Table 1: Properties of the Continuous-Time Fourier Series +∞ X x(t) = ak e jkω0 t k=−∞ 1 ak = T Property Periodic Convolution x(t)e −jkω0 t T ak ejk(2π/T )t k=−∞ 1 dt = T Z x(t)e−jk(2π/T )t dt T Periodic Signal x(t) y(t) Linearity Time-Shifting Frequency-Shifting Conjugation Time Reversal Time Scaling Z = +∞ X Fourier Series Coefficients Periodic with period T and fundamental frequency ω0 = 2π/T Ax(t) + By(t) x(t − t0 ) ejM ω0 t = ejM (2π/T )t x(t) x∗ (t) x(−t) x(αt), α > 0 (periodic with period T /α) Z x(τ )y(t − τ )dτ ak bk Aak + Bbk ak e−jkω0 t0 = ak e−jk(2π/T )t0 ak−M a∗−k a−k ak T a k bk T Multiplication +∞ X x(t)y(t) al bk−l l=−∞ Differentiation dx(t) Z dt t Integration x(t)dt −∞ (finite-valued and periodic only if a0 = 0) Conjugate Symmetry for Real Signals x(t) real Real and Even Signals x(t) real and even Real and Odd Signals x(t) real and odd Even-Odd Decomposition of Real Signals 2π jkω0 ak = jk ak T 1 1 ak = ak jk(2π/T ) jkω0 ∗ ak = a−k <e{ak } = <e{a−k } =m{ak } = −=m{a−k } |ak | = |a−k | < ) ak = −< ) a−k ak real and even ak purely imaginary and odd xe (t) = Ev{x(t)} [x(t) real] xo (t) = Od{x(t)} [x(t) real] Parseval’s Relation for Periodic Signals Z +∞ X 1 2 |x(t)| dt = |ak |2 T T k=−∞ <e{ak } j=m{ak } Table 2: Properties of the Discrete-Time Fourier Series X X x[n] = ak ejkω0 n = ak ejk(2π/N )n k=<N > 1 N ak = Property Time Scaling Periodic Convolution x[n]e−jkω0 n = n=<N > 1 N X x[n]e−jk(2π/N )n n=<N > Periodic signal x[n] y[n] Linearity Time shift Frequency Shift Conjugation Time Reversal X k=<N > Fourier series coefficients Periodic with period N and fundamental frequency ω0 = 2π/N Ax[n] + By[n] x[n − n0 ] ejM (2π/N )n x[n] x∗ [n] x[−n] x[n/m] if n is a multiple of m x(m) [n] = 0 if n is not a multiple of m (periodic with period mN ) X x[r]y[n − r] x[n]y[n] First Difference x[n] − x[n − 1] n X finite-valued and x[k] Periodic with period N Aak + Bbk ak e−jk(2π/N )n0 ak−M a∗−k a−k viewed as 1 ak periodic with m period mN ! N a k bk r=hN i Multiplication ak bk X al bk−l l=hN i Running Sum k=−∞ periodic only if a0 = 0 Conjugate Symmetry for Real Signals x[n] real Real and Even Signals x[n] real and even Real and Odd Signals x[n] real and odd Even-Odd Decomposition of Real Signals (1 − e−jk(2π/N ) )ak 1 ak (1 − e−jk(2π/N ) ) ak = a∗−k <e{ak } = <e{a−k } =m{ak } = −=m{a−k } |a | = |a−k | k < ) ak = −< ) a−k ak real and even ak purely imaginary and odd xe [n] = Ev{x[n]} [x[n] real] xo [n] = Od{x[n]} [x[n] real] <e{ak } j=m{ak } Parseval’s Relation for Periodic Signals X 1 X |x[n]|2 = |ak |2 N n=hN i k=hN i Table 3: Properties of the Continuous-Time Fourier Transform Z ∞ 1 x(t) = X(jω)ejωt dω 2π −∞ Z ∞ x(t)e−jωt dt X(jω) = −∞ Property Aperiodic Signal Fourier transform x(t) y(t) X(jω) Y (jω) Linearity Time-shifting Frequency-shifting Conjugation Time-Reversal ax(t) + by(t) x(t − t0 ) ejω0 t x(t) x∗ (t) x(−t) Time- and Frequency-Scaling x(at) Convolution x(t) ∗ y(t) Multiplication x(t)y(t) aX(jω) + bY (jω) e−jωt0 X(jω) X(j(ω − ω0 )) X ∗ (−jω) X(−jω) 1 jω X |a| a X(jω)Y (jω) 1 X(jω) ∗ Y (jω) 2π d x(t) Zdt Differentiation in Time t x(t)dt Integration −∞ Differentiation in Frequency tx(t) Conjugate Symmetry for Real Signals x(t) real Symmetry for Real and Even Signals Symmetry for Real and Odd Signals Even-Odd Decomposition for Real Signals x(t) real and even x(t) real and odd xe (t) = Ev{x(t)} [x(t) real] xo (t) = Od{x(t)} [x(t) real] jωX(jω) 1 X(jω) + πX(0)δ(ω) jω d j X(jω) dω X(jω) = X ∗ (−jω) <e{X(jω)} = <e{X(−jω)} =m{X(jω)} = −=m{X(−jω)} |X(jω)| = |X(−jω)| < ) X(jω) = −< ) X(−jω) X(jω) real and even X(jω) purely imaginary and odd <e{X(jω)} j=m{X(jω)} Parseval’s Relation for Aperiodic Signals Z +∞ Z +∞ 1 2 |X(jω)|2dω |x(t)| dt = 2π −∞ −∞ Table 4: Basic Continuous-Time Fourier Transform Pairs Signal +∞ X Fourier transform ak e jkω0 t k=−∞ 2π +∞ X ak δ(ω − kω0 ) 2πδ(ω − ω0 ) cos ω0 t π[δ(ω − ω0 ) + δ(ω + ω0 )] sin ω0 t π [δ(ω − ω0 ) − δ(ω + ω0 )] j x(t) = 1 2πδ(ω) Periodic square wave 1, |t| < T1 x(t) = 0, T1 < |t| ≤ T2 and x(t + T ) = x(t) +∞ X δ(t − nT ) x(t) 1, |t| < T1 0, |t| > T1 sin W t πt δ(t) u(t) δ(t − t0 ) e −at ak k=−∞ ejω0 t n=−∞ Fourier series coefficients (if periodic) u(t), <e{a} > 0 te−at u(t), <e{a} > 0 tn−1 −at u(t), (n−1)! e <e{a} > 0 +∞ X 2 sin kω0 T1 δ(ω − kω0 ) k k=−∞ +∞ 2πk 2π X δ ω− T T k=−∞ 2 sin ωT1 ω 1, |ω| < W X(jω) = 0, |ω| > W 1 1 + πδ(ω) jω e−jωt0 1 a + jω 1 (a + jω)2 1 (a + jω)n a1 = 1 ak = 0, otherwise a1 = a−1 = 21 ak = 0, otherwise 1 a1 = −a−1 = 2j ak = 0, otherwise a0 = 1, ak = 0, k 6= 0 ! this is the Fourier series representation for any choice of T >0 ω0 T1 sinc π ak = kω0 T1 π 1 for all k T — — — — — — — — = sin kω0 T1 kπ Table 5: Properties of the Discrete-Time Fourier Transform Z 1 x[n] = X(ejω )ejωn dω 2π 2π jω X(e ) = +∞ X x[n]e−jωn n=−∞ Property Aperiodic Signal Fourier transform Periodic with X(ejω ) jω period 2π Y (e ) aX(ejω ) + bY (ejω ) e−jωn0 X(ejω ) X(ej(ω−ω0 ) ) X ∗ (e−jω ) X(e−jω ) Convolution x[n] y[n] ax[n] + by[n] x[n − n0 ] ejω0 n x[n] x∗ [n] x[−n] x[n/k], if n = multiple of k x(k) [n] = 0, if n 6= multiple of k x[n] ∗ y[n] Multiplication x[n]y[n] Differencing in Time x[n] − x[n − 1] n X x[k] Linearity Time-Shifting Frequency-Shifting Conjugation Time Reversal Time Expansions Accumulation k=−∞ X(ejkω ) X(eZjω )Y (ejω ) 1 X(ejθ )Y (ej(ω−θ) )dθ 2π 2π (1 − e−jω )X(ejω ) 1 X(ejω ) 1 − e−jω +∞ X j0 +πX(e ) δ(ω − 2πk) k=−∞ Differentiation in Frequency nx[n] Conjugate Symmetry Real Signals x[n] real for Symmetry for Real, Even Signals x[n] real and even Symmetry for Real, Odd Signals Even-odd Decomposition of Real Signals x[n] real and odd dX(ejω ) j dω jω X(e ) = X ∗ (e−jω ) <e{X(ejω )} = <e{X(e−jω )} =m{X(ejω )} = −=m{X(e−jω )} |X(ejω )| = |X(e−jω )| < ) X(ejω ) = −< ) X(e−jω ) X(ejω ) real and even X(ejω ) purely imaginary and odd xe [n] = Ev{x[n]} [x[n] real] xo [n] = Od{x[n]} [x[n] real] Parseval’s Relation for Aperiodic Signals Z +∞ X 1 2 |X(ejω )|2 dω |x[n]| = 2π 2π n=−∞ <e{X(ejω )} j=m{X(ejω )} Table 6: Basic Discrete-Time Fourier Transform Pairs Signal X Fourier transform ak ejk(2π/N )n 2π +∞ X 2πk ak δ ω − N +∞ X δ(ω − ω0 − 2πl) k=−∞ k=hN i ejω0 n 2π +∞ X π ω0 ak ω0 2π ω0 (b) (a) {δ(ω − ω0 − 2πl) + δ(ω + ω0 − 2πl)} l=−∞ +∞ π X {δ(ω − ω0 − 2πl) − δ(ω + ω0 − 2πl)} j sin ω0 n ak (a) l=−∞ cos ω0 n Fourier series coefficients (if periodic) ak (b) (a) ω0 2π ω0 ak = (b) ω0 l=−∞ x[n] = 1 2π +∞ X δ(ω − 2πl) l=−∞ Periodic square wave 1, |n| ≤ N1 x[n] = 0, N1 < |n| ≤ N/2 and x[n + N ] = x[n] +∞ X δ[n − kN ] k=−∞ an u[n], |a| < 1 x[n] 1, |n| ≤ N1 0, |n| > N1 =W π sinc 0<W <π sin W n πn Wn π δ[n] u[n] δ[n − n0 ] (n + 1)an u[n], |a| < 1 (n + r − 1)! n a u[n], |a| < 1 n!(r − 1)! 2π +∞ X k=−∞ 2πk ak δ ω − N +∞ 2π X 2πk δ ω− N N k=−∞ 1 1 − ae−jω sin[ω(N1 + 21 )] sin(ω/2) 1, 0 ≤ |ω| ≤ W X(ω) = 0, W < |ω| ≤ π X(ω)periodic with period 2π 1 e−jωn0 2π 1, k = 0, ±N, ±2N, . . . ak = 0, otherwise ak ak = = ak = — — — — k=−∞ 1 (1 − ae−jω )2 1 (1 − ae−jω )r sin[(2πk/N )(N1 + 12 )] , k 6= 0, ±N, ±2N, . . . N sin[2πk/2N ] 2N1 +1 , k = 0, ±N, ±2N, . . . N 1 for all k N — +∞ X 1 + πδ(ω − 2πk) 1 − e−jω 2πm = N 1, k = m, m ± N, m ± 2N, . . . = 0, otherwise irrational ⇒ The signal is aperiodic 2πm = N 1 2 , k = ±m, ±m ± N, ±m ± 2N, . . . = 0, otherwise irrational ⇒ The signal is aperiodic 2πr = N1 2j , k = r, r ± N, r ± 2N, . . . − 1 , k = −r, −r ± N, −r ± 2N, . . . 2j 0, otherwise irrational ⇒ The signal is aperiodic — — — Table 7: Properties of the Laplace Transform Property Linearity Signal Transform x(t) X(s) R x1 (t) X1 (s) R1 x2 (t) X2 (s) R2 ax1 (t) + bx2 (t) ROC aX1 (s) + bX2 (s) At least R1 ∩ R2 Time shifting x(t − t0 ) e−st0 X(s) R Shifting in the s-Domain es0 t x(t) X(s − s0 ) Shifted version of R [i.e., s is in the ROC if (s − s0 ) is in R] Time scaling x(at) 1 s X |a| a Conjugation x∗ (t) X ∗ (s∗ ) Convolution x1 (t) ∗ x2 (t) X1 (s)X2 (s) Differentiation in the Time Domain d x(t) dt sX(s) Differentiation in the s-Domain −tx(t) Integration in the Time Domain Z t x(τ )d(τ ) −∞ d X(s) ds 1 X(s) s “Scaled” ROC (i.e., s is in the ROC if (s/a) is in R) R At least R1 ∩ R2 At least R R At least R ∩ {<e{s} > 0} Initial- and Final Value Theorems If x(t) = 0 for t < 0 and x(t) contains no impulses or higher-order singularities at t = 0, then x(0+ ) = lims→∞ sX(s) If x(t) = 0 for t < 0 and x(t) has a finite limit as t → ∞, then limt→∞ x(t) = lims→0 sX(s) Table 8: Laplace Transforms of Elementary Functions Signal Transform ROC 1. δ(t) 1 All s 2. u(t) 3. −u(−t) tn−1 u(t) (n − 1)! tn−1 5. − u(−t) (n − 1)! 4. 6. e−αt u(t) 7. −e−αt u(−t) tn−1 −αt e u(t) (n − 1)! tn−1 −αt e u(−t) 9. − (n − 1)! 8. e−sT 10. δ(t − T ) 11. [cos ω0 t]u(t) s + ω02 ω0 s2 + ω02 s+α (s + α)2 + ω02 ω0 (s + α)2 + ω02 s2 12. [sin ω0 t]u(t) 13. [e−αt cos ω0 t]u(t) 14. [e−αt sin ω0 t]u(t) 15. un (t) = 1 s 1 s 1 sn 1 sn 1 s+α 1 s+α 1 (s + α)n 1 (s + α)n dn δ(t) dtn 16. u−n (t) = u(t) ∗ · · · ∗ u(t) | {z } n times <e{s} > 0 <e{s} < 0 <e{s} > 0 <e{s} < 0 <e{s} > −α <e{s} < −α <e{s} > −α <e{s} < −α All s <e{s} > 0 <e{s} > 0 <e{s} > −α <e{s} > −α sn All s 1 sn <e{s} > 0 Table 9: Properties of the z-Transform Property Sequence Transform ROC x[n] x1 [n] x2 [n] X(z) X1 (z) X2 (z) R R1 R2 Linearity ax1 [n] + bx2 [n] aX1 (z) + bX2 (z) At least the intersection of R1 and R2 Time shifting x[n − n0 ] z −n0 X(z) R except for the possible addition or deletion of the origin Scaling in the ejω0 n x[n] R z-Domain z0n x[n] an x[n] −jω0 X(e z) X zz0 X(a−1 z) Time reversal x[−n] X(z −1 ) Inverted R (i.e., R−1 = the set of points z −1 where z is in R) X(z k ) R1/k Time expansion x(k) [n] = x[r], n = rk 0, n 6= rk for some integer r z0 R Scaled version of R (i.e., |a|R = the set of points {|a|z} for z in R) (i.e., the set of points z 1/k where z is in R) Conjugation x∗ [n] X ∗ (z ∗ ) R Convolution x1 [n] ∗ x2 [n] X1 (z)X2 (z) At least the intersection of R1 and R2 First difference x[n] − x[n − 1] (1 − z −1 )X(z) At least the intersection of R and |z| > 0 Accumulation Pn 1 X(z) 1−z −1 At least the intersection of R and |z| > 1 Differentiation in the z-Domain nx[n] −z dX(z) dz R k=−∞ x[k] Initial Value Theorem If x[n] = 0 for n < 0, then x[0] = limz→∞ X(z) Table 10: Some Common z-Transform Pairs Signal Transform ROC 1. δ[n] 1 All z 2. u[n] 1 1−z −1 |z| > 1 3. −u[−n − 1] 1 1−z −1 |z| < 1 4. δ[n − m] z −m All z except 0 (if m > 0) or ∞ (if m < 0) 5. αn u[n] 1 1−αz −1 |z| > |α| 6. −αn u[−n − 1] 1 1−αz −1 |z| < |α| 7. nαn u[n] αz −1 (1−αz −1 )2 |z| > |α| 8. −nαn u[−n − 1] αz −1 (1−αz −1 )2 |z| < |α| 9. [cos ω0 n]u[n] 1−[cos ω0 ]z −1 1−[2 cos ω0 ]z −1 +z −2 |z| > 1 10. [sin ω0 n]u[n] [sin ω0 ]z −1 1−[2 cos ω0 ]z −1 +z −2 |z| > 1 11. [r n cos ω0 n]u[n] 1−[r cos ω0 ]z −1 1−[2r cos ω0 ]z −1 +r 2 z −2 |z| > r 12. [r n sin ω0 n]u[n] [r sin ω0 ]z −1 1−[2r cos ω0 ]z −1 +r 2 z −2 |z| > r
© Copyright 2025 Paperzz