Potato Clones 1900 1800 1700 1600 1500 1400 1300 1200 titer 1100 1000 900 800 700 600 500 400 300 200 100 0 1 2 3 4 5 6 7 8 9 10 11 12 clone type cult etb odd par res susc 13 clone means vs observations 1900 1800 1700 1600 1500 1400 1300 1200 titer 1100 1000 900 800 700 600 500 400 300 200 100 0 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Mean_titer type cult etb odd par res susc clone mean vs variance SD 600 500 400 300 200 100 0 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Mean_titer type cult etb odd par res susc clone mean vs variance var 400000 300000 200000 100000 0 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Mean_titer type cult etb odd par res susc clone mean vs variance cv 90 80 70 60 50 40 30 20 10 0 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Mean_titer type cult etb odd par res susc Yandell cloning data ANOVA table - homogeneity of variance test The GLM Procedure Class Level Information Class Levels Values clone rep 13 1 2 3 4 5 6 7 8 9 10 11 12 13 5 12345 Number of Observations Read 64 Number of Observations Used 64 17:38 Thursday, September 11, 2008 6 Yandell cloning data ANOVA table - homogeneity of variance test The GLM Procedure Dependent Variable: titer Source DF Sum of Squares Mean Square F Value Pr > F Model 12 13844104.69 Error 51 Corrected Total 63 16753509.44 2909404.75 1153675.39 20.22 <.0001 57047.15 R-Square Coeff Var Root MSE titer Mean 0.826341 Source DF clone 37.44209 238.8455 637.9063 Type I SS Mean Square F Value Pr > F 12 13844104.69 1153675.39 20.22 <.0001 Source DF Type III SS Mean Square F Value Pr > F clone 12 13844104.69 1153675.39 20.22 <.0001 17:38 Thursday, September 11, 2008 7 Yandell cloning data ANOVA table - homogeneity of variance test The GLM Procedure 17:38 Thursday, September 11, 2008 8 Yandell cloning data ANOVA table - homogeneity of variance test 17:38 Thursday, September 11, 2008 9 The GLM Procedure Brown and Forsythe's Test for Homogeneity of titer Variance ANOVA of Absolute Deviations from Group Medians DF Sum of Squares Mean Square F Value Pr > F clone 12 679400 56616.6 1.76 0.0809 Error 51 1639324 32143.6 Source Bartlett's Test for Homogeneity of titer Variance Source DF Chi-Square Pr > ChiSq clone 12 42.7104 <.0001 Yandell cloning data ANOVA table - homogeneity of variance test The GLM Procedure titer Level of clone N Mean Std Dev 1 5 1358.20000 225.616267 2 5 44.60000 32.469986 3 4 1789.25000 48.917447 4 5 264.80000 111.335978 5 5 428.00000 150.103298 6 5 645.40000 339.847466 7 5 876.20000 593.932404 8 5 279.20000 9 5 287.80000 253.182148 10 5 746.40000 133.008646 11 5 406.20000 169.090804 12 5 1068.20000 134.021267 13 5 97.801840 328.80000 180.304465 17:38 Thursday, September 11, 2008 10 Yandell cloning data ANOVA table - homogeneity of variance test extreme observations - outliers Obs clone rep titer code type resid StudentResid pred 34 7 5 1660 g cult 783.8 3.66896 876.2 17:38 Thursday, September 11, 2008 11 ANOVA table - homogeneity of variance test Residual checking 4 3 StudentResid 2 1 0 -1 -2 -3 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 pred clone 1 8 2 9 3 10 4 11 5 12 6 13 7 Yandell cloning data ANOVA table - homogeneity of variance test Residual normality test 17:38 Thursday, September 11, 2008 13 The CAPABILITY Procedure Variable: StudentResid Moments N 64 Sum Weights Mean 64 4.61E-16 Sum Observations 2.9504E-14 Std Deviation Skewness 1.0060175 Variance 1.01207122 0.35509779 Kurtosis 2.88124685 Uncorrected SS 63.7604866 Corrected SS 63.7604866 Coeff Variation 2.18224E17 Std Error Mean 0.12575219 Basic Statistical Measures Location Mean Variability 0.000000 Std Deviation 1.00602 Median 0.008426 Variance 1.01207 Mode 6.42326 . Range Interquartile Range 0.99986 Tests for Location: Mu0=0 Test Statistic Student's t t Sign M Signed Rank S p Value 3.67E-15 Pr > |t| 1.0000 0 Pr >= |M| 1.0000 -14 Pr >= |S| 0.9263 Yandell cloning data ANOVA table - homogeneity of variance test Residual normality test The CAPABILITY Procedure Variable: StudentResid Quantiles (Definition 5) Quantile Estimate 100% Max 3.668962576 99% 3.668962576 95% 1.433320159 90% 1.100969632 75% Q3 0.462482142 50% Median 0.008425788 25% Q1 -0.537378035 10% -1.075692268 5% -1.391191219 1% -2.754296478 0% Min -2.754296478 Extreme Observations Lowest Highest Value Obs Value Obs -2.75429648 38 1.33689170 36 -2.40228578 47 1.43332016 16 -2.14483115 48 1.67954041 57 -1.39119122 49 2.26934557 46 -1.24139943 60 3.66896258 50 17:38 Thursday, September 11, 2008 14 ANOVA table - homogeneity of variance test Residual normality test 40 35 30 25 P e r c 20 e n t 15 10 5 0 -2.5 -1.5 -0.5 0.5 1.5 StudentResid Curve: Normal(Mu=46E-17 Sigma=1.006) 2.5 3.5 Yandell cloning data ANOVA table - homogeneity of variance test Residual normality test 17:38 Thursday, September 11, 2008 16 The CAPABILITY Procedure Fitted Normal Distribution for StudentResid Parameters for Normal Distribution Parameter Symbol Estimate Mean Mu 4.61E-16 Std Dev Sigma 1.006018 Goodness-of-Fit Tests for Normal Distribution Test Statistic DF p Value Kolmogorov-Smirnov D 0.0928020 Pr > D Cramer-von Mises W-Sq 0.1347628 Pr > W-Sq 0.039 Anderson-Darling A-Sq 0.8712849 Pr > A-Sq 0.024 Chi-Square Chi-Sq 15.3594394 4 Pr > Chi-Sq 0.004 Quantiles for Normal Distribution Quantile Percent Observed Estimated 1.0 -2.75430 -2.340347 5.0 -1.39119 -1.654752 10.0 -1.07569 -1.289263 25.0 -0.53738 -0.678548 50.0 0.00843 0.000000 75.0 0.46248 0.678548 90.0 1.10097 1.289263 95.0 1.43332 1.654752 99.0 3.66896 2.340347 >0.150 ANOVA table - homogeneity of variance test Residual normality test 4 3 2 S t u d e n t R e s i d 1 0 -1 -2 -3 -3 -2 -1 0 1 Normal Quantiles Normal Line: Mu=0, Sigma=1 2 3 Yandell cloning data Fitting one-way linear model with proc mixed The Mixed Procedure Model Information Data Set WORK.A Dependent Variable titer Covariance Structure Diagonal Estimation Method Type 3 Residual Variance Method Factor Fixed Effects SE Method Model-Based Degrees of Freedom Method Residual Class Level Information Class Levels Values clone rep 13 1 2 3 4 5 6 7 8 9 10 11 12 13 5 12345 Dimensions Covariance Parameters 1 Columns in X 14 Columns in Z 0 Subjects 1 Max Obs Per Subject 64 Number of Observations Number of Observations Read 64 Number of Observations Used 64 Number of Observations Not Used 0 17:38 Thursday, September 11, 2008 18 Yandell cloning data Fitting one-way linear model with proc mixed 17:38 Thursday, September 11, 2008 19 The Mixed Procedure Type 3 Analysis of Variance Source Sum of Error DF Squares Mean Square Expected Mean Square Error Term DF F Value Pr > F clone 12 13844105 Residual 51 2909405 1153675 Var(Residual) + Q(clone) 57047 Var(Residual) MS(Residual) . Covariance Parameter Estimates Cov Parm Estimate Residual 57047 Fit Statistics -2 Res Log Likelihood 724.0 AIC (smaller is better) 726.0 AICC (smaller is better) 726.0 BIC (smaller is better) 727.9 Type 3 Tests of Fixed Effects Num Den Effect DF DF F Value Pr > F clone 12 51 20.22 <.0001 51 . 20.22 <.0001 . . Yandell cloning data Fitting one-way linear model with proc mixed extreme observations - outliers 17:38 Thursday, September 11, 2008 20 Obs clone rep titer code type Pred StdErrPred DF Alpha Lower Upper Resid StudentResid PearsonResid 34 7 5 1660 g cult 876.2 106.815 51 0.05 661.760 1090.64 783.8 3.66896 3.28162 Fitting one-way linear model with proc mixed Residual checking 4 3 Studentized Residual 2 1 0 -1 -2 -3 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Predicted code a h b i c j d k e l f m g Yandell cloning data Fitting one-way linear model with proc mixed Residual Normality checking 17:38 Thursday, September 11, 2008 22 The CAPABILITY Procedure Variable: StudentResid (Studentized Residual) Moments N 64 Sum Weights 64 Mean 7.481E-16 Sum Observations 4.7878E-14 Std Deviation 1.0060175 Variance 1.01207122 0.35509779 Kurtosis 2.88124685 Skewness Uncorrected SS 63.7604866 Corrected SS 63.7604866 Coeff Variation 1.34476E17 Std Error Mean 0.12575219 Basic Statistical Measures Location Variability Mean 0.00000 Std Deviation 1.00602 Median 0.00843 Variance 1.01207 Mode -0.53738 Range 6.42326 Interquartile Range 0.99986 Tests for Location: Mu0=0 Test Statistic Student's t t Sign M Signed Rank S p Value 5.95E-15 Pr > |t| 1.0000 0 Pr >= |M| 1.0000 -14 Pr >= |S| 0.9263 Yandell cloning data Fitting one-way linear model with proc mixed Residual Normality checking The CAPABILITY Procedure Variable: StudentResid (Studentized Residual) Quantiles (Definition 5) Quantile Estimate 100% Max 3.668962576 99% 3.668962576 95% 1.433320159 90% 1.100969632 75% Q3 0.462482142 50% Median 0.008425788 25% Q1 -0.537378035 10% -1.075692268 5% -1.391191219 1% -2.754296478 0% Min -2.754296478 Extreme Observations Lowest Highest Value Obs Value Obs -2.75429648 38 1.33689170 36 -2.40228578 47 1.43332016 16 -2.14483115 48 1.67954041 57 -1.39119122 49 2.26934557 46 -1.24139943 60 3.66896258 50 17:38 Thursday, September 11, 2008 23 Fitting one-way linear model with proc mixed Residual Normality checking 40 35 30 25 P e r c 20 e n t 15 10 5 0 -2.5 -1.5 -0.5 0.5 1.5 Studentized Residual Curve: Normal(Mu=75E-17 Sigma=1.006) 2.5 3.5 Yandell cloning data Fitting one-way linear model with proc mixed Residual Normality checking 17:38 Thursday, September 11, 2008 25 The CAPABILITY Procedure Fitted Normal Distribution for StudentResid Parameters for Normal Distribution Parameter Symbol Estimate Mean Mu 7.48E-16 Std Dev Sigma 1.006018 Goodness-of-Fit Tests for Normal Distribution Test Statistic DF p Value Kolmogorov-Smirnov D 0.0928020 Pr > D Cramer-von Mises W-Sq 0.1347628 Pr > W-Sq 0.039 Anderson-Darling A-Sq 0.8712849 Pr > A-Sq 0.024 Chi-Square Chi-Sq 15.3594394 4 Pr > Chi-Sq 0.004 Quantiles for Normal Distribution Quantile Percent Observed Estimated 1.0 -2.75430 -2.340347 5.0 -1.39119 -1.654752 10.0 -1.07569 -1.289263 25.0 -0.53738 -0.678548 50.0 0.00843 0.000000 75.0 0.46248 0.678548 90.0 1.10097 1.289263 95.0 1.43332 1.654752 99.0 3.66896 2.340347 >0.150 Fitting one-way linear model with proc mixed Residual Normality checking 4 3 S t u d e n t i z e d 2 1 R 0 e s i d -1 u a l -2 -3 -3 -2 -1 0 1 Normal Quantiles Normal Line: Mu=0, Sigma=1 2 3 Yandell cloning data Fitting one-way linear model with proc mixed separate residual variance for each type The Mixed Procedure Model Information Data Set WORK.A Dependent Variable titer Covariance Structure Variance Components Subject Effect rep(clone) Group Effect type Estimation Method REML Residual Variance Method None Fixed Effects SE Method Model-Based Degrees of Freedom Method Between-Within Class Level Information Class Levels Values clone 13 1 2 3 4 5 6 7 8 9 10 11 12 13 rep 5 12345 type 6 cult etb odd par res susc Dimensions Covariance Parameters 6 Columns in X 14 Columns in Z 0 Subjects Max Obs Per Subject 64 1 17:38 Thursday, September 11, 2008 27 Yandell cloning data Fitting one-way linear model with proc mixed separate residual variance for each type The Mixed Procedure Number of Observations Number of Observations Read 64 Number of Observations Used 64 Number of Observations Not Used 0 Iteration History Iteration Evaluations -2 Res Log Like Criterion 0 1 723.96458474 1 1 694.58834681 0.00000000 Convergence criteria met. Covariance Parameter Estimates Cov Parm Subject Group Estimate Residual rep(clone) type cult 202600 Residual rep(clone) type etb 1054.30 Residual rep(clone) type odd 17691 Residual rep(clone) type par 57680 Residual rep(clone) type res 18157 Residual rep(clone) type susc 34432 17:38 Thursday, September 11, 2008 28 Yandell cloning data Fitting one-way linear model with proc mixed separate residual variance for each type The Mixed Procedure Fit Statistics -2 Res Log Likelihood 694.6 AIC (smaller is better) 706.6 AICC (smaller is better) 708.5 BIC (smaller is better) 719.5 Null Model Likelihood Ratio Test DF Chi-Square Pr > ChiSq 5 29.38 <.0001 Type 3 Tests of Fixed Effects Effect clone Num Den DF DF F Value Pr > F 12 51 49.73 <.0001 17:38 Thursday, September 11, 2008 29 Fitting one-way linear model with proc mixed separate residual variance for each type Residual checking 3 Studentized Residual 2 1 0 -1 -2 -3 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Predicted code a h b i c j d k e l f m g Yandell cloning data Fitting one-way linear model with proc mixed separate residual variance for each type Residual Normality checking 17:38 Thursday, September 11, 2008 31 The CAPABILITY Procedure Variable: StudentResid (Studentized Residual) Moments N 64 Sum Weights 64 Mean 4.7289E-15 Sum Observations 3.0265E-13 Std Deviation 1.00595807 Variance 1.01195163 Skewness 0.00559096 Kurtosis -0.0746158 Uncorrected SS 63.7529528 Corrected SS 63.7529528 Coeff Variation 2.12728E16 Std Error Mean 0.12574476 Basic Statistical Measures Location Mean Variability 0.000000 Std Deviation 1.00596 Median 0.015162 Variance 1.01195 Mode 4.90099 . Range Interquartile Range 1.41944 Tests for Location: Mu0=0 Test Statistic Student's t t Sign M Signed Rank S p Value 3.76E-14 Pr > |t| 1.0000 0 Pr >= |M| 1.0000 -12 Pr >= |S| 0.9368 Yandell cloning data Fitting one-way linear model with proc mixed separate residual variance for each type Residual Normality checking The CAPABILITY Procedure Variable: StudentResid (Studentized Residual) Quantiles (Definition 5) Quantile Estimate 100% Max 2.1618474992 99% 2.1618474992 95% 1.8374912960 90% 1.3295369008 75% Q3 0.6912304349 50% Median 0.0151622671 25% Q1 -0.7282112132 10% -1.1381254465 5% -1.3790041519 1% -2.7391439511 0% Min -2.7391439511 Extreme Observations Lowest Highest Value Obs Value Obs -2.73914395 38 1.66654968 5 -1.91500697 24 1.83749130 45 -1.59788728 60 1.94688504 50 -1.37900415 12 1.95151490 23 -1.27474024 47 2.16184750 57 17:38 Thursday, September 11, 2008 32 Fitting one-way linear model with proc mixed separate residual variance for each type Residual Normality checking 35 30 25 P e 20 r c e n 15 t 10 5 0 -2.8 -2.0 -1.2 -0.4 0.4 Studentized Residual Curve: Normal(Mu=47E-16 Sigma=1.006) 1.2 2.0 Yandell cloning data Fitting one-way linear model with proc mixed separate residual variance for each type Residual Normality checking 17:38 Thursday, September 11, 2008 34 The CAPABILITY Procedure Fitted Normal Distribution for StudentResid Parameters for Normal Distribution Parameter Symbol Estimate Mean Mu 4.73E-15 Std Dev Sigma 1.005958 Goodness-of-Fit Tests for Normal Distribution Test Statistic DF p Value Kolmogorov-Smirnov D 0.06175445 Pr > D >0.150 Cramer-von Mises W-Sq 0.03167710 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.22583433 Pr > A-Sq >0.250 Chi-Square Chi-Sq 4.60658088 4 Pr > Chi-Sq 0.330 Quantiles for Normal Distribution Quantile Percent Observed Estimated 1.0 -2.73914 -2.340208 5.0 -1.37900 -1.654654 10.0 -1.13813 -1.289187 25.0 -0.72821 -0.678508 50.0 0.01516 0.000000 75.0 0.69123 0.678508 90.0 1.32954 1.289187 Yandell cloning data Fitting one-way linear model with proc mixed separate residual variance for each type Residual Normality checking The CAPABILITY Procedure Fitted Normal Distribution for StudentResid Quantiles for Normal Distribution Quantile Percent Observed Estimated 95.0 1.83749 1.654654 99.0 2.16185 2.340208 17:38 Thursday, September 11, 2008 35 Fitting one-way linear model with proc mixed separate residual variance for each type Residual Normality checking 3 S t u d e n t i z e d 2 1 0 R e s i -1 d u a l -2 -3 -3 -2 -1 0 1 Normal Quantiles Normal Line: Mu=0, Sigma=1 2 3
© Copyright 2025 Paperzz