L11MOCONFCS Cartesian Coordinates for rectangular mirrors in confocal resonator. Field distribution as contour plot. The mode numbers m and n are for Hermitian Polynomials. The constant in the exponential is simulated by X. Small X correspond to small "waist width". N := 40 i := 0 .. N j := 0 .. N x i := ( −20) + 1.00⋅ i H0( x ) := 1 H0( y ) := 1 y j := −20 + 1.00⋅ j H1( x ) := x ⋅ 2 2 ⋅ x − 2 H2( x ) := 4 ⋅ X 2 X H1( y ) := y ⋅ 2 Y 2 2 ⋅ y − 2 H2( y ) := 4 ⋅ Y H00 ( x , y ) := H0( x ) ⋅ H0( y ) H20 ( x , y ) := H2( x ) ⋅ H0( y ) H01 ( x , y ) := H0( x ) ⋅ H1( y ) H02 ( x , y ) := H0( x ) ⋅ H2( y ) H10 ( x , y ) := H1( x ) ⋅ H0( y ) H21 ( x , y ) := H2( x ) ⋅ H1( y ) H11 ( x , y ) := H1( x ) ⋅ H1( y ) H12 ( x , y ) := H1( x ) ⋅ H2( y ) H22 ( x , y ) := H2( x ) ⋅ H2( y ) 2 R( x , y ) := ( x ) + ( ( y ) ) constant X X ≡ 100 2 Y ≡ 100 − R( x , y) X g ( x , y ) := e M00 i , j := ( g ( x i , y j) ⋅ H00 ( x i , y j) ) M10 M00 M01 i , j := ( g ( x i , y j) ⋅ H01 ( x i , y j) ) M01 M10 i , j := ( g ( x i , y j) ⋅ H10 ( x i , y j) ) 2 2 M11 i , j := ( g ( x i , y j) ⋅ H11 ( x i , y j) ) M11 2 2 M20 i , j := ( g ( x i , y j) ⋅ H20 ( x i , y j) ) 2 M20 M02 i , j := ( g ( x i , y j) ⋅ H02 ( x i , y j) ) M02 M21 i , j := ( g ( x i , y j) ⋅ H21 ( x i , y j) ) 2 M21 M12 i , j := ( g ( x i , y j) ⋅ H12 ( x i , y j) ) 2 M12 2 M22 i , j := ( g ( x i , y j) ⋅ H22 ( x i , y j) ) M22 2
© Copyright 2025 Paperzz