ﺑﺎﺳﻤﻪ ﺗﻌﺎﻟﻲ ﺳﻴﺴﺘﻢ ﻫﺎ ﭼﻨﺪﺭﺳﺎﻧﻪﺍ )(۴۰-۳۴۲ ﺩﺍﻧﺸﻜﺪﻩ ﻣﻬﻨﺪﺳﻲ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺗﺮﻡ ﭘﺎﻳﻴﺰ ۱۳۸۷ ﺩﻛﺘﺮ ﺣﻤﻴﺪﺭﺿﺎ ﺭﺑﻴﻌﻲ ﺗﻜﻠﻴﻒ ﺷﻤﺎﺭﻩ :۱ﺩﻳﺠﻴﺘﺎﻝ ﻛﺮﺩﻥ ﺻﻮﺕ ﻭ ﺗﺒﺪﻳﻞ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ -١ﻣﻘﺪﻣﻪ ﺩﺭ ﻳﻚ ﻣﻴﻜﺮﻭﻓﻮﻥ ،ﺍﻣﻮﺍﺝ ﻓﺸﺎﺭ ﺻﺪﺍ ﻓﻴﺰﻳﻜﻲ ﺑﻪ ﺳﻴﮕﻨﺎﻟﻬﺎ ﺍﻟﻜﺘﺮﻳﻜﻲ ﻣﺘﻨﺎﻇﺮ ﺑﺎ ﺧﻮﺩ ،ﺑﻪ ﻭﺳﻴﻠﻪ ﻣﺒﺪﻟﻬﺎ ﺁﻛﻮﺳﺘﻴﻜﻲ ﻧﻈﻴﺮ ﻣﻴﻜﺮﻭﻓﻮﻥ ﻳﺎ Phonograph cartridgeﺗﺒﺪﻳﻞ ﻣﻲ ﺷﻮﻧﺪ .ﺧﺮﻭﺟﻲ ﺍﻟﻜﺘﺮﻳﻜﻲ ﻣﺒﺪﻝ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺁﻧﺎﻟﻮﮒ ﻧﺎﻣﻴﺪﻩ ﻣﻲﺷﻮﺩ ،ﺯﻳﺮﺍ ﺳﻴﮕﻨﺎﻝ ﺍﻟﻜﺘﺮﻳﻜﻲ ﻣﺸﺎﺑﻪ ﺍﻟﮕﻮ ﻓﺸﺎﺭ ﻣﻮﺝ ﺻﻮﺗﻲ ﺍﺳﺖ ﻛﻪ ﺁﻥ ﺭﺍ ﺑﻮﺟﻮﺩ ﺁﻭﺭﺩﻩ ﺍﺳﺖ .ﺳﻴﮕﻨﺎﻟﻬﺎ ﺻﻮﺕ ﺑﻪ ﺻﻮﺭﺕ ﺍﻟﮕﻮﻫﺎ ﻣﻮﺝ ﺩﻭﺑﻌﺪ ﻣﻲ ﺑﺎﺷﻨﺪ ﻛﻪ ﻣﺤﻮﺭ yﻧﺸﺎﻥ ﺩﻫﻨﺪﺓ ﺷﺪﺕ ﻳﺎ ﺩﺍﻣﻨﻪ ﻭ ﻣﺤﻮﺭ xﻧﺸﺎﻥ ﺩﻫﻨﺪﺓ ﻣﺴﻴﺮ ﺯﻣﺎﻥ ﻫﺴﺘﻨﺪ ،ﺷﻜﻞ ،١ﺷﻜﻞ ﻣﻮﺝ ﺁﻧﺎﻟﻮﮒ ﺍﺯ ﻳﻚ ﺳﺮ ﻣﻮﺟﻬﺎ ﺻﻮﺕ ﺍﺯ ﻳﻚ chimeﺭﺍ ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ .ﺍﻳﻦ ﺳﺮ ﻣﻮﺟﻬﺎ ﺑﻪ ﻭﺳﻴﻠﻪ ﻣﻴﻜﺮﻭﻓﻮﻥ ﻭ ﺗﻘﻮﻳﺖ ﻛﻨﻨﺪﻩ ﺑﻪ ﻭﻟﺘﺎﮊ ﺁﻧﺎﻟﻮﮒ ﺑﺎ ﺣﺪﺍﻛﺜﺮ ﺩﺍﻣﻨﺔ ± 0.5 ﻭﻟﺖ )ﺩﺍﻣﻨﺔ ﻗﻠﻪ ﺑﻪ ﻗﻠﻪ ﻳﺎ (VPPﺗﺒﺪﻳﻞ ﺷﺪﻩ ﺍﻧﺪ. ﺷﮑﻞ -١ﺷﻜﻞ ﻣﻮﺝ ﻣﻌﻤﻮﻝ ﺻﻮﺕ ﻓﺮﻛﺎﻧﺲ ﻳﻚ ﻣﻮﺝ ﺑﻪ ﻭﺳﻴﻠﻪ ﺯﻣﺎﻥ ﺳﭙﺮ ﺷﺪﻩ ﺑﻴﻦ ﺗﻜﺮﺍﺭﻫﺎ ﺗﻌﻴﻴﻦ ﻣﻲﺷﻮﺩ ﻛﻪ ﻃﻮﻝ ﻣﻮﺝ ﻧﺎﻣﻴﺪﻩ ﻣﻲﺷﻮﺩ .ﺑﻴﺸﺘﺮ ﻣﻮﺟﻬﺎ ﺻﻮﺕ ﺩﻗﻴﻘﺎﹰ ﺗﻜﺮﺍﺭ ﻧﻤﻲ ﺷﻮﻧﺪ ﺍﻣﺎ ﻣﻲ ﺗﻮﺍﻥ ﻳﻚ ﺍﻟﮕﻮ ﻣﺸﺨﺺ ﺩﺭ ﺷﻜﻞ ﻣﻮﺟﻲ ﻛﻪ ﺗﻮﺳﻂ ﺑﻴﺸﺘﺮ ﺳﺎﺯﻫﺎ ﻣﻮﺳﻴﻘﻲ ﺍﻳﺠﺎﺩ ﻣﻲﺷﻮﺩ ،ﻣﺸﺎﻫﺪﻩ ﻛﺮﺩ .ﻃﻮﻝ ﻣﻮﺝ ﻳﻚ ﺻﻮﺕ ﺍﻟﻜﺘﺮﻳﻜﻲ ، l ،ﺩﺭ ﻣﻘﻴﺎﺱ ﻣﻴﻠﻲ ﺛﺎﻧﻴﻪ ﻳﺎ ﻣﻴﻜﺮﻭﺛﺎﻧﻴﻪ ﺑﻴﺎﻥ ﻣﻲ ﺷﻮﺩ .ﻓﺮﻛﺎﻧﺲ ،F،ﻛﻪ ﺑﺎ ﻭﺍﺣﺪ ﻫﺮﺗﺰ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮ ﻣﻲﺷﻮﺩ 1 )ﺗﻌﺪﺍﺩ ﺩﻭﺭ ﺩﺭ ﻫﺮ ﺛﺎﻧﻴﻪ( ﻣﻌﻜﻮﺱ lﻣﻲ ﺑﺎﺷﺪ ،ﻳﻌﻨﻲ l ﺻﺪﺍ ﺑﺸﺮ ﻳﺎ ﺻﺪﺍﻫﺎ ﺗﻮﻟﻴﺪ ﺷﺪﻩ ﺑﻪ ﻭﺳﻴﻠﻪ ﺳﺎﺯﻫﺎ ﻣﻮﺳﻴﻘﻲ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺑﻪ ﻳﻚ ﻣﻮﺝ ﭘﺎﻳﻪ ﻭ ﻣﻮﺟﻬﺎ ﻣﺘﻌﺪﺩ ﺍﻟﺤﺎﻗﻲ ﺩﻳﮕﺮ ﺗﻘﺴﻴﻢ ﺷﻮﻧﺪ. = .F ﻣﻮﺟﻬﺎ ﺍﻟﺤﺎﻗﻲ ﻛﻪ ﺑﻪ ﻣﻮﺝ ﭘﺎﻳﻪ ﺍﻋﻤﺎﻝ ﺷﺪﻩ ﺍﻧﺪ overtone ،ﻧﺎﻣﻴﺪﻩ ﻣﻲ ﺷﻮﻧﺪOverton .ﻫﺎ ﻣﻮﺟﻬﺎ ﻓﺮﻛﺎﻧﺲ ﺑﺎﻻﺗﺮ ﻣﻲﺑﺎﺷﻨﺪ ﻭ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻫﺎﻳﻲ ﻛﻪ ﺿﺮﺍﻳﺒﻲ ﺍﺯ ﻣﻮﺝ ﭘﺎﻳﻪ ﻣﻲ ﺑﺎﺷﻨﺪ )ﻫﺎﺭﻣﻮﻧﻴﻚ ﻫﺎ( ﺑﻪ ﺻﺪﺍ ،ﻣﺸﺨﺼﺎﺕ ﻳﻚ ﺻﻮﺕ ﺑﺸﺮ ﻳﺎ ﺻﻮﺕ ﺳﺎﺯﻫﺎ ﻣﻮﺳﻴﻘﻲ ﺭﺍ ﻣﻲ ﺑﺨﺸﻨﺪ .ﻫﻨﮕﺎﻣﻲ ﻛﻪ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺻﻮﺕ ﺑﻪ ﺳﻴﮕﻨﺎﻟﻬﺎ ﺩﻳﺠﻴﺘﺎﻝ ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ ،ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻣﻮﺭﺩﻧﻴﺎﺯ ﺑﺴﺘﮕﻲ ﺑﻪ ﻓﺮﻛﺎﻧﺴﻬﺎ overtoneﻫﺎ ﻣﻮﺟﻮﺩ ﺩﺭ ﺳﻴﮕﻨﺎﻝ ﺩﺍﺭﺩ. 1 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 ﺩﺭ ﺍﻳﻦ ﺁﺯﻣﺎﻳﺶ ﺷﻤﺎ ﺍﻣﻜﺎﻥ ﺑﺎﺯ ﺑﺎ ﺳﻴﮕﻨﺎﻟﻬﺎ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﺩﺭ ﻧﺮﺥ ﻫﺎ ﻣﺘﻔﺎﻭﺕ ﻧﻤﻮﻧﻪﺑﺮﺩﺍﺭ ﺭﺍ ﺩﺍﺭﻳﺪ ،ﻛﻪ ﻛﻴﻔﻴﺖ ﻫﺎ ﻣﺨﺘﻠﻔﻲ ﺍﺯ ﺻﻮﺕ ﺭﺍ ﻋﺮﺿﻪ ﻣﻲ ﻛﻨﻨﺪ. -٢ﺗﺌﻮﺭ -١-٢ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﭘﻴﻮﺳﺘﻪ ﻭ ﺗﺌﻮﺭ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﺳﻴﮕﻨﺎﻟﻬﺎ ﺻﻮﺕ ﺍﺯ ﻧﻮﻉ ﺳﻴﮕﻨﺎﻟﻬﺎ ﭘﻴﻮﺳﺘﻪ )ﺁﻧﺎﻟﻮﮒ( ﻫﺴﺘﻨﺪ ﻛﻪ ﺑﻪ ﺗﺪﺭﻳﺞ ﺑﺎ ﻧﻘﺼﺎﻥ ﻳﺎﻓﺘﻦ ﻣﻨﺒﻊ ﺻﺪﺍ ،ﺍﻓﺖ ﺩﺍﻣﻨﻪ ﭘﻴﺪﺍ ﻣﻲﻛﻨﻨﺪ .ﺍﺯ ﺳﻮ ﺩﻳﮕﺮ ،ﻛﺎﻣﭙﻴﻮﺗﺮﻫﺎ ،ﺩﺍﺩﻩ ﻫﺎ ﺧﻮﺩ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺩﻳﺠﻴﺘﺎﻝ ﺫﺧﻴﺮﻩ ﻣﻲ ﻛﻨﻨﺪ :ﻳﻚ ﺭﺷﺘﻪ streamﺍﺯ ﺑﻴﺘﻬﺎ ﺻﻔﺮ ﻭ ﻳﻚ .ﺩﺍﺩﻩ ﻫﺎ ﺩﻳﺠﻴﺘﺎﻝ ﻃﺒﻴﻌﺘﺎﹰ ﮔﺴﺴﺘﻪ ﻫﺴﺘﻨﺪ ﺯﻳﺮﺍ ﻣﻘﺪﺍﺭ ” “0ﻳﺎ ” “1ﺩﺍﺩﺓ ﺩﻳﺠﻴﺘﺎﻝ ﻓﻘﻂ ﺩﺭ ﻳﻚ ﻟﺤﻈﺔ ﻣﺸﺨﺺ ﻣﻌﺘﺒﺮ ﻣﻲ ﺑﺎﺷﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ،ﺳﻴﮕﻨﺎﻝ ﺻﻮﺕ ﺁﻧﺎﻟﻮﮒ ﻛﻪ ﭘﻴﻮﺳﺘﻪ ﺍﺳﺖ ﺑﺎﻳﺪ ﺑﻪ ﻓﺮﻡ ﺩﻳﺠﻴﺘﺎﻟﻲ ﻧﺎﭘﻴﻮﺳﺘﻪ ﺗﺒﺪﻳﻞ ﺷﻮﺩ ﺗﺎ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺗﻮﺍﻧﺎﻳﻲ ﺫﺧﻴﺮﻩ ﻳﺎ ﭘﺮﺩﺍﺯﺵ ﺻﻮﺕ ﺭﺍ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ .ﺍﻟﺒﺘﻪ ﺩﺍﺩﺓ ﺩﻳﺠﻴﺘﺎﻝ ﺩﻭﺑﺎﺭﻩ ﺑﺎﻳﺪ ﺑﻪ ﻓﺮﻡ ﺁﻧﺎﻟﻮﮒ ﺗﺒﺪﻳﻞ ﺷﻮﺩ ﺗﺎ ﺍﺯ ﻃﺮﻳﻖ ﻳﻚ ﺳﻴﺴﺘﻢ ﺻﻮﺗﻲ ﻗﺎﺑﻞ ﺷﻨﻴﺪﻥ ﺑﺎﺷﺪ .ﺗﺒﺪﻳﻞ ﺩﻭ ﻃﺮﻓﻪ ﺑﻴﻦ ﺳﻴﮕﻨﺎﻟﻬﺎ ﺁﻧﺎﻟﻮﮒ ﻭ ﺩﻳﺠﻴﺘﺎﻝ ،ﻋﻤﻠﻴﺎﺕ ﺍﻭﻟﻴﻪ ﺗﻤﺎﻡ ﻛﺎﺭﺗﻬﺎ adapterﻭ ﻛﺎﺭﺗﻬﺎ ﺻﺪﺍ ﻣﻲ ﺑﺎﺷﺪ. -١-١-٢ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺗﻨﺎﻭﺑﻲ ﻭ ﺗﺒﺪﻳﻞ ﺁﻧﺎﻟﻮﮒ ﺑﻪ ﺩﻳﺠﻴﺘﺎﻝ ﺭﻭﺵ ﻣﻌﻤﻮﻝ ﻧﻤﺎﻳﺶ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺯﻣﺎﻥ – ﮔﺴﺴﺘﻪ ﺍﺯ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺯﻣﺎﻥ – ﭘﻴﻮﺳﺘﻪ ،ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻣﺘﻨﺎﻭﺏ )ﭘﺮﻳﻮﺩﻳﻚ( ﺍﺳﺖ ﻛﻪ ﺩﺭ ﺁﻥ ﻳﻚ ﺩﻧﺒﺎﻟﻪ ﺍﺯ ﻧﻤﻮﻧﻪ ﻫﺎ ] x[nﺍﺯ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺯﻣﺎﻥ ﭘﻴﻮﺳﺘﻪ ) xc(tﻣﻄﺎﺑﻖ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺑﺪﺳﺖ ﻣﻲ ﺁﻳﺪ. )(١-٢ ﺷﮑﻞ -٢ﻳﻚ ﻣﺒﺪﻝ ﺁﻧﺎﻟﻮﮒ ﺑﻪ ﺩﻳﺠﻴﺘﺎﻝ ) (A/Dﺍﻳﺪﻩ ﺁﻝ 1 ﺩﺭ ﺭﺍﺑﻄﺔ ) T ،(١-٢ﺗﻨﺎﻭﺏ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻭ ﻣﻌﻜﻮﺱ ﺁﻥ، T ﻫﺮﺗﺰ ) (Hzﻧﻤﺎﻳﺶ ﺩﺍﺩﻩ ﻣﻲ ﺷﻮﺩ ،ﻣﻲ ﺑﺎﺷﻨﺪ .ﻣﺎ ﻳﻚ ﺳﻴﺴﺘﻢ ﺭﺍ ﻛﻪ ﺭﺍﺑﻄﺔ ) (١-٢ﺭﺍ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﻚ ﻣﺒﺪﻝ ﺍﻳﺪﻩ ﺁﻝ ﭘﻴﻮﺳﺘﻪ – ﺑﻪ – ﮔﺴﺴﺘﻪ = ، f sﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺑﺮ ﺣﺴﺐ ﻧﻤﻮﻧﻪ ﺑﺮ ﺛﺎﻧﻴﻪ ﻛﻪ ﻣﻌﻤﻮﻻﹰ ﺑﺮ ﺣﺴﺐ ) (C/Dﻋﻤﻠﻲ ﻣﻲ ﻛﻨﺪ ﺩﺭ ﺷﻜﻞ ٢ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺍﻳﻢ .ﺑﺮﺍ ﺫﺧﻴﺮﺓ ﻣﻘﺎﺩﻳﺮ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﺗﻮﺳﻂ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺑﺎ ﺩﻗﺖ ﻣﺤﺪﻭﺩ ،ﻣﻘﺎﺩﻳﺮ ﭘﻴﻮﺳﺘﻪ ﺑﺎﻳﺪ ﺑﻪ ﻳﻚ ﺳﺮ ﻣﻘﺎﺩﻳﺮ ﺍﺯ ﭘﻴﺶ ﺗﻌﻴﻴﻦ ﺷﺪﻩ ﻛﻮﺍﻧﺘﻴﺰﻩ ﺷﻮﻧﺪ .ﻋﻤﻠﻴﺎﺕ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻭ ﻛﻮﺍﻧﺘﻴﺰﺍﺳﻴﻮﻥ ﺩﻗﻴﻘﺎﹰ ﻫﻤﺎﻥ ﻋﻤﻠﻴﺎﺗﻲ ﺍﺳﺖ ﻛﻪ ﺩﺭ ﻣﺒﺪﻝ ﺁﻧﺎﻟﻮﮒ – ﺑﻪ – ﺩﻳﺠﻴﺘﺎﻝ ،ﻳﺎ ﺩﻳﺠﻴﺘﺎﻝ – ﺑﻪ – ﺁﻧﺎﻟﻮﮒ ،ﺑﻪ ﺻﻮﺭﺕ ﺑﺮﻋﻜﺲ ،ﺻﻮﺭﺕ ﻣﻲ ﮔﻴﺮﺩ .ﺑﻴﺸﺘﺮ ﻛﺎﺭﺗﻬﺎ ﺻﺪﺍ ﻗﺎﺑﻠﻴﺖ ﺫﺧﻴﺮﻩ ﺻﺪﺍ ﺭﺍ ﻫﻢ ﺑﻪ ﺻﻮﺭﺕ ٨ﺑﻴﺘﻲ ﻭ ﻫﻢ ١٦ﺑﻴﺘﻲ ،ﺑﺮﺍ ﻛﻴﻔﻴﺖ ﻫﺎ ﺑﺎﻻﺗﺮ ﺻﻮﺗﻲ ﺩﺍﺭﻧﺪ. -٢-١-٢ﺗﺌﻮﺭ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﺗﺌﻮﺭ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺑﻪ ﻣﺎ ﻣﻲ ﮔﻮﻳﺪ ﻛﻪ ﭼﻪ ﺍﻧﺪﺍﺯﻩ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻣﺎ ﻣﻲ ﺗﻮﺍﻧﺪ ﺳﺮﻳﻊ ﺑﺎﺷﺪ ﺗﺎ ﻧﻤﺎﻳﺶ ﺑﻬﺘﺮ ﺍﺯ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻴﻢ. ﻣﻲ ﺩﺍﻧﻴﻢ ﻛﻪ ﺍﮔﺮ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺗﻐﻴﻴﺮﺍﺕ ﺧﻴﻠﻲ ﺳﺮﻳﻊ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ ،ﻣﺎ ﻫﻢ ﺑﺎﻳﺪ ﺩﺭ ﻓﺎﺻﻠﻪ ﻫﺎ ﻧﺰﺩﻳﻜﺘﺮ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻛﻨﻴﻢ ﺗﺎ ﻫﻴﭻ ﺗﻐﻴﻴﺮ ﻣﻴﺎﻧﻲ ﺭﺍ ﺍﺯ ﺩﺳﺖ ﻧﺪﻫﻴﻢ .ﻳﻚ ﻣﺜﺎﻝ ﺧﻮﺏ ،ﻧﻤﺎﻳﺶ ﺳﻬﺎﻡ ﺑﻮﺭﺱ ﺑﺮ ﺣﺴﺐ ﻧﻤﺎﻳﺶ ﻭﺿﻊ ﻫﻮﺍ ﺍﺳﺖ .ﺍﺯ ﺁﻧﺠﺎ ﻛﻪ ﺗﻐﻴﻴﺮﺍﺕ ﺑﻮﺭﺱ ﺑﺴﻴﺎﺭ 2 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 ﺳﺮﻳﻊ ﺍﺳﺖ ،ﺑﻪ ﻃﻮﺭ ﻣﻌﻤﻮﻝ ﺑﺎﻳﺪ ﻫﺮﭼﻨﺪ ﺩﻗﻴﻘﻪ ﻳﻜﺒﺎﺭ ﺍﻋﻼﻡ ﺷﻮﺩ ،ﺍﺯ ﻃﺮﻑ ﺩﻳﮕﺮ ،ﺩﺭﺑﺎﺭﺓ ﻭﺿﻊ ﻫﻮﺍ ،ﻧﻤﺎﻳﺶ ﺍﻳﻦ ﺗﻐﻴﻴﺮﺍﺕ ﺩﺭ ﻫﺮ ﺳﺎﻋﺖ ﻛﺎﻓﻲ ﺧﻮﺍﻫﺪ ﺑﻮﺩ. ﺣﺎﻻ ،ﻧﮕﺎﻫﻲ ﺑﻪ ﺗﺌﻮﺭ ﺗﻨﺎﻭﺏ Tﻣﻲ ﺍﻧﺪﺍﺯﻳﻢ ﻛﻪ ﭼﻪ ﺍﻧﺪﺍﺯﻩ ﺩﻗﻴﻖ ﺑﺎﻳﺪ ﺁﻥ ﺭﺍ ﺗﻌﻴﻴﻦ ﻛﺮﺩ. ﺗﺌﻮﺭ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ :ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ ﻛﻪ ) xc(tﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺑﺎ ﭘﻬﻨﺎ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﻭ ) X c ( jWﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺁﻥ ﺍﺳﺖ ﻛﻪ ﺷﺮﻁ ﺯﻳﺮ ﺭﺍ ﺑﺮﺁﻭﺭﺩﻩ ﻣﻲ ﻛﻨﺪ. )(٢-٢ ﭘﺲ ) xc(tﻣﻨﺤﺼﺮﹰﺍ ﺗﻮﺳﻂ ﻧﻤﻮﻧﻪ ﻫﺎ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ) n = 0, ±1,±2,..., x[n] = xc (nTﺑﻴﺎﻥ ﻣﻲ ﺷﻮﺩ ﺑﻪ ﺷﺮﻃﻲ ﻛﻪ ﺗﻨﺎﻭﺏ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺁﻥ ﻳﺎ W sﺷﺮﻁ ﺯﻳﺮ ﺭﺍ ﺑﺮﺁﻭﺭﺩﻩ ﻛﻨﺪ. )(٣-٢ ﻧﺘﻴﺠﻪ ﻓﻮﻕ ﺍﺑﺘﺪﺍ ﺗﻮﺳﻂ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﺑﺪﺳﺖ ﺁﻣﺪ ﻛﻪ ﺑﻪ ﻧﺎﻡ ﺗﺌﻮﺭ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﻣﺸﻬﻮﺭ ﺷﺪ .ﻓﺮﻛﺎﻧﺲ 2W Nﻛﻪ ﺑﺎﻳﺪ ﺍﺯ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻛﻮﭼﻜﺘﺮ ﺑﺎﺷﺪ ،ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﻧﺎﻣﻴﺪﻩ ﻣﻲﺷﻮﺩ .ﺑﺮﺍ ﺍﺛﺒﺎﺕ ﺗﺌﻮﺭ ﻓﻮﻕ X(ejw) ،ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺯﻣﺎﻥ – ﮔﺴﺴﺘﻪ ﺩﻧﺒﺎﻟﺔ ] x[nﺭﺍ ﺑﺮ ﺣﺴﺐ ) ، X c ( jWﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﭘﻴﻮﺳﺘﻪ ) ،xc(tﺑﺪﺳﺖ ﻣﻲ ﺁﻭﺭﻳﻢ. ﺑﻪ ﻫﻤﻴﻦ ﻣﻨﻈﻮﺭ ﺳﻴﮕﻨﺎﻝ ﻗﻄﺎﺭ ﺿﺮﺑﻪ ﺯﻳﺮ ﺭﺍ ﺩﺭ ﻧﻈﺮ ﻣﻲ ﮔﻴﺮﻳﻢ. )(٤-٢ ﻣﻲ ﺗﻮﺍﻥ ﻧﺸﺎﻥ ﺩﺍﺩ ﻛﻪ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ) xs(tﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲ ﺑﺎﺷﺪ: )(٥-٢ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﻌﺮﻳﻒ )(٦-٢ )(٧-٢ ﻣﺸﺎﻫﺪﻩ ﻣﻲ ﺷﻮﺩ )(٨-٢ ﺍﺯ ﺭﻭﺍﺑﻂ ) (٥-٢ﻭ ) (٨-٢ﻧﺘﻴﺠﻪ ﻣﻲ ﮔﻴﺮﻳﻢ ﻛﻪ )(٩-٢ 3 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 ﺍﺯ ﺭﺍﺑﻄﻪ ) (٩-٢ﻣﺸﺎﻫﻪ ﻣﻲ ﺷﻮﺩ ﻛﻪ ) X(ejwﻣﺠﻤﻮﻉ ﺗﺮﻣﻬﺎ ﻣﻘﻴﺎﺱ ﺑﻨﺪ ﺷﺪﻩ ﻭ ﺷﻴﻔﺖ ﻳﺎﻓﺘﺔ ) X c ( jWﻣﻲ ﺑﺎﺷﺪ .ﻣﻘﻴﺎﺱ ﻓﺮﻛﺎﻧﺲ w ﺗﻮﺳﻂ T = Wﺗﻌﻴﻴﻦ ﻣﻲ ﺷﻮﺩ ،ﺩﺭ ﺣﺎﻟﻲ ﻛﻪ ﺷﻴﻔﺖ ﻫﺎ ﺑﺮﺍﺑﺮ ﺑﺎ ﺿﺮﺍﻳﺐ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ 2p T = Wsﻣﻲ ﺑﺎﺷﻨﺪ. -٣-١-٢ﺑﺎﺯﺳﺎﺯ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺍﺯ ﻧﻤﻮﻧﻪ ﻫﺎﻳﺶ )ﺗﺒﺪﻳﻞ ﺩﻳﺠﻴﺘﺎﻝ ﺑﻪ ﺁﻧﺎﻟﻮﮒ( Ws ﺍﺯ ﺷﮑﻞ ،٥ﺍﮔﺮ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺑﺎﺷﺪ ،ﻳﻌﻨﻲ W > W Nﺑﺮﺍ ، xc ( jW) = 0ﻛﻪ 2 ﺩﻭﺑﺎﺭﻩ ﺍﺯ ) X(jwﺑﺪﺳﺖ ﺁﻭﺭﺩ .ﺑﻪ ﻃﻮﺭ ﺩﻗﻴﻘﺘﺮ ﺍﺑﺘﺪﺍ ﻣﻲ ﺗﻮﺍﻧﻴﻢ ﺳﻴﮕﻨﺎﻝ ﻗﻄﺎﺭ ﺿﺮﺑﻪ ) xs(tﺭﺍ ﺑﻮﺟﻮﺩ ﺁﻭﺭﻳﻢ. ، W N £ﻣﻲ ﺗﻮﺍﻥ ) X c ( jWﺭﺍ )(١٠-۲ Ws p ﺳﭙﺲ ﻣﻲ ﺗﻮﺍﻧﻴﻢ ﻳﻚ ﻓﻴﻠﺘﺮ ﺍﻳﺪﻩ ﺁﻝ ﭘﺎﻳﻴﻦ ﮔﺬﺭ ﺭﺍ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻗﻄﻊ = 2 T = W cﺑﻪ ) xs(tﺍﻋﻤﺎﻝ ﻛﻨﻴﻢ. )(١١-٢ ﺍﮔﺮ ) X c ( jWﭘﻬﻨﺎ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺑﺎﺷﺪ ﺁﻧﮕﺎﻩ ﺳﻴﮕﻨﺎﻝ ﻓﻴﻠﺘﺮ ﺷﺪﺓ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺁﻥ ﺩﻗﻴﻘﺎﹰ ﺑﺮﺍﺑﺮ ) X c ( jWﺍﺳﺖ .ﻳﻌﻨﻲ: ﺩﺭ ﺣﻮﺯﻩ ﺯﻣﺎﻥ ،ﻓﻴﻠﺘﺮ ﺑﺎﺯﺳﺎﺯ ﺍﻳﺪﻩ ﺁﻝ ) hr (tﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲ ﺑﺎﺷﺪ. )(۱۲-٢ ﺳﻴﮕﻨﺎﻝ ﺑﺎﺯﺳﺎﺯ ﺷﺪﻩ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ )(١٣-٢ ﺷﮑﻞ ،٣ﻧﻤﻮﺩﺍﺭ ﺑﻠﻮﻛﻲ ﺍﻳﻦ ﻓﺮﺁﻳﻨﺪ ﺑﺎﺯﺳﺎﺯ ﺭﺍ ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ. ﺍﺯ ﻧﺘﻴﺠﻪ ﻓﻮﻕ ،ﻧﻤﻮﻧﻪ ﻫﺎ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺯﻣﺎﻥ ﭘﻴﻮﺳﺘﻪ ﻛﻪ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻛﺎﻓﻲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﺍﻧﺪ )ﻳﻌﻨﻲ ،( W s > 2W Nﺑﺮﺍ ﻧﻤﺎﻳﺶ ﺳﻴﮕﻨﺎﻝ ﺍﺻﻠﻲ ﻛﺎﻓﻲ ﻫﺴﺘﻨﺪ ﭘﺲ ﺳﻴﮕﻨﺎﻝ ﺍﺻﻠﻲ ﺍﺯ ﺭﻭ ﻧﻤﻮﻧﻪ ﻫﺎ ﻭ ﺩﺍﻧﺴﺘﻦ ﭘﺮﻳﻮﺩ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻗﺎﺑﻞ ﺑﺎﺯﺳﺎﺯ ﺍﺳﺖ. ﺩﺭ ﻋﻤﻞ ،ﻓﻴﻠﺘﺮ ﺍﻳﺪﻩ ﺁﻝ ﭘﺎﻳﻴﻦ ﮔﺬﺭ ﻗﺎﺑﻞ ﭘﻴﺎﺩﻩ ﺳﺎﺯ ﻧﻴﺴﺖ ﻭ ﻣﺎ ﺑﺎﻳﺪ ﺗﻘﺮﻳﺐ ﺑﺰﻧﻴﻢ .ﻋﻼﻭﻩ ﺑﺮ ﺍﻳﻦ ،ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﻭﺍﻗﻌﻲ ﻣﻤﻜﻦ ﺍﺳﺖ ﭘﻬﻨﺎ ﺑﺎﻧﺪ ﺯﻳﺎﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ ﻛﻪ ﺗﻮﺳﻂ ﺳﻴﺴﺘﻢ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻗﺎﺑﻞ ﺍﺟﺮﺍ ﻧﺒﺎﺷﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﺩﺭ ﻋﻤﻞ ﺑﺎﻳﺪ ﺍﺑﺘﺪﺍ ﻳﻚ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﭘﺎﻳﻴﻦ ﮔﺬﺭ ﻭ ﺑﺎ Ws W ﻓﺮﻛﺎﻧﺲ ﻗﻄﻊ W c £ sﺭﺍ ﺍﻋﻤﺎﻝ ﻛﺮﺩ ) 2 2 4 .( W N £ CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 ﺷﮑﻞ) -٣ﺍﻟﻒ( ﻳﻚ ﺳﻴﺴﺘﻢ ﺑﺎﺯﺳﺎﺯ ﺳﻴﮕﻨﺎﻝ ﺑﺎﻧﺪ ﻣﺤﺪﻭﺩ ﺍﻳﺪﻩ ﺁﻝ )ﺏ( ﭘﺎﺳﺦ ﻓﺮﻛﺎﻧﺴﻲ ﻳﻚ ﻓﻴﻠﺘﺮ ﺑﺎﺯﺳﺎﺯ ﺍﻳﺪﻩ ﺁﻝ )ﺝ( ﭘﺎﺳﺦ ﺿﺮﺑﻪ ﺑﻪ ﻳﻚ ﻓﻴﻠﺘﺮ ﺑﺎﺯﺳﺎﺯ ﺍﻳﺪﻩ ﺁﻝ -٢-٢ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﮐﺎﻫﺸﻲ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻳﻚ ﺩﻧﺒﺎﻟﻪ ﻣﻲ ﺗﻮﺍﻧﺪ ﺑﺎ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺍﺯ ﺁﻥ ﻛﺎﻫﺶ ﻳﺎﺑﺪ. )(١٤-٢ )xd[n] = x[nM] = xc(nMT ﺩﺭ ﺭﺍﺑﻄﺔ ) (١٤-٢ﻣﺸﺎﻫﺪﻩ ﻣﻲ ﺷﻮﺩ ﻛﻪ ] xd[nﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﻣﺴﺘﻘﻴﻢ ﺑﺎ ﺗﻨﺎﻭﺏ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻳﻚ T ¢ = MTﺍﺯ ﺳﻮ )xc(t ﺑﺪﺳﺖ ﺁﻭﺭﺩ .ﺑﻪ ﻋﻼﻭﻩ ،ﺍﮔﺮ 5 X c ( jW) = 0ﺑﺮﺍ | W |> WNﺁﻧﮕﺎﻩ xd[n] ،ﻳﻚ ﻧﻤﺎﻳﺶ ﺩﻗﻴﻖ ﺍﺯ ) xc(tﺍﮔﺮ CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 2p 1 = W s > 2W N T M ﺣﺪﺍﻗﻞ Mﺑﺮﺍﺑﺮ ﻧﺮﺥ ﻧﺎﻳﻜﻮﺋﻴﺴﺖ ﺑﺎﺷﺪ .ﺑﻪ ﻃﻮﺭ ﻛﻠﻲ ،ﺑﺮﺍ ﺟﻠﻮﮔﻴﺮ ﺍﺯ ﺗﺪﺍﺧﻞ ،ﭘﻬﻨﺎ ﺑﺎﻧﺪ ﺩﻧﺒﺎﻟﻪ ﺍﺑﺘﺪﺍ ﺑﺎﻳﺪ ﺑﻪ ﻭﺳﻴﻠﻪ ﻓﻴﻠﺘﺮ ﺯﻣﺎﻥ – = W sﺑﺎﺷﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ،ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺭﺍ ﻣﻲ ﺗﻮﺍﻥ ﺑﺎ ﺿﺮﻳﺐ Mﻛﺎﻫﺶ ﺩﺍﺩ ﺍﮔﺮ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺍﻭﻟﻴﻪ ﮔﺴﺴﺘﻪ ﺗﺎ Mﺑﺮﺍﺑﺮ ﻛﺎﻫﺶ ﻳﺎﺑﺪ .ﻧﻤﻮﺩﺍﺭ ﺑﻠﻮﻛﻲ ﻳﻚ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ – ﻛﺎﻫﺸﻲ ﺩﺭ ﺷﮑﻞ ٤ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ. ﺷﮑﻞ -٤ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﮐﺎﻫﺸﻲ ﺑﺎ ﺿﺮﻳﺐ ،Mﻛﻪ ﺩﺭ ﺁﻥ ) H(ejwﻳﻚ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﺍﺳﺖ .ﺩﺭ ﺣﺎﻟﺖ ﺍﻳﺪﻩ ﺁﻝ ) H(ejwﺑﺎﻳﺪ ﻳﻚ ﻓﻴﻠﺘﺮ p ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻗﻄﻊ M ﺑﺮﺍ ﺗﻌﻴﻴﻦ ﺭﺍﺑﻄﻪ ﺑﻴﻦ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ] x[nﻭ ] ،xd[nﺍﺑﺘﺪﺍ ﺑﺎﻳﺪ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺯﻣﺎﻥ ﮔﺴﺴﺘﻪ ) x[n]=xc(nTﺭﺍ ﺑﻪ ﻳﺎﺩ ﺁﻭﺭﻳﻢ. = W cﺑﺎﺷﺪ. )(١٥-٢ ﻣﺸﺎﺑﻪ ﺭﺍﺑﻄﻪ ﺑﺎﻻ ،ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ﺯﻣﺎﻥ – ﮔﺴﺴﺘﻪ ) xd[n]=x[nw]=xc(nTﻳﺎ T ¢ = MTﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲ ﺑﺎﺷﺪ. )(١٦-٢ ﺍﻧﺪﻳﺲ ﺟﻤﻊ rﺩﺭ ﺭﺍﺑﻄﺔ ) (١٦-٢ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺑﻴﺎﻥ ﻣﻲ ﺷﻮﺩ. )(١٧-٢ r = i + BM ﻛﻪ Bﻭ iﺍﻋﺪﺍﺩ ﺻﺤﻴﺢ ﻣﻲ ﺑﺎﺷﻨﺪ - ¥ < B < -¥ ،ﻭ 0<i<M-1ﺍﺳﺖ. ﻭﺍﺿﺢ ﺍﺳﺖ ﻛﻪ rﻫﻨﻮﺯ ﻳﻚ ﻋﺪﺩ ﺻﺤﻴﺢ ﺩﺭ ﺩﺍﻣﻨﺔ - ¥ﺗﺎ + ¥ﺍﺳﺖ ،ﺣﺎﻻ ﻣﻌﺎﺩﻟﻪ ) (۱۷-٢ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺑﻴﺎﻥ ﻛﺮﺩ. )(١٨-٢ ﻋﺒﺎﺭﺕ ﺩﺭﻭﻥ ﻛﺮﻭﺷﻪ ﺩﺭ ﺭﺍﺑﻄﺔ ) (١٨-٢ﺍﺯ ﺭﺍﺑﻄﺔ ) (١٥-٢ﻗﺎﺑﻞ ﺟﺎﻳﮕﺰﻳﻨﻲ ﺍﺳﺖ. )(١٩-٢ ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﺎ ﻣﻲ ﺗﻮﺍﻧﻴﻢ ﺭﺍﺑﻄﺔ ) (١٨-٢ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺑﺎﺯﻧﻮﻳﺴﻲ ﻛﻨﻴﻢ. )(٢٠-٢ 6 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 ﻛﻪ ﺩﺭ ﺷﻜﻞ ) (٥ﺑﺮﺍ M=2ﻭ ﺩﺭ ﺷﻜﻞ ) (٦ﺑﺮﺍ M=3ﻧﻤﺎﻳﺶ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .ﻣﻲ ﺗﻮﺍﻥ ﻣﺸﺎﻫﺪﻩ ﻛﺮﺩ ﺯﻣﺎﻧﻲ ﻛﻪ ،M=2ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﮐﺎﻫﺸﻲ ﺑﺎﻋﺚ ﻫﻤﭙﻮﺷﺎﻧﻲ ﻃﻴﻒ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﻧﻤﻲﺷﻮﺩ .ﺍﺯ ﻃﺮﻑ ﺩﻳﮕﺮ ،ﻭﻗﺘﻲ ،M=3ﻫﻤﭙﻮﺷﺎﻧﻲ ﺑﻴﻦ ﻃﻴﻔﻬﺎ ﺗﻜﺮﺍﺭ ﺷﺪ )ﻫﻤﺎﻥ ﺗﺪﺍﺧﻞ( ﺭﺥ ﻣﻲﺩﻫﺪ .ﺑﺮﺍ ﺟﻠﻮﮔﻴﺮ ﺍﺯ ﺗﺪﺍﺧﻞ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ ﻗﺒﻞ ﺍﺯ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﮐﺎﻫﺸﻲ ﺍﻟﺰﺍﻣﻲ ﺍﺳﺖ. ﺷﮑﻞ -٥ﻧﻤﺎﻳﺶ ﺣﻮﺯﻩ ﻓﺮﻛﺎﻧﺲ ﺩﺭ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻛﺎﻫﺸﻲ )(M=2 7 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 ﺷﮑﻞ -٦ﻧﻤﺎﻳﺶ ﺣﻮﺯﻩ ﻓﺮﻛﺎﻧﺲ ﺩﺭ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻛﺎﻫﺸﻲ )(M=2 ) (a)-(cﺑﺪﻭﻥ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ ،ﺑﻨﺎﺑﺮﺍﻳﻦ ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﻛﺎﻫﺸﻲ ﺗﺪﺍﺧﻞ ﺩﺍﺭﺩ. ) (d)-(fﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻛﺎﻫﺸﻲ ﺑﺎ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ ﺑﺮﺍ ﺟﻠﻮﮔﻴﺮ ﺍﺯ ﺗﺪﺍﺧﻞ. -٣-٢ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺍﻓﺰﺍﻳﺸﻲ ﺳﻴﮕﻨﺎﻟﻬﺎ ﺩﻳﺠﻴﺘﺎﻟﻲ ﻛﺎﻫﺶ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﮔﺴﺴﺘﻪ – ﺯﻣﺎﻥ ﺑﺎ ﺿﺮﻳﺐ ﺻﺤﻴﺢ ﺷﺎﻣﻞ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻳﻚ ﺩﻧﺒﺎﻟﻪ ،ﻣﺸﺎﺑﻪ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺳﻴﮕﻨﺎﻝ ﭘﻴﻮﺳﺘﻪ ﻣﻲ ﺑﺎﺷﺪ .ﺟﺎ ﺗﻌﺠﺐ ﻧﻴﺴﺖ ﻛﻪ ﺍﻓﺰﺍﻳﺶ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻧﻴﺰ ﺑﺎ ﻋﻤﻠﻴﺎﺕ ﻣﺸﺎﺑﻪ ﺗﺒﺪﻳﻞ D/Cﺳﺮ ﻭ ﻛﺎﺭ ﺩﺍﺭﺩ .ﺑﺮﺍ ﻣﺸﺎﻫﺪﻩ ﺍﻳﻦ 8 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 ﻣﻄﻠﺐ ،ﺳﻴﮕﻨﺎﻝ ] x[nﺭﺍ ﻛﻪ ﻣﻲ ﺧﻮﺍﻫﻴﻢ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺁﻥ ﺭﺍ ﺑﺎ ﺿﺮﻳﺐ Lﺍﻓﺰﺍﻳﺶ ﺩﻫﻴﻢ ،ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ .ﺍﮔﺮ ﻣﺎ ﺳﻴﮕﻨﺎﻝ ﭘﻴﻮﺳﺘﻪ ) xc(tﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﻢ ﻫﺪﻑ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ ﻧﻤﻮﻧﻪ ﻫﺎ )(٢١-٢ )(٢٢-٢ ﺍﺯ ﻧﻤﻮﻧﻪ ﻫﺎ ﺩﻧﺒﺎﻟﺔ ﻣﺎ ﻋﻤﻠﻴﺎﺕ ﺍﻓﺰﺍﻳﺶ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺭﺍ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺍﻓﺰﺍﻳﺸﻲ ﻣﻲ ﻧﺎﻣﻴﻢ. énù æ nT ö xi[n] = x ê ú = x c ç )÷ , n = 0,± L,±2L,... (۲۳ -٢ ëLû è L ø ﺷﮑﻞ -۷:ﭘﺮﻭﺳﺔ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺍﻓﺰﺍﻳﺸﻲ )ﺩﺭﻭﻥ ﻳﺎﺑﻲ( ﺷﮑﻞ -٧ﻳﻚ ﺳﻴﺴﺘﻢ ﺭﺍ ﺑﺮﺍ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ ] xi[nﺍﺯ ] x[nﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﭘﺮﺩﺍﺯﺵ ﺯﻣﺎﻥ – ﮔﺴﺴﺘﻪ ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ .ﺳﻴﺴﺘﻢ ﺳﻤﺖ ﭼﭗ ﻳﻚ ﺍﻓﺰﺍﻳﻨﺪﺓ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻳﺎ ﺑﻪ ﻃﻮﺭ ﺳﺎﺩﻩ ﻳﻚ ﺍﻓﺰﺍﻳﻨﺪﻩ ﻧﺎﻣﻴﺪﻩ ﻣﻲ ﺷﻮﺩ. ﺧﺮﻭﺟﻲ ﺁﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲ ﺑﺎﺷﺪ. )(٢٤-٢ ﻳﺎ ﺑﻪ ﺑﻴﺎﻥ ﺩﻳﮕﺮ )(٢٥-٢ ﺗﺒﺪﻳﻞ ﻓﻮﺭﻳﻪ ] xe[nﻣﻲ ﺗﻮﺍﻧﺪ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺑﻴﺎﻥ ﺷﻮﺩ. )(٢٦-٢ ﺭﺍﺑﻄﻪ ﺑﺎﻻ ﺩﺭ ﺷﮑﻞ (b)-٨ﻭ (c )-٨ﻧﻤﺎﻳﺶ ﺩﺍﻩ ﺷﺪﻩ ﺍﺳﺖ .ﺑﺮﺍ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ ] xi[nﺍﺯ ] ،xe[nﺍﺣﺘﻴﺎﺝ ﺑﻪ ﺍﻋﻤﺎﻝ ﻳﻚ ﻓﻴﻠﺘﺮ ﺍﻳﺪﻩ ﺍﻝ p ﭘﺎﺋﻴﻦ ﮔﺬﺭ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻗﻄﻊ L 9 = W cﻭ ﺑﺎ ﺑﻬﺮﺓ Lﺩﺍﺭﻳﻢ )ﻛﻪ ﺩﺭ ﺷﻜﻞ (e),(d)-٨ﻣﺸﺎﻫﺪﻩ ﻣﻲ ﺷﻮﺩ( CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 ﺷﮑﻞ -٨ﻧﻤﺎﻳﺶ ﺩﺍﻣﻨﻪ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺍﻓﺰﺍﻳﺸﻲ 10 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 -٣ﺁﺯﻣﺎﻳﺶ ﻫﺎ -١-٣ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺻﻮﺕ ﺩﺭ ﻓﺮﻛﺎﻧﺴﻬﺎ ﻣﺘﻔﺎﻭﺕ ﺩﺭ ﺍﻳﻦ ﺗﺠﺮﺑﻪ ،ﺷﻤﺎ ﺻﺪﺍ ﺧﻮﺩ ﺭﺍ ﺿﺒﻂ ﺧﻮﺍﻫﻴﺪ ﻛﺮﺩ، (١ﺻﺪﺍ ﺧﻮﺩ ﺭﺍ ﺿﺒﻂ ﻛﻨﻴﺪ. ﺍﻟﻒ( ﻣﻄﻤﺌﻦ ﺷﻮﻳﺪ ﻛﻪ ﺍﺭﺗﺒﺎﻁ ﻣﻴﻜﺮﻭﻓﻮﻥ ﺩﺭﺳﺖ ﺍﺳﺖ ﻳﻌﻨﻲ ﻣﻴﻜﺮﻭﻓﻮﻥ ﺑﻪ ” “MIC-inﺩﺭ ﻛﺎﺭﺕ ﺻﺪﺍ ﻣﺘﺼﻞ ﺷﺪﻩ ﺍﺳﺖ ،ﺩﺭ ﺳﻤﺖ ﭘﺸﺖ ﻛﺎﻣﭙﻴﻮﺗﺮ. ﺏ( ﺳﻪ ﭘﻨﺠﺮﻩ ” “sound recorderﺭﺍ ﺑﺎﺯ ﻛﻨﻴﺪ .ﺍﺑﺘﺪﺍ ﺭﻭ file-properties-convertﻛﻠﻴﻚ ﻛﻨﻴﺪ. ﺳﭙﺲ 8000Hz,8bit, Mono 8kB/sﺭﺍ ﺍﻧﺘﺨﺎﺏ ﻛﻨﻴﺪ ٥ .ﺛﺎﻧﻴﻪ ﺍﺯ ﺻﺪﺍ ﺧﻮﺩ ﺭﺍ ﺿﺒﻂ ﻛﻨﻴﺪ ﻭ ﺗﺤﺖ ﻋﻨﻮﺍﻥ ﻓﺎﻳﻞ rec8.wavﺩﺭ ﺁﺩﺭﺱ ﺧﻮﺩ ﺫﺧﻴﺮﻩ ﻛﻨﻴﺪ. ﺙ( ﺑﺮﺍ ﺩﻭﻣﻴﻦ ﻭ ﺳﻮﻣﻴﻦ ﺿﺒﻂ ﺻﺪﺍ ﺍﺯ ﻓﻮﺭﻣﺖ Mono 11 kB/sﻭ 11025Hz,8Bitﺭﺍ ﺍﺯ 22,050Hz,8bit, Mono 22 kB/sﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ :ﻓﺎﻳﻠﻬﺎ ﺭﺍ ﺗﺤﺖ ﻋﻨﻮﺍﻥ recll.wavﻭ rec22.wavﺫﺧﻴﺮﻩ ﻛﻨﻴﺪ. ﺕ( ﺻﺪﺍﻫﺎ ﺭﺍ ﻳﻜﻲ ﭘﺲ ﺍﺯ ﺩﻳﮕﺮ ﮔﻮﺵ ﺩﺍﺩﻩ ﻭ ﻛﻴﻔﻴﺖ ﺁﻧﻬﺎ ﺭﺍ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ: (٢ﺻﺪﺍ ﺭﺍ ﺍﺯ CD-Romﺿﺒﻂ ﻛﻨﻴﺪ. ﻳﻚ CDﺻﻮﺗﻲ ﺭﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ CD playerﭘﺨﺶ ﻛﻨﻴﺪ .ﭘﻨﺞ ﺛﺎﻧﻴﻪ ﺍﺯ ﺻﺪﺍ CDﺭﺍ ﺩﺭ ﻓﺮﻛﺎﻧﺴﻬﺎ 8kﻭ 22kﻭ 44kﺩﺭ 8bits/sampleﺿﺒﻂ ﻛﻨﻴﺪ .ﻓﺎﻳﻠﻬﺎ ﺭﺍ ﺑﻪ ﻓﺮﻣﺖ cd22.wav cd11.wavﻭ cd44.wavﺩﺭ ﺁﺩﺭﺱ ﺧﻮﺩ ﺫﺧﻴﺮﻩ ﻛﻨﻴﺪ. (٣ﺻﺪﺍ MIDIﺭﺍ ﺑﺮﺍ ﻛﺎﻣﭙﻴﻮﺗﺮ ﺧﻮﺩ ﺿﺒﻂ ﻛﻨﻴﺪ. ﻓﺎﻳﻞ MIDIﺭﺍ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ media playerﭘﺨﺶ ﻛﻨﻴﺪ ٥ .ﺛﺎﻧﻴﻪ ﺍﺯ ﻣﻮﺳﻴﻘﻲ MIDIﺭﺍ ﺩﺭ ﻓﺮﻛﺎﻧﺴﻬﺎ 11kﻭ 22kﻭ 44kﺿﺒﻂ ﻛﻨﻴﺪ .ﺳﭙﺲ ﻓﺎﻳﻠﻬﺎ ﺭﺍ ﺗﺤﺖ ﻋﻨﻮﺍﻥ .midi11.wav Midi22.wavﻭ midi44.wavﺩﺭ ﺁﺩﺭﺱ ﺧﻮﺩ ﺫﺧﻴﺮﻩ ﻛﻨﻴﺪ. -٤ﺣﺎﻻ ﺩﺭﺑﺎﺭﺓ ﻛﻴﻔﻴﺖ ﺻﺪﺍ ﺍﺯ ﻣﻨﺎﺑﻊ ﻭ ﻓﺮﻛﺎﻧﺴﻬﺎ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻣﺨﺘﻠﻒ ﻧﻈﺮ ﺩﻫﻴﺪ. -٥ﻣﺮﺍﺣﻞ ١ﺗﺎ ٤ﺭﺍ ﺑﺎ ﺗﻐﻴﻴﺮ 16bit/sampleﺑﻪ 8bit/sampleﺗﻜﺮﺍﺭ ﻛﻨﻴﺪ. -٢-٣ﭘﺮﺩﺍﺯﺵ ﺻﻮﺕ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ MATLAB ﺩﺭ ﺍﻳﻦ ﺁﺯﻣﺎﻳﺶ ،ﺷﻤﺎ ﺍﺣﺘﻴﺎﺝ ﺑﻪ ﻧﻮﺷﺘﻦ ﺑﺮﻧﺎﻣﻪ MATLABﺑﺮﺍ ﺣﻞ ﻣﺴﺄﻟﻪ ﺩﺍﺭﻳﺪ. -١ﻳﻚ ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﺩﺭ 22KHzﻭ ٨ﺑﻴﺘﻲ ﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ .ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺁﻥ ﺭﺍ ﺑﻪ ﻧﺼﻒ ﺑﺮﺳﺎﻧﻴﺪ) ﺑﺪﻭﻥ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ( ﻭ ﺳﭙﺲ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻳﻚ ﻓﻴﻠﺘﺮ ﺩﺭﻭﻥ ﻳﺎﺑﻲ ﺧﻄﻲ ﺁﻥ ﺭﺍ ﺩﻭﺑﺎﺭﻩ ﺑﻪ ﻧﺮﺥ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﺑﺮﺳﺎﻧﻴﺪ. -٢ﻃﻴﻒ ﺳﻴﮕﻨﺎﻟﻬﺎ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﺍﻓﺰﺍﻳﺸﻲ ﻭ ﻛﺎﻫﺸﻲ ﺭﺍ ﻧﻤﺎﻳﺶ ﺩﻫﻴﺪ ﻭ ﺳﭙﺲ ﺁﻧﻬﺎ ﺭﺍ ﺑﺎ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ .ﺧﻄﺎ ﻣﺮﺑﻊ ﻣﻴﺎﻧﮕﻴﻦ ) (MSEﺑﻴﻦ ﺳﻴﮕﻨﺎﻝ ﺍﻭﻟﻴﻪ ﺩﺭ ﻓﺮﻛﺎﻧﺲ ٢٢KHzﻭ ﺳﻴﮕﻨﺎﻝ ﺑﺎﺯﺳﺎﺯ ﺷﺪﻩ ﺭﺍ ﻣﺤﺎﺳﺒﻪ ﻛﻨﻴﺪ MSE .ﺑﻴﻦ ﺩﻭ ﺳﻴﮕﻨﺎﻝ ) x(nﻭ ) y(nﺑﺎ ﻃﻮﻝ Nﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﺤﺎﺳﺒﻪ ﻣﻲ ﺷﻮﺩ. N MSE = å [ x (n ) - y(n )]2 / N n =1 -٣ﻣﺮﺍﺣﻞ ١ﻭ ٢ﺭﺍ ﺑﺮﺍ ﻣﻮﺍﺭﺩ ﺯﻳﺮ ﺗﻜﺮﺍﺭ ﻛﻨﻴﺪ. ﺍﻟﻒ( ﻳﻚ ﻓﻴﻠﺘﺮ ﻣﻴﺎﻧﮕﻴﻦ )ﺷﻤﺎ ﻣﻲ ﺗﻮﺍﻧﻴﺪ ﻃﻮﻝ ﻓﻴﻠﺘﺮ ﻣﻴﺎﻧﮕﻴﻦ ﺭﺍ ﺍﻧﺘﺨﺎﺏ ﻛﻨﻴﺪ( ﺑﺮﺍ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ. 11 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 ﺏ( ﺍﺯ ﺗﺎﺑﻊ ” “FIR1ﺩﺭ MATLABﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ ﺗﺎ ﻓﻴﻠﺘﺮ ﺑﻬﺘﺮ ﻃﺮﺍﺣﻲ ﻛﻨﻴﺪ .ﺍﺯ ﺗﺎﺑﻊ ”)( “interpﺑﺮﺍ ﺩﺭﻭﻥ ﻳﺎﺑﻲ ﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ. ﻃﻮﻟﻬﺎ ﻣﺘﻔﺎﻭﺕ ﺑﺮﺍ ﻓﻴﻠﺘﺮﺩﺭﻭﻥ ﻳﺎﺑﻲ ﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ .ﻃﻴﻒ ﻓﻴﻠﺘﺮﻫﺎ ﭘﻴﺶ ﻭ ﭘﺲ ﭘﺮﺩﺍﺯﺵ ﺭﺍ ﻋﻼﻭﻩ ﺑﺮ ﺳﻴﮕﻨﺎﻟﻬﺎ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﻛﺎﻫﺸﻲ ﻳﺎ ﺍﻓﺰﺍﻳﺸﻲ ﻧﻤﺎﻳﺶ ﺩﻫﻴﺪ. -٤ﻣﺮﺍﺣﻞ ۱ﺗﺎ ٣ﺭﺍ ﺑﺮﺍ ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﺩﺭ 11KHzﺗﻜﺮﺍﺭ ﻛﻨﻴﺪ )ﺍﺧﺘﻴﺎﺭ ( -٥ﺗﻤﺎﻡ ﻧﺘﺎﻳﺞ ﺭﺍ ﭼﺎﭖ ﻛﻨﻴﺪ. ﺑﺮﺍ ﻣﻮﺍﺭﺩ ١ﻭ ،٢ﺳﻪ ﻧﻤﻮﻧﻪ ﻣﺘﻦ MATLABﺩﺭ Appendix Aﺁﻭﺭﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .(sp.m,sp1.m, spfilter.m) .ﺷﻤﺎ ﺑﺎﻳﺪ ﻗﺎﺩﺭ ﺑﺎﺷﻴﺪ ﺗﺎ ﺑﻘﻴﻪ ﻣﻮﺍﺭﺩ ﺭﺍ ﺑﺎ ﺑﻬﺒﻮﺩ ﺍﻳﻦ ﻣﺘﻨﻬﺎ ﺍﻧﺠﺎﻡ ﺩﻫﻴﺪ .ﺭﺍﻫﻨﻤﺎﻳﻲ :ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ ﻳﻚ ﺩﻧﺒﺎﻟﺔ ) ( xﺑﻪ ﻭﺳﻴﻠﻪ ﻳﻚ ﻓﻴﻠﺘﺮ ﺗﻮﺳﻂ ﺗﺎﺑﻊ ) (conv ﺍﻧﺠﺎﻡ ﻣﻲ ﺷﻮﺩ .ﺷﻤﺎ ﻣﻲ ﺗﻮﺍﻧﻴﺪ ﺍﺯ ﺩﺳﺘﻮﺭ ﺯﻳﺮ ﺑﺮﺍ ﺷﻨﺎﺧﺖ ﻳﻚ ﺗﺎﺑﻊ ﺍﺳﺘﻔﺎﺩﻩ ﻛﻨﻴﺪ .ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ help conv.ﺑﻪ ﻃﻮﺭ ﺧﻼﺻﻪ ،ﺷﻤﺎ ﺑﺎﻳﺪ ﺑﺮﻧﺎﻣﻪ ﻫﺎ Appendix Aﺭﺍ ﺑﻬﺒﻮﺩ ﺩﻫﻴﺪ ﺗﺎ ﻣﻮﺍﺭﺩ ﺯﻳﺮ ﺭﺍ ﻋﻤﻠﻲ ﺳﺎﺯﻧﺪ. ﺍﻟﻒ( ﺑﺪﻭﻥ ﭘﻴﺶ ﻓﻴﻠﺘﺮ ﻛﺮﺩﻥ ،ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻛﺎﻫﺸﻲ ﺑﺎ ﻧﺮﺥ ،٢ﺩﺭﻭﻥ ﻳﺎﺑﻲ ﺩﻭﺑﺎﺭﻩ ﻭ ﺑﺮﮔﺸﺖ ﺑﻪ ﺍﻧﺪﺍﺯﻩ ﺍﻭﻟﻴﻪ ﺏ( ﻓﻴﻠﺘﺮ ﻣﻴﺎﻧﮕﻴﻦ ،ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻛﺎﻫﺸﻲ ﺑﺎ ﻧﺮﺥ ،٢ﻭ ﺑﺮﮔﺸﺖ ﺑﻪ ﺍﻧﺪﺍﺯﺓ ﺍﻭﻟﻴﻪ ﺝ( ) ( ،fir1ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻛﺎﻫﺸﻲ ﺑﺎ ﻧﺮﺥ ،٢ﻭ ﺑﺮﮔﺸﺖ ﺑﻪ ﺍﻧﺪﺍﺯﺓ ﺍﻭﻟﻴﻪ -٤ﮔﺰﺍﺭﺵ ﮔﺰﺍﺭﺵ ﺷﻤﺎ ﺑﺎﻳﺪ ﺷﺎﻣﻞ mﻓﺎﻳﻠﻬﺎ ﻭ ﻓﻴﻠﺘﺮﻫﺎ ﻭ ﺷﻜﻠﻬﺎ ﺧﺮﻭﺟﻲ ﺑﺎﺷﺪ .ﭘﺮﺳﺸﻬﺎ ﺯﻳﺮ ﺭﺍ ﺩﺭ ﮔﺰﺍﺭﺵ ﺧﻮﺩ ﭘﺎﺳﺦ ﺩﻫﻴﺪ .ﺗﻤﺎﻣﻲ ﻓﺎﻳﻞ ﻫﺎ ﮔﺰﺍﺭﺵ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﻳﻚ ﻓﺎﻳﻞ ﻓﺸﺮﺩﻩ ﺑﻪ ﺁﺩﺭﺱ TA e-mailﺑﻔﺮﺳﺘﻴﺪ(yashil1@yahoo.com) . (١ﺍﮔﺮ ﺳﻴﮕﻨﺎﻝ ﻭﺭﻭﺩ ) sin( 2pftﺍﺳﺖ ﺯﻣﺎﻧﻲ ﻛﻪ f=6KHzﻭ ﻓﺮﻛﺎﻧﺲ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ 8KHzﺍﺳﺖ ،ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﭼﻪ ﺧﻮﺍﻫﺪ ﺑﻮﺩ؟ ﺳﻴﮕﻨﺎﻝ ﺑﺎﺯﺳﺎﺯ ﺷﺪﻩ ﻛﻪ ﺍﺯ ﻓﻴﻠﺘﺮ ﭘﺎﻳﻴﻦ ﮔﺬﺭ ﺑﺎ ﻓﺮﻛﺎﻧﺲ ﻗﻄﻊ 4KHzﺍﺳﺘﻔﺎﺩﻩ ﻣﻲ ﻛﻨﺪ ﭼﻪ ﺧﻮﺍﻫﺪ ﺑﻮﺩ؟ )ﻣﺴﺌﻠﻪ ﺭﺍ ﺑﺮﺭﺳﻲ ﻛﺮﺩﻩ ﻭ ﺗﻤﺎﻡ ﻣﺮﺍﺣﻞ ﺁﻥ ﺭﺍ ﺩﺭ ﮔﺰﺍﺭﺵ ﺧﻮﺩ ﺑﻨﻮﻳﺴﻴﺪ( (٢ﺩﺭﺑﺎﺭﻩ ﻛﻴﻔﻴﺖ ﻓﺎﻳﻠﻬﺎ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﺩﺭ ﻧﺮﺧﻬﺎ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻭ bits/sampleﻣﺘﻔﺎﻭﺕ ﻧﻈﺮ ﺩﻫﻴﺪ .ﺩﺭﺑﺎﺭﺓ ﺗﻔﺎﻭﺕ ﺻﻮﺕ ﻭ ﮔﻔﺘﺎﺭ ﺩﺭ ﻧﺮﺧﻬﺎ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻣﺨﺘﻠﻒ ﺑﺤﺚ ﻛﻨﻴﺪ. (٣ﺻﺪﺍ ﺩﺭﻭﻥ ﻳﺎﺑﻲ ﺷﺪﻩ ﺑﻌﺪ ﺍﺯ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﻛﺎﻫﺸﻲ ﺑﺎ ﻧﺮﺥ ٢ﺭﺍ ﺑﺎ ﺳﻴﮕﻨﺎﻝ ﻧﻤﻮﻧﻪ ﺑﺮﺩﺍﺭ ﺷﺪﻩ ﻛﺎﻫﺸﻲ ﻭ ﺳﻴﮕﻨﺎﻝ ﺍﺻﻠﻲ ﻣﻘﺎﻳﺴﻪ ﻛﻨﻴﺪ. ﺗﻮﺿﻴﺢ ﺩﻫﻴﺪ ﻛﻪ ﭼﺮﺍ ﺳﻴﮕﻨﺎﻟﻬﺎ ﺑﺎﺯﺳﺎﺯ ﺷﺪﻩ ﺩﺭ ﺑﻌﻀﻲ ﻣﻮﺍﺭﺩ ﺑﻬﺘﺮ ﻫﺴﺘﻨﺪ . -٥ﻣﺮﺍﺟﻊ [1]. The Math Works Inc., Matlab User’s Guide, 1993, MATLAB USERS’S GUIDE, 1993. [2]. The Math Works Inc., MATLAB REFRENCE GUIDE, 1992. [3]. Wilsky and Openheim, Signals & Systems, Chapter 8. 12 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 13 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 14 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 15 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 16 CE 342 – Multimedia HW# 1 H. Rabiee, Fall 2008 17
© Copyright 2025 Paperzz