Hossein Sameti Department of Computer Engineering Sharif University of Technology x(n) LTI System h(n) y ( n) x ( n ) * h( n) Y ( ) H ( ) X ( ) y(n) Y ( ) X ( ) H ( ) Y ( ) H ( ) X ( ) Y ( ) H ( ) X ( ) x(n) X () cos[n X ()] y(n) H () X () cos[n X () H ()] x(n) X () sin[ n X ()] y(n) H () X () sin[ n X () H ()] Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 2 H ( ) 1 a H ( ) ( ) tan 1 1 a 2a cos x(n) 1 sin n cos(n ) 2 4 2 a sin 1 a cos y ( n) ? 0 H ( 0) 1 2 H ( 2 ) 0.074 ( 2 ) 42 H ( ) 0.053 ( ) 0 y (n) A H ( ) cos[n ( )] a 0.9 ( 0) 0 y (n) A H ( ) sin[n ( )] Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 3 We can thus view an LTI system as a filter for sinusoids of different frequencies. Hence, the basic digital filter design problem involves determining the parameters of an LTI system to achieve a desired H(ω). Note that the output of an LTI system cannot contain frequency components that are not contained in the input signals. For that to happen, the system should be either timevariant or non-linear. Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 4 Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 5 - Bandwidth is the range of frequencies over which the spectrum (the frequency content) of the signal is concentrated. Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 6 y (n) x(n n0 ) h(n) (n n0 ) H ( ) e jn0 • Observations: 1.The magnitude of the frequency response is 1 for all ω. H ( ) 1 2.The phase is linear in ω. H () n0 Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 7 Group delay: d g ( ) H ( ) d For pure delay: Group delay is thus constant: H () n0 g ( ) Desirable, since pure delay is tolerable. d H ( ) n0 d -All the frequencies are thus delayed by the same amount when they pass through this system. Thus, no distortion is added to the signal. Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 8 Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 9 x(n) Y ( ) H ( ) X ( ) H ( ) 0 y(n) LTI System h(n) Y ( ) H ( ) X ( ) Y ( ) H ( ) X ( ) GLP filters H () Linear-phase filters • Example: pure delay h(n) (n n0 ) H ( ) 1 H () n0 Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 10 H ( ) H () H m ()e j ( ) Real H ( ) H m ( ) cos( ) jH m () sin( ) sin( ) tan H ( ) tan( ) cos( ) H ( ) h(k )e k j k k k (eq.1) h(k ) cos k j h(k ) sin k tan H ( ) h(k ) sin k k h(k ) cos k (eq.2) k If we equate (eq.1) and (eq.2), we get GLP. Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 11 h(k ) sin k sin( ) k cos( ) h(k ) cos k k • Case 1: 0 or & h(n) sin[(n ) ] 0 n 2 M an integer h(n) h(2 n) N 1 2 • Case 2: / 2 or 3 / 2 & 2 M an integer N 1 2 n The above equation is satisfied. Symmetry Condition h(n) cos[(n )] 0 n h(n) h(2 n) h(n) sin[(n )] 0 The above equation is satisfied. Anti-symmetry Condition N: the length of h(n) Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 12 N 5 h(n) 3 2 h(n) h(4 n) 2 1 1 0 2 3 1 4 2, 0 n h(n) 2 2 1 0 1 1 2 3 n N 4 h(n) h(3 n) 1.5, 0 Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 13 N 5 h(n) h(n) h(4 n) 2 2, 2 1 0 4 2 3 1 n 1 2 h(n) N 4 h(n) h(3 n) 2 1 0 1 2 2 3 n 1.5, 2 1 Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 14 • Case 1: odd h ( N 1 n ) 0 n N h( n) otherwise 0 N 1 2 0 N H ( ) H m ( )e even j ( N21 ) • Case 2: odd h ( N 1 n ) 0 n N h( n) otherwise 0 N 1 2 2 N j 2 H ( ) H m ( )e e j ( N21 ) Hossein Sameti, ECE, UBC, Summer 2012 Originally Prepared by: Mehrdad Fatourechi, even 15 Type I N odd h(n) c b b a a 0 2 3 1 4 N 1 , 0 2 h(n) h( N 1 n) n Type II N even h(n) b a 0 b a 1 2 3 n N 1 , 0 2 h(n) h( N 1 n) Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 16 Type III N odd h(n) b a 0 h(n) h( N 1 n) n a b Type IV h(n) 4 2 3 1 N 1 , 2 2 N even N 1 , 2 2 b a 0 1 2 3 n h(n) h( N 1 n) a b Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 17 For Type I 𝑁−1 ℎ(𝑛)𝑒 −𝑗𝜔𝑛 𝐻 𝜔 = 𝑛=0 By applying symmetry condition of h(n) h( N 1 n) we can write: 𝐻 𝜔 = 𝑒 −𝑗𝜔(𝑁−1)/2 n 0a(n) cos n where N 1 2 𝑁−1 ) 2 𝑁−1 2ℎ[( )-n], 2 𝑎 0 = ℎ( 𝑎 𝑛 = n= 1, 2, … , 𝑁−1 2 N 1 2 So: H m ( ) a(n) cos n n 0 Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 18 Symmetry Type I h( n) h( N 1 n) Type II odd h( n) h( N 1 n) Type III N h( n) h( N 1 n) even odd N 1 2 H m ( ) N 1 2 a(n) cos n 0 h( n) h( N 1 n) even Real n 0 N 2 N 1 2 0 N 1 2 2 b(n) cos (n 12 ) n1 N 1 2 2 c(n) sin n N 2 H ( ) 0 H ( ) 0 H (0) 0 Purely imaginary d (n) sin (n 12 ) n 1 Real Purely imaginary N 1 2 n 1 Type IV Constraint H ( ) H (0) 0 Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 19 Type I Type II Type I Type IV Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 20 Type I Type II Type III Type IV Type I Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 21 Type I Low-pass √ High-pass √ Band-pass √ Band-stop √ Type II √ √ Type III √ Type IV √ √ Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 22 Linear-phase is desirable for filters as it leads to a fixed delay for all input frequencies (i.e., no distortion in the output of the filter). If we impose symmetry or anti-symmetry on h(n), we can have linear-phase property. Type I FIR filter can be used to design all filters (lowpass, high-pass, bandpass and bandstop). Hossein Sameti, Dept. of Computer Eng., Sharif University of Technology 23
© Copyright 2025 Paperzz