F15 Exam 1 Problem 1 [Reserved for Score] Linear Algebra, Dave Bayer testlalpl Te s t l Name, U n i . [1] Solve the following system of equations. V" 0 H -r — r1 11 2 N ( O C 3 1 w 5 _1 2 3 5 8_ —a>\ 4 X H 6 V z sum of (Dre\J\OUS +^^0 w V^v\\C 'Z_ *Z 0 u y ,0 6-i^ 0 z_ (r '\ \ 1 oA \ 0 \ = X howvog C76 1 \o 'l V ' S-2-3 ' 1" V ' H r 0 w 0 X 1 + 1 . 0 0 1 0-1 .0. z _ O 1 -1 1 V 0 1 0 -1_ Check: 1■ 0 11 2 11 2 1 3 2 3 5 3 0 5 0 8 1 0. — 1I 1 -1 + 0 _ 0 o 1 \ o 0 r 1 1 s -1 1 0 -1_ ' 2 ' = 4 6 _t_ y + 0 o o r 2 0 0 0 s 4 0 0 0 _t_ 6 F15 Exam 1 Problem 2 [Reserved for Score] Linear Algebra, Dave Bayer testlalpZ Test 1 [2] Using matrix multiplication, count the number of paths of length ten from x to z. "2^ - fi W T i ^ number of paths = "1 8 8 paths (we may ignore w) "2- ' A ' A |v\ 0 0" 1 0 1 0 1 1_ A^ = 0" 1 0 5 5 3 4 55 8 8 5 5 89 _ ^100 n < oc \ 0 \ ■2. a y \ H 11 \ \ zJ ovjt V 0 0 ^^- 2 .^^ ^ t- ^ ^-5, 5 J t-,-I-irao 3 <y)\^ ne€^-f\r?.-)-C5luroir^ CH,3,5)'0.^,'iy 4+9^2/^-35 p\ \0 F15 Exam 1 Problem 3 [Reserved for Score] Linear Algebra, Dave Bayer testlalpS Test 1 [3] Express A as a product of four elementary matrices, where A "2 ' 1" H r o 3 3 1 5 1 = 0 2 1 5 3 1 0" -1 M . 1-1 o. L\ o r'°l r \ o \.o-i "1 0 1 2" o — T( 1 1 0 O l j f\-z\ o \ J F15 Exam 1 Problem 4 [Reserved for Score] Linear Algebra, Dave Bayer testlalp4 Test 1 [4] Find all 2 x 2 matrices A such that A 1 2 2 3 \o"] f^\(o) A = '2 0" 3 0 "2 + - 1 " 0 0 s P2lf \ 1 + + O o o 2 -1 "folfdV s + ioi .r2y( IJ_ Check: "2 3 [ 0" 0 I + a b c 6 2 o -1' o s + o o \ 1 2 2 -1 V 2 3 [Z] "0" 0 + 0 s + ' 2 ' t 0 = 3 a +2VD =1. f t } b J § — ' 0 9 0J ^-2 I 0 LOJ 0^ 0 - z \ t F15 Exam 1 Problem 5 [Reserved for Score] Linear Algebra, Dave Bayer testlalpS Te s t 1 [5] Find the intersection of the following two affine subspaces of w X + 1 0 0 -1 1 0 y 0 z 0 y v 0 X 1 2 y -1 §?-§ 1 0 0 -1 - 1 2 + u 1 3 z z,00 0 " w" X y z r z i -3 o ,3_ 2 " w X - 3 y 0 3_ z [ m m fu) H 7 . riu\ = Crt \ 1 0 Q + ZU. -Z =?> u=-2. 0 1 \ - z . u. 02 2.
© Copyright 2025 Paperzz