ماشین های تورینگ ،تشخیص پذیری و تصمیم پذیری زبان ها جلسات حل تمرین نظریه زبان ها و ماشین ها دانشگاه صنعتی شریف بهار 87 Enumerators Show that a language is decidable iff some enumerator enumerates the language in lexicographic order. Show that every infinite recognizable language has an infinite decidable language as a subset. طراحی تصمیم گیر زبان های مکمل-تشخیص پذیر()co-recognizable زبان های تصمیم پذیر زبان های تصمیم پذیر M is a Turing machine Does M take more than k steps on input x? Does M take more than k steps on some input? Does M take more than k steps on all inputs? Does M ever move the tape head more than k cells away from the starting position? زبان های تصمیم پذیر {M: M is the description of a Turing machine and L(M) is a Turing recognizable language} زبان های تصمیم ناپذیر زبان های تشخیص ناپذیر زبان های تشخیص ناپذیر Consider the following language L: L = { <M> | for every input string w, M will halt within 1000|w|2 steps } Show that this language is not recognizable. (Reduce from ~ATM.) complement of طراحی تشخیص دهنده Close look to the formal definition of a TM Exercise 3.5: Can a Turing machine ever write the blank symbol on its tape? Can the tape alphabet be the same as the input alphabet? Can a Turing machine's read head ever be in the same location in two successive steps? Can a Turing machine contain just a single state? خواص بسته بودن • زبان های تشخیص پذیر: • اجتماع • اشتراک • تکرار(*) • الحاق • زبان های تصمیم پذیر • اجتماع • اشتراک • مکمل گیری • تکرار(*) • الحاق Robustness • • • • • • • doubly infinite tape k-stack PDAs (k>1) A Turing machine with only RIGHT and RESET moves Cyclical Turing machine A queue automaton 2(k) head Turing machine Turing machine with k-dimensional tape × A single tape TM not allowed to change the input -> regular language × Only Right and Stay Put moves -> regular language Clue to the Solution: input-read-only TM At most the last |Q| squares of input on tape can be determining. Myhill-Nerode theorem if a language L partitions ∑* into a finite number of equivalence classes then L is regular. See: http://www.eecs.berkeley.edu/~tah/172/7.pdf http://en.wikipedia.org/wiki/Myhill-Nerode_theorem
© Copyright 2025 Paperzz