Exam3-F15-LinearAlgebra.pdf

F15 Exam 3
Linear Algebra, Dave Bayer
[1] Find the determinant of the matrix
3
1

A=
1
1
1

6
3
1
1
1
6
6
3
1
1
1
1
1
1
1

1
1

1

6
3
[2] Using Cramer’s rule, solve for z in the system of equations

  
 
a 2 1
x
3
b 3 1 y = 1
c 1 1
z
2
[3] Let f(n) be the determinant of the n × n matrix in the sequence
0
0 2
1 0


0 2 0
1 0 2
0 1 0


0 2 0 0
1 0 2 0


0 1 0 2
0 0 1 0
Find f(10) .
[4] Find a system of eigenvalues and eigenvectors for the matrix
4 6
A =
1 5
[5] Find a system of eigenvalues and eigenvectors for the matrix


1
2 2
1 2
A = 2
1 −1 2
0
1

0

0
0

2
0
1
0
0
0
2
0
1
0
0
0
2
0
1

0
0

0

2
0