Potent and selective, orally active GPBAR1 agonists as chemical biology probes Patrizio Mattei, F. Hoffmann-La Roche AG, Pharma Research & Early Development Acknowledgements Discovery Chemistry Kenneth Atz Caterina Bissantz Anne-Sophie Cuvier Henrietta Dehmlow Patrick Di Giorgio Olivier Gavelle Selina Hodel Marie-Paule Imhoff Kersten Klar Michelle Kovacic Rainer Martin Patrizio Mattei Ulrike Obst Sherrie Pietranico Noemi Raschetti Flore Reggiani Hans Richter Martin Ritter Marianne Rueher Joana Salta Petra Schmitz Jitka Weber Daniel Zimmerli Cardiovascular/Metabolic DTA Andreas Christ Sabine Grüner Maria Chiara Magnone Tanja Minz Anja Osterwald Susanne Raab Wolfgang Rapp Astride Schnoebelen Sabine Sewing Urs Sprecher Christoph Ullmer Elisabeth Zirwes Discovery Technologies Thilo Enderle Martin Graf Arne Rufer Non-clinical Safety Rubén Alvarez Sánchez Andreas Brink Nicole Clemann Jürgen Funk Tobias Manigold Axel Pähler Formulation Jochem Alsenz Process Research & Synthesis Stephan Bachmann Manuela Baumann Fritz Bliss Christian Jenny Jacky Joerger Fritz Koch Ernst Kupfer Michel Lindemer Karina Müller Dieter Muri Kurt Schönbächler Markus Steiner Literature Werner Klaus Patents Dörte Klostermeyer Management Karin Conde-Knape Silvia Pomposiello Martin Stahl René Wyler Type 2 diabetes • Type 2 diabetes – a disease resulting from a combination of defective insulin secretion and defective responsiveness to insulin. – 285 M people (6.4% of world adult population) affected in 2010. (source: International Diabetes Federation, http://www.diabetesatlas.org) – a manageable chronic condition but risk of long-term complications. • Initial therapy of type 2 diabetes starts with metformin (in addition, lifestyle changes are strongly recommended: diet and exercise) • If sufficient glucose control is not achieved within 3 months, add one of the following to metformin (ADA/EASD consensus report: Diabetes Care 2012, 35, 1364): – sulfonylurea (e. g., glibenclamide) – PPARγ agonist (pioglitazone) GLP–1 is a potent inducer of – DPP4 inhibitor (e. g., sitagliptin) glucose-dependent stimulation of – GLP–1 receptor agonist (e. g., liraglutide) glucose secretion – insulin Bile acids as incretin secretagogues plasma PYY [pM] PYY plasma enteroglucagon [pM] • Deoxycholic acid administered through intracolonic infusion in humans stimulates PYY and GLP-1 release through activation of L-cells, to extent similar to that of a normal meal (Gut 1993, 34, 1219). enteroglucagon • Discovery of the target, GPBAR1 (TGR5, M-BAR) independently at Takeda and Banyu (2002), leading to intracellular increase of cAMP. Bile acids are endogenous ligands: • deoxycholic acid EC50 = 1 µM • lithocholic acid EC50 = 0.53 µM • Bile acids promote GLP-1 secretion through GPBAR1 (BBRC 2005, 329, 386) in STC1 enteroendocrine cell line GPBAR1 action on L-cells and macrophages Both anti-diabetic and anti-inflammatory effects • L-cells Secretagogue: PYY GLP-1 • • Glucose-dependent glycemic control – low risk of hypoglycemia – synergistic action of peptides – parallels to bariatric surgery Islet preservation Body weight loss cAMP cytokine release: TNFα α IL6 Kupffer cells Monocytes • Anti-inflammatory actions – Improved insulin sensitivity – Reduced liver inflammation – Reduced liver fibrosis Reference compounds (1) Synthetic bile acids Intercept/Università di Perugia: Obeticholic acid (INT-747) O chenodeoxycholic acid core structure OH H Intercept/Università di Perugia: INT-777 [6-EMCA] O cholic acid hydroxyl OH H H H HO H OH H H OH hGPBAR EC50 0.5 µM FXR: EC50 0.03 µM • Mixed FXR/GPBAR1 agonist. • Phase 3 (primary biliary cirrhosis); Phase 2/3 (non-alcoholic steatohepatitis) H HO H H OH hGPBAR EC50 0.82 µM FXR: inactive • Selective GPBAR1 agonist. • Anti-diabetic effects: Cell Metabolism 2009, 10, 167. • Reduction of atherosclerosis by reducing macrophage inflammation and lipid loading: Cell Metabolism 2011, 14, 747. • "lead candidate to advance into clinical studies" (J. Med. Chem. 2009, 52, 7958). Reference compounds (2) Non-bile acids Exelixis/Bristol-Myers Squibb: XL-475 GlaxoSmithKline: SB-050 O O O structure not disclosed O S N O O N S O O hGPBAR1 EC50 1.2 µM • Orally administered GPBAR1 agonist. Designed to selectively target the GPBAR1 receptors in the intestine without significant systemic exposure to enhance the therapeutic index for potential chronic administration. • Effective in lowering blood glucose, improving glucose tolerance, improving plasma and hepatic lipid levels, and reducing hepatic steatosis. • • • Compound SB-050 progressed to the clinic but was stopped due to inconsistent PD effects/large inter-individual variations (e.g. GLP-1 release) across doses. Not clear whether systemic exposure is required for PD effect. 241st ACS National Meeting & Exposition, Anaheim 2011, MEDI-335. Today's topics • A new class of non-bile acid derived, orally bioavailable GPBAR1 agonists Start from scratch, by way of high-throughput screening • Characterisation of the new GPBAR1 agonists as antidiabetic agents Glucose, PYY, GLP–1 GPBAR1 – HTS • High-throughput screening of the whole Roche library (n = 940000) • 5147 validated hits, of these 847 at hEC50 < 3 µM • Examples (other than bile acids, steroids): NK1 antagonists (n = 43) nicotinamides (n = 1) "Novartis-type" (n = 4) oximes (n = 8) O Cl F N F N S O N O Cl O F F O N O N N N F N OH N F Cl F3C Cl N N hEC50 [µM] 1.21 0.49 0.58 0.051 mEC50 [µM] >20 2.7 >20 0.28 Ligand alignment: HTS hits/synthetic bile acid H HO H O OH O H Cl H O H N S O O F O S N O O hEC50 = 0.095 µM J. Med. Chem. 2007, 50, 4266. N Cl hEC50 = 0.48 µM N F F F F Cl N Cl HBA aromatic/hydrophobic: essential feature hydrophobic N hEC50 = 0.051 µM N hEC50 = 0.58 µM aromatic N N F F hEC50 = 1.21 µM F HO O N N O aromatic/hydrophobic anionic/polar F N Should we consider oximes at all? Marketed drugs Hormonal contraceptives Antibiotics O O OH O O S H2N N O N N H H H H S N OH HO H H N INN cefdinir norgestimate marketed by Astellas/Abbott + generics Johnson & Johnson + generics peak sales (year) ca. USD 900 M (2006) n/a dose, administration route oral, 300 -600 mg/day Oral, 0.18 – 0.25 mg per tablet, predominantly in combination with ethynylestradiol half life 1.7 h n/a clogP -0.5 5.1 metabolism none (renal excretion of parent) Complete first-pass metabolism (intestine, liver) to active metabolites norelgestromine (deacetylation), and norgestrel (deacetylation + ketone formation) Resynthesis of the HTS hit O O O NaOH, RT (neat) N H + PhB(OH)2 Et2Zn toluene, 60°C N Perkin 1 2001, 3258 N NH2OH.HCl, NaOAc, EtOH/H2O O N HO N OH + N N E/Z ca. 6:1 N N N N N N H2N HCl, 1,4-dioxane O + N Profile of the oxime hits OH N N N human/mouse EC50 [nM] N OH N Br 45 19 2000 760 solubility [mg/L] (LYSA, pH 6.5) <1 <1 logD (pH 7.4) 3.4 >3 aqueous stability (pH 1, 4, 6, 8, 10) n. d. stable medium/high medium/high 169 / 460 242 / 388 <0.2 / 3.1 / <0.2 <0.2 / 2.2 / <0.2 n.d. 5.5 mouse EC50 [nM] permeability (prediction) Clmic [mL/min/mg protein] (h/m) CYPs [μM] (3A4, 2D6, 2C9) Mouse PK hERG IC20 [μM] Cl [mL/min/kg] 77 Vss [L/kg] 1.6 F [%] 32 t1/2 [h] 0.2 – 0.5 protein binding fu [%] (h/m) 0.2 / 0.5 Initial SAR: Oxime, pyridine X N N OH HO N O N O N 0.045 µM hEC50 0.26 µM >10 µM >10 µM N OH N N N F N N hEC50 0.045 µM (–)-Enantiomer: 0.028 µM (+)-Enantiomer: 0.105 µM >10 µM >10 µM >10 µM >10 µM Optimisation of "northern" vector N OH N N hEC50 = 0.045 µM N hEC50 0.025 µM 0.077 µM 0.1 µM 0.38 µM H >10 µM >10 µM Lipophilic unsubstituted 4-pyridyl derivatives 3A4/2C9 pharmacophore N OH N Br hEC50 0.012 µM CYP3A4, IC50 <0.2 µM CYP2D6, IC50 4.3 µM CYP2C9, IC50 <0.2 µM logD IC50 [µM] CYP3A4 (n = 539) >4 CYP2D6 (n = 520) CYP2C9 (n = 497) 100 100 100 10 10 10 1 1 1 0.1 0.1 0.1 -2 -1 0 1 2 logD7.4 3 4 5 -2 -1 0 1 2 logD7.4 3 4 5 -2 -1 0 1 2 logD7.4 3 4 5 3-Methyl-4-pyridyl is not a CYP450 pharmacophore R N IC50 [µM] CYP3A4 (n = 554) CYP2D6 (n = 540) CYP2C9 (n = 538) 100 100 10 10 1 1 0.1 0.1 -2 -1 0 1 2 logD7.4 3 4 -2 5 logD7.4 -1 0 1 2 logD7.4 3 4 5 3-Methyl-4-pyridyl is not a CYP450 pharmacophore hEC50 N OH N Br IC50 [µM] CYP3A4 (n = 554) 0.028 µM CYP3A4, IC50 5 µM CYP2D6, IC50 19 µM CYP2C9, IC50 1.6 µM logD >4 CYP2D6 (n = 540) CYP2C9 (n = 538) 100 100 10 10 1 1 0.1 0.1 -2 -1 0 1 2 logD7.4 3 4 -2 5 logD7.4 -1 0 1 2 logD7.4 3 4 5 Other head groups with reduced CYP interaction N OH R Br N N O N O N O O N N CONH2 COOH hEC50 0.012 µM 0.028 µM 0.008 µM >10 µM 0.179 µM 0.87 µM CYP3A4, IC50 <0.2 µM 5 µM >50 µM 15 µM n. a. >50 µM CYP2D6, IC50 4.3 µM 19 µM 24 µM 25 µM 50 µM >50 µM CYP2C9, IC50 <0.2 µM 1.6 µM 5.1 µM 4.4 µM 32 µM 6.6 µM >4 >4 3.8 3.8 2.9 1.0 logD Introduction of polarity at "south eastern" exit vector N OH N COOH Br COOH COOH H N COOH O hEC50 = 0.028 µM 0.26 µM 0.7 µM 0.02 µM 0.29 µM 0.01 µM mEC50 = 0.74 µM 3.7 µM 6.1 µM 0.093 µM 0.86 µM 0.07 µM 1.1 0.9 2.5 2.4 1.0 medium/high medium/high medium/high medium/high LOW logD = >4 permeatility = medium/high N OH N OH N N COOH hEC50 0.011 µM COOH 0.057 µM COOH Comparison of in vitro profiles HTS hit benzoic acid lead compound O OH N OH N Br OH N N human EC50 [nM] 19 11 mouse EC50 [nM] 760 130 inactive inactive off-target activity: PPARs, LXR, PXR, RXR n.d. inactive solubility [mg/L] (LYSA, pH 6.5) <1 9 logD (pH 7.4) >3 2.7 stable stable medium/high medium/high n.d. 16 / 53 <0.2 / 2.2 / <0.2 45 / >50 / 14 5.5 >10 0.2 / 0.5 0.04 / 0.2 FXR transactivation aqueous stability (pH 1, 4, 6, 8, 10) permeability (prediction) Clhep [mL/min/mg protein] (h/m) CYPs [μM] (3A4, 2D6, 2C9) hERG IC20 [μM] protein binding fu [%] (h/m) Improved properties translate into an improved PK HTS hit benzoic acid lead compound O OH N OH N Br 100000 10000 plasma conc. (ng/mL) plasma conc. (ng/mL) N p.o. 8.1 mg/kg i.v. 2.2 mg/kg 1000 100 10 OH N 10000 p.o. 23 mg/kg i.v. 1.0 mg/kg 1000 100 10 1 1 0 2 4 6 Time (h) Cl Vss t1/2 [mL/min/kg] [L/kg] [h] 77 1.6 F 8 cmax norm. [%] [ng/mL]/[mg/kg] 0.2-0.5 32 0 65 mouse 2 4 6 Time (h) 8 Cl Vss t1/2 F cmax norm. [mL/min/kg] [L/kg] [h] [%] [ng/mL]/[mg/kg] 15 0.5 2.5 80 800 PK/PD for benzoic acid lead compound PYY as mechanistic readout O OH N C57BL6 mice OH N PK/PD relationship concentration vs. time dose: 100 mg/kg p.o. 3000 concentration exposure [ng/mL] PYY [pg/mL] 10000 1000 Total PYY [pg/mL] 100000 2500 p.o. 100 mg/kg p.o. 50 mg/kg i.v. 2 mg/kg 2000 1500 1000 500 100 0 5 10 15 time [h] 20 25 0 10 100 1000 10000 exposure [ng/mL] • No indirect or delayed effect • Plasma exposure appears to be a good surrogate for GPBAR1 action. 100000 Oral glucose tolerance test of lead compound Dose dependent improvement of glucose tolerance §§ p<0.01 Jonckheere's trend test supports 10 0 O OH N -10 -10.4% OH N -20 -18.9% -22.8% §§ ∆Glucose AUC0-120min [%] +5% C57BL6 mice high probability of dose dependent effects -30 20 50 70 Dose [mg/kg] 100 compound administration 1 h before glucose challenge Second generation: Reduce logD/protein binding hEC50 in vitro: O OH N mEC50 solubility logD fu (h/m) [nM] [nM] 11 Cl OH mouse PK: [mg/L] [%] 130 Vss 9 t1/2 F 2.7 0.04/0.2 cmax norm. [mL/min/kg] [L/kg] [h] [%] [ng/mL]/[mg/kg] 15 0.5 2.5 80 800 N O O OH N OH N N OH N OH N OH S O O N N O O RO5527239 hEC50 mEC50 solubility logD fu (h/m) [nM] 4 Cl [nM] [mg/L] [%] 28 Vss 273 1.5 0.4/1.9 cmax norm. t1/2 F [mL/min/kg] [L/kg] [h] [%] [ng/mL]/[mg/kg] 5 0.4 1.7 100 650 hEC50 mEC50 solubility logD fu (h/m) [nM] 60 Cl [nM] [mg/L] [%] 450 Vss 250 t1/2 F 1.3 0.4/0.4 cmax norm. [mL/min/kg] [L/kg] [h] [%] [ng/mL]/[mg/kg] 5 0.5 0.7 87 600 hEC50 mEC50 solubility logD fu (h/m) [nM] 26 Cl [nM] [mg/L] [%] 1300 Vss 300 1.7 2.1/11 cmax norm. t1/2 F [mL/min/kg] [L/kg] [h] [%] [ng/mL]/[mg/kg] 67 3.3 2.2 29 40 Synthesis of RO5527239 CO2Et NC O ClMg Morpholine, ∆, 2h EtO H Br O O 15 h, 110°C EtO CN 87% CH3CO2H, H2SO4 O HO CN 2-Me-THF, RT, 1h quant. Br 72% Br Br Br O HCl n-Heptane/i-PrOH 80:20 TBTU, NEt3, DMF 91% N OMe (rac) n-BuLi, 2-Me-THF, -100°C N Reprosil Chiral NR HNMe(OMe) O N OMe Br O N 73% Br Br 46% (R) 42% (S) 1. HN COOEt 1. NH2OH.HCl, NaOAc, EtOH, reflux 2. HCl, 1,4-dioxane O Pd2(dba)3, X-Phos NaOtBu, toluene 2. NaOH, EtOH, H2O 76% N N N OH N N 76% O O OH OH RO5527239 RO5527239 binds specifically to GPBAR1 Same binding site as lithocholic acid O OH N T OH No meaningful off-target activity identified [3H]-RO5527239 N specific binding [pmol/mg] N 7 6 5 4 3 Kd = 70 nM 2 Bmax = 10.2 pmol/mg protein 1 0 0 20 40 60 80 free radioligand (nM) 100 • radioligand binding panel (Cerep, n = 97) • transactivation assays: • FXR • LXRα, LXRβ • PPARα, PPARγ, PPARδ • RXRα Cellular activity of RO5527239 GPBAR1 expressing enteroendocrine STC-1 cells cAMP GLP–1 O OH N EC50 = 1.59 µM N EC50 > 10 µM OH EC50 = 0.32 µM RO5527239 EC50 = 11 µM deoxycholic acid GLP-1 (% of PMA) cAMP (nM) 160 N 120 80 40 0 0.1 1 10 concentration (µM) 28 24 20 16 12 8 4 0 -4 0.1 1 10 concentration (µM) RO5527239 in humanised DIO (C57/Bl6) mice GLP-1/PYY secretion and glucose tolerance benzoic acid lead compound O OH N N OH 10 mg/kg 30 mg/kg N 100 mg/kg N 100 total GLP-1 [pg/ml] total PYY [pg/ml] 800 400 80 60 40 20 60 min OH 10 Vehicle Glucose 20 -31 -28 -37% 8 6 4 2 0 18 16 14 12 10 8 6 0 0 ∆ AUC Glucose GLP–1 PYY 1200 O Plasma Glucose [mM] OH N [mM×min]×100 RO5527239 60 min 4 0 30 60 min • Higher in vivo efficacy of RO5527239 in GLP-1/PYY release translates into superior glucose tolerance. 120 Acute improvement in glucose tolerance in db/db mice Synergistic effects with metformin and sitagliptin RO5527239 (30 mg/kg) metformin (100 mg/kg) glucose [mM] vehicle 20 metformin (100 mg/kg) + RO5527239 (30 mg/kg) 16 0 8 N OH RO5527239 50 1 N 40 30 20 0 60 time [min] 120 − − 25 + − + + − + RO5527239 metformin Active GLP-1 20 30 15 fold increase sitagliptin (10 mg/kg) + RO5527239 (30 mg/kg) Total GLP-1 4 glucose [mM] sitagliptin (10 mg/kg) OH N 10 b) with sitagliptin (DPP4 inhibitor) RO5527239 (30 mg/kg) -24% 2 12 -120 0 15 30 vehicle O fold increase a) with metformin [mM×min] × 1000 AUC Glucose 3 10 5 0 25 20 15 10 5 0 -60 0 15 30 60 time [min] 120 − − + − + + − + RO5527239 sitagliptin Summary • We have identified a new class of orally available GPBAR1 agonists starting from high-throughput screening hits. • An unsubstituted oxime group is required for this class of compounds. • Optimised GPBAR1 agonists bind to the target in the same manner as bile acids, resulting in secretion of PYY and GLP-1. • RO5527239, the most potent compound of this class, improves glucose tolerance in rodents and shows synergistic effects with sitagliptin and metformin. We Innovate Healthcare
© Copyright 2025 Paperzz