X (X) Learning Organizational Principles in Human Environments 33
© Copyright 2025 Paperzz