ST512 NCSU-Statistics SSII 2011 Simple Linear Regression - Example The failure rate (or hazard rate) h t of a system is related to the conditional probability that the system will fail in the next instant of time given that it has survived to time t . The hazard rate of a particular brand of personal computer is thought to be a power function of its age t , so that h t ct d , where c and d are parameters with unknown values that need to be estimated. To convert the above expression to a linear equation involving c and d we take the log (base 10) of each side to obtain log10 h t log10 c d log10 t , or y o 1 x , where y log10 h t , o log10 c , 1 d , and x log10 t . A large number of computers were put on test for 10 hours to obtain an estimate of the hazard rate for each of the ten hours. The results are shown below data The following straight line model was proposed xt log10 ti yt log10 hi 1 0 0.02119 2 0.301 0.596 3 0.4771 0.91381 4 0.6021 1.24551 5 0.699 1.39794 6 0.7782 1.57978 7 0.8451 1.6902 8 0.9031 1.77085 9 0.9542 1.92942 10 1 1.989 t(hours) y o 1 x In matrix form, Model is Y X e 1 1 1 1 1 1 1 1 1 1 , where e ~ MVN 0, 2I 0.02119 e1 0.596 e 0.301 2 0.91381 e3 0.4771 0.6021 1.24551 e4 0.699 0 1.39794 e5 0.7782 1 1.57978 e6 1.6902 e 0.8451 β 7 0.9031 1.77085 e8 1.92942 e 0.9542 9 1.989 e10 1 e Y X 0 Estimate β by b , such that Y Xb Y Xb is minimized: Least squares estimation Normal Equations XX b XY , solving for b to get the minimum residual sum of squares b XX XY 1 Estimate regression coefficients 6.5598 10 XX 6.5598 5.2152273 Example taken from Dr. Tom Reiland ST 511 (NCSU Sum 1, 2010). Page 1 ST512 XX NCSU-Statistics 1 b XX SSII 2011 5.2152273 6.5598 0.5717638 0.719174 1 2 10 0.719174 1.096335 52.152273 6.5598 6.5598 1 0.5717638 0.719174 13.1337 0.008723097 0.719174 1.096335 10.429536 1.988850 XY Linear Regression Equation yi 0.008723097 1.98850xi Calculate residuals residual = Y Y Y Xb x2 0.301 For y2 0.008723097 1.98850 0.301 0.60737 e2 0.596 0.60737 0.01137 0.02119 0.00872 0.01247 0.596 0.60737 0.01137 0.91381 0.95760 0.04379 1.24551 1.20621 0.03930 1.39794 1.39893 0.00099 1.57978 1.55645 0.02333 1.6902 1.68950 0.00070 1.77085 1.80486 0.03400 1.92942 1.90649 0.02293 1.989 1.99758 0.00858 Y Y e Calculate residual degrees of freedom dfe = Error df = n – 2 ( one intercept + one slope) Calculate the residual sum of squares Y Xb Y Xb SSE Residual variance estimated by MSE = SSE/df = (0.01246782 + . . . + (-0.008575)2)/8 = 0.0007561 Variance of b = Vb var b XX 2 1 Where 2 is the variance of ei estimated by MSE = 0.0007561. , Estimate covariance matrix for regression coefficients 0.5717638 0.719174 0.0004323 0.000544 Vb var b 0.0007561 0.719174 1.096335 0.000544 0.0008289 var(bo) = 0.0004323 var(b1) = 0.0008289 cov(bo, b1) = -0.000544 Example taken from Dr. Tom Reiland ST 511 (NCSU Sum 1, 2010). Page 2 ST512 NCSU-Statistics SSII 2011 Test of Hypothesis H o : 0 0 H1 : 0 0 P Type I Error 0.05 tc b0 0.008723 0.42, sb0 0.0004323 P t8 df 0.42 0.6859 Do not reject Ho , there is not enough statistical evidence to reject H o : 1 0 H1 : 1 0 P Type I Error 0.05 tc b1 1.98885 69.08, sb1 0.0008289 P t8 df 69.08 .0001 Reject Ho , there is enough statistical evidence to reject 95% Confidence Interval for , thus we conclude . Conf bi t 0.975,df 8 sbi 100 95% Confidence Interval for Conf 0.008723 2.306 0.02079 100% Conf 0.03922 0 0.05667 100% 95% Confidence Interval for Conf 1.98885 2.306 0.02879 100% Conf 1.94630 1 2.03140 100% Example taken from Dr. Tom Reiland ST 511 (NCSU Sum 1, 2010). Page 3
© Copyright 2025 Paperzz