EPXA10 DDR Development Board Hardware Reference Manual April 2003 Version 1.3 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com MNL-EXCDDRDEVBRD-1.3 Excalibur EPXA10 DDR Development Board Hardware Reference Manual Copyright 2003 Altera Corporation. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. All rights reserved. ii Altera Corporation About this Manual This manual provides comprehensive information about the Altera® EPXA10 DDR development board. Table 1 shows the manual revision history. Table 1. Revision History Date How to Find Information April 2003 Improved expansion header tables. January 2003 Amended EPC16 configuration device section. December 2002 Changed board device number. November 2002 First publication. ■ ■ ■ ■ Altera Corporation Description The Adobe Acrobat Find feature allows you to search the contents of a PDF file. Click on the binoculars icon in the top toolbar to open the Find dialog box. Bookmarks serve as an additional table of contents. Thumbnail icons, which provide miniature previews of each page, provide a link to the pages. Numerous links, shown in green text, allow you to jump to related information. iii About this Manual EPXA10 DDR Development Board Hardware Reference Manual How to Contact Altera For the most up-to-date information about Altera products, go to the Altera world-wide web site at http://www.altera.com. For additional information about Altera products, consult the sources shown in Table 2. Table 2. How to Contact Altera Information Type Altera Literature Services Access Electronic mail Non-technical Telephone hotline customer service Fax Technical support Telephone hotline Fax General product information USA & Canada All Other Locations lit_req@altera.com (1) lit_req@altera.com (1) (800) SOS-EPLD (408) 544-7000 (7:30 a.m. to 5:30 p.m. Pacific Time) (408) 544-7606 (408) 544-7606 (800) 800-EPLD (7:00 a.m. to 5:00 p.m. Pacific Time) (408) 544-7000 (1) (7:30 a.m. to 5:30 p.m. Pacific Time) (408) 544-6401 (408) 544-6401 (1) World-wide web site http://www.altera.com/mysupport http://www.altera.com/mysupport FTP site ftp.altera.com ftp.altera.com Telephone (408) 544-7104 (408) 544-7104 (1) World-wide web site http://www.altera.com http://www.altera.com Note: (1) iv You can also contact your local Altera sales office or sales representative. Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Typographic Conventions About this Manual The Excalibur EPXA10 DDR Development Board Hardware Reference Manual uses the typographic conventions shown in Table 3. Table 3. Conventions Visual Cue Meaning Bold Type with Initial Capital Letters Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: Save As dialog box. bold type External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type. Examples: fMAX, \QuartusII directory, d: drive, chiptrip.gdf file. Bold italic type Book titles are shown in bold italic type with initial capital letters. Example: 1999 Device Data Book. Italic Type with Initial Capital Letters Document titles are shown in italic type with initial capital letters. Example: AN 75 (High-Speed Board Design). Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1. Variable names are enclosed in angle brackets (< >) and shown in italic type. Example: <file name>, <project name>.pof file. Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu. “Subheading Title” References to sections within a document and titles of Quartus II Help topics are shown in quotation marks. Example: “Configuring a FLEX 10K or FLEX 8000 Device with the BitBlaster™ Download Cable.” Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi, input. Active-low signals are denoted by suffix _n, e.g., reset_n. Anything that must be typed exactly as it appears is shown in Courier type. For example: c:\quartusII\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier. 1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure. ■ Bullets are used in a list of items when the sequence of the items is not important. v The checkmark indicates a procedure that consists of one step only. 1 The hand points to information that requires special attention. r The angled arrow indicates you should press the Enter key. f The feet direct you to more information on a particular topic. Altera Corporation v Notes: Contents How to Find Information .............................................................................................................. iii How to Contact Altera .................................................................................................................. iv Typographic Conventions ............................................................................................................. v Features .............................................................................................................................................9 Functional Overview .....................................................................................................................10 Board Components ........................................................................................................................10 Interfaces .........................................................................................................................................14 PCI Interface ...........................................................................................................................14 10/100 Ethernet Parallel Interface .......................................................................................16 Serial I/O Interfaces ..............................................................................................................18 Memory Interfaces .................................................................................................................19 LED & Switch Interfaces .......................................................................................................22 Trace Port Interface ................................................................................................................26 10-Pin IDC Header Interface ................................................................................................26 Expansion Header Interface .................................................................................................27 Jumper Configuration ...................................................................................................................32 Clocks ...............................................................................................................................................35 CLK_REF & the FPGA Clocks ..............................................................................................37 MAX 3032 ................................................................................................................................38 Embedded Stripe Clocks .......................................................................................................38 Jumper Configuration for the Clock Input .........................................................................40 Sources for the EPXA10 Clocks ............................................................................................40 Device Configuration ....................................................................................................................41 Booting from Flash Memory ................................................................................................41 Configuring Using the EPC16 ..............................................................................................42 Configuring Using JTAG ......................................................................................................43 Configuration Schemes .........................................................................................................44 Debugging Features .......................................................................................................................44 Third-Party Debugging Tools ..............................................................................................45 JTAG Interfaces ......................................................................................................................45 Power Supply .........................................................................................................................47 Test Points .......................................................................................................................................51 Signals ..............................................................................................................................................52 UART .......................................................................................................................................52 PCI ............................................................................................................................................53 Trace Port ................................................................................................................................54 Configuration/Debugging Interfaces .................................................................................55 Pin-Outs ...........................................................................................................................................57 Configuration .........................................................................................................................57 Altera Corporation vii Contents EPXA10 DDR Development Board Hardware Reference Manual DDR SDRAM Interface .........................................................................................................59 EBI ............................................................................................................................................61 PCI ............................................................................................................................................63 UART1 & UART2 ...................................................................................................................64 Ethernet ...................................................................................................................................64 Fast I/O Pins ...........................................................................................................................65 User LEDs, Switches & Push Button Switches ..................................................................65 Trace Port ................................................................................................................................66 IDC 10-Pin Header .................................................................................................................66 Expansion Header ..................................................................................................................67 General Usage Guidelines ............................................................................................................74 Anti-Static Handling ..............................................................................................................74 Power-Up ................................................................................................................................74 Power Consumption ..............................................................................................................74 PCI Cards ................................................................................................................................74 Unused EPXA10 Device Pins ...............................................................................................75 Test Core Functionality .........................................................................................................75 viii Altera Corporation EPXA10 DDR Development Board ■ ■ Powerful development board for embedded processor FPGA designs – Features an EPXA10F1020C1 device – Supports intellectual property-based (IP-based) designs using a microprocessor Industry-standard interconnections – 10/100 megabits per second (Mbps) Ethernet with full and half duplexing – Two 32-bit peripheral component interconnect (PCI) connectors 1 ■ ■ ■ ■ ■ ■ ■ ■ Altera Corporation These features require additional IP blocks; contact Altera for further details. – Two RS-232 ports Memory subsystem – 32-Mbyte flash memory – 128-Mbyte DDR SDRAM Multiple clocks for communications system design Multiple ports for configuration and debugging – IEEE Std. 1149.1 Joint Test Action Group (JTAG) – Support for configuring the EPXA10 device using flash memory, an EPC16, or a MasterBlaster™ or ByteBlasterMV™ cable Expansion headers for greater flexibility and capacity – Four expansion headers for daughter-card access – 3.3-V/5-V/12-V/–12-V expansion/prototype headers to support up to 502 user I/O pins Two PCI connectors accommodate 3.3-V and universal PCI expansion cards Additional user-interface features – One user-definable 9-bit dual in-line package (DIP) switch block – Four user-definable push-button switches – Eight user-definable LEDs – One IDC plug—10 pins 2.54 mm pitch, with 8 user-definable connection and two power and ground pins Test points provided to facilitate system development Trace port connections 9 Specifications Features 1 EPXA10 DDR Development Board Hardware Reference Manual Functional Overview Designers can use the EPXA10 DDR development board as a desktop development system. It provides a hardware platform to start developing embedded systems immediately; and delivers clocks, debugging, and trace facilities to support the system under development in an Excalibur™ EPXA10 device. The EPXA10 DDR development board provides a flexible, powerful debug and development environment. Designers can use the board for a variety of purposes, including building and emulating systems for special requirements, and conducting trace and debug investigations. Board Components 10 This section introduces a brief overview of the components of the EPXA10 DDR development board, which is shown in Figure 1 on page 11. Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Figure 1. EPXA10 DDR Development Board Layout 290 mm Clocks. For greater detail, see Figure 11 on page 37 Power supply. For greater detail, see Figure 15 on page 48 290 mm Altera Corporation 11 EPXA10 DDR Development Board Hardware Reference Manual The EPXA10 DDR development board features the largest member of the Excalibur family, the EPXA10. The EPXA10 features an integrated microprocessor system with the APEX 20KE architecture in a 1,020-pin FineLine BGA™ package. Table 1 lists the main features of the device. Table 1. EPXA10 Device Features Feature Capacity Maximum system gates 1,772,000 Typical gates 1,000,000 LEs 38,400 ESBs 160 Maximum RAM bits 327,680 Maximum macrocells 2,560 Maximum user I/O pins 521 In addition, the EPXA10 provides a variety of peripherals, as listed in Table 2. . Table 2. EPXA10 Device Peripherals Peripheral Description ARM922T 32-bit RISC processor For speed grade –1: up to 200 MHz For speed grade –2: up to 166 MHz For speed grade –3: up to 133 MHz ETM9 trace module Used for software debugging Interrupt controller Used for the interrupt system Internal single-port SRAM 256 Kbytes Internal dual-port SRAM 128 Kbytes SDRAM controller Interfaces between the internal system bus and SDRAM External DDR SDRAM Refer to the Excalibur Devices Hardware Reference Manual for details of supported sizes Expansion bus interface (EBI) Interfaces to flash memory External flash memory Refer to the Excalibur Devices Hardware Reference Manual for details of supported sizes Watchdog timer Protects the system against software failure UART Facilitates serial communication Reset controller Resets the device 12 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual f Refer to the Excalibur Devices Hardware Reference Manual for details about EPXA10 devices. Figure 2 illustrates the relationship between the EPXA10 device and the development board peripherals. Figure 2. EPXA10 DDR development Board Block Diagram DDR SDRAM Excalibur EPXA10 Flash Memory External Connectors Configuration UART Connectors PCI Connectors Altera Corporation Ethernet Connector 13 EPXA10 DDR Development Board Hardware Reference Manual Interfaces Table 3 lists the interfaces on the EPXA10 DDR development board.. Table 3. Development Board Interfaces Interface Description PCI connectors The connectors operate at 32-bit, 33 MHz and can be used by designers to connect standard, commercially-available 3.3-V (only) and universal PCI cards 10/100 Ethernet with fulland half-duplexing This interface consists of a connector, transceiver and transformer. The MAC is implemented in the Altera device as an IP block. The connection between the MAC and the transceiver is a standard MII IEEE Std. 488 RS-232 serial interfaces This interface is a 12.0-V transceiver with 235-kbps data rate in a TSSOP package Debugging/programming ports The board supports in-circuit debugging by means of the MasterBlaster, ByteBlasterMV, or Multi-ICE cables MICTOR connector This connector provides debugging facilities for the trace port 10-pin IDC connector Facilitates access to the user I/O Expansion headers These connectors allow designers to stack multiple daughter boards as required User I/O pins The expansion header provides up to 502 user I/O pins that connect directly to the EPXA10 device, supporting custom interfaces (see Table 59 on page 67) PCI Interface Two PCI slots, U9 and U10, are implemented on the EPXA10 DDR development board. The 32-bit interface runs at up to 33 MHz and operates at 3.3 V only; it complies with PCI Local Bus Specification, Revision 2.2. The slots must be used solely with 3.3 V and universal PCI cards. 1 Do not force a 5-V PCI card into a 3.3-V PCI connector; this could damage the EPXA10 device. User I/O pins are provided for the PCI interfaces. Table 52 on page 63 lists the PCI signal pin assignments. 14 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual EPXA10 Device Signal Definitions for PCI Cards Table 4 lists the PCI signals for which EPXA10 device signals are required to implement the PCI interface See Table 52 on page 63 for pin-out details.. Table 4. EPXA10 Device Signal Definitions for PCI Cards Function PCI Signal Number Address and data AD[31..0] C/BE[3..0]# PAR 37 Interface control FRAME# TRDY# IRDY# STOP# DEVSEL# LOCK# 6 Error reporting PERR# SERR# 2 Arbitration PRSNT1# PRSNT2# REQ1# REQ2# GNT1# GNT2# 6 Interrupts INTA# INTB# INTC# INTD# 4 System CLK2 PCI_RST# 2 Some signals are not included in Table 4. IDSEL is a PCI signal used as a device select for configuration cycles and is generally connected to one of the address lines. Table 5 lists the IDSEL signal connections. Table 5. IDSEL Signal Connections Altera Corporation Board Reference PCI Slot EPXA10 Board Reference U10.A26 1 AJ19 U9.A26 2 AK19 15 EPXA10 DDR Development Board Hardware Reference Manual Board-Level Issues The PCI interface requires no devices on the board level if the PCI is implemented as an IP core in the EPXA10 device. All of the power supplies are provided when the ATX power supply is connected on the EPXA10 DDR development board. Table 6 lists the PCI interface characteristics. Table 6. PCI Interface Characteristics Interface Features PCI Interface I/O Pins 55 plus clock Voltages Clock Speed +3.3 V, +5 V, ±12 V 33 MHz 10/100 Ethernet Parallel Interface The Ethernet interface consists of a transceiver, or PHY layer, and associated discrete components. You can use the interface to implement an Ethernet media access controller (MAC) in the EPXA10 device. As shown in Table 43 on page 53, the interface consists of standard mediaindependent interface (MII) and additional signals. Table 7 details the devices used to implement the Ethernet interface. Table 7. Ethernet Interface Device Reference Board Reference Part Number U8 78Q2120-64CGT (TQFP64) TDK www.tdk.com U4 PE-68515L Pulse www.pulseeng.com 10/100-BASE T single-port transformer module P3 AMP 555078-1 AMP www.amp.com 16 Manufacturer Website Address Description Fast Ethernet MII transceiver 8-pin PCB RJ45 data socket Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Ethernet LEDs Table 8 lists the LEDs used for the Ethernet on the EPXA10 DDR development board. Table 8. Ethernet LEDs Board Reference Description LEL Link LED. This is set on during linkup LEDTX Transmit LED. This is set on during transmission LEDRX Receive LED. This is set on during receipt LEDFDX Full-duplex LED. This set on for full-duplex mode and off for halfduplex LEDCOL Collision LED. This is set on in half-duplex mode when a collision occurs, and is held off in full-duplex mode LEDBTX 100-BASE TX LED. This is set on for 100-BASE T connection, but off otherwise LEDBT 10-BASE T LED. This is set on for 10-BASE T connection, but is off otherwise Ethernet Switches Table 9 lists the switches used for the Ethernet device in the DIPSW2 dipswitch bank; and Table 10 on page 18 lists the TECH switches, which are used to set the Ethernet decoding protocol. Table 9. DIPSW2 Switch Connections Board Reference Altera Corporation Identifier DIPSW2_1 ANEGA DIPSW2_2 TECH0 DIPSW2_3 TECH1 DIPSW2_4 TECH2 DIPSW2_5 PHYAD0 DIPSW2_6 PHYAD1 DIPSW2_7 PHYAD2 DIPSW2_8 PHYAD3 DIPSW2_9 PHYAD4 Function Auto-negotiation enable Used to specify the Ethernet decoding Physical Address 17 EPXA10 DDR Development Board Hardware Reference Manual Table 10. Ethernet Protocol Decoding TECH [2:0] Function 0 0 0 No technology capability 1 1 1 Both 10-BASE T and 100-BASE T 0 0 1 10-BASE T, half duplex 0 1 0 100-BASE T, half duplex 0 1 1 Both 10-BASE T and 100-BASE T, half duplex 1 0 0 None 1 0 1 10-BASE T, full/half duplex 1 1 0 100-BASE T, full/half duplex Serial I/O Interfaces There can be two UARTs in the EPXA10 device. A dedicated UART is located in the embedded stripe; optionally, an IP UART can be implemented in the FPGA, connected to 3.3-V standard EPXA10 I/O pins. Each UART is connected to a transceiver (U2 for the embedded stripe UART and U3 for the IP UART) to convert LVTTL voltage for RS-232 compatibility at up to 256 Kbps. Each UART also has its own DB9 male RS-232 connector wired as a DTE. 1 The transceiver uses a 3.3-V power supply. If the RS-232 input pins are used as general-purpose outputs, contention occurs because the bus transceiver is always active. If these pins are not used as part of a design, ensure that they remain in the highimpedance state. All unused I/O pins can be set to tri-state mode in the Quartus II software (see “Unused EPXA10 Device Pins” on page 75). Table 11 provides information on the devices used to implement the RS-232 interface. Table 11. RS-232 Interface Device Reference Board Part Number Reference Manufacturer Website Address Description U2 MAX3241 Maxim www.maxim-ic.com RS-232 DTE transceiver (connects to the UART in the stripe using connector P1) U3 MAX3241 Maxim www.maxim-ic.com RS-232 DTE transceiver (connects to the soft UART in the FPGA using connector P2) See Table 42 on page 52 for information on the RS-232 signals. 18 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Table 12 gives the UART interface characteristics. Table 12. DTE UART Interface Characteristics Features I/O Pins Voltage (V) UART 1 TX, RX & control 7 3.3 UART 2 TX, RX & control 7 3.3 Table 8 lists the UART LEDs on the EPXA10 DDR development board. Table 13. UART LEDs Board Reference Signal Description TX_UART1 UART1_TXD This LED indicates activity on the line RX_UART1 UART1_RXD This LED indicates activity on the line TX_UART2 UART2_TXD This LED to indicates activity on the line RX_UART2 UART2_RXD This LED indicates activity on the line Memory Interfaces The EPXA10 DDR development board supports the following types and capacities of on-board memory, as listed in Table 14. Table 14. Development Board Memory Characteristics Type Address Lines Data Lines Control Lines Memory Organization DDR SDRAM 15 32 3 4 M × 32 × 4 banks Flash 25 16 6 4 × 8 Mbytes Size 128 Mbytes; 32-bit 32 Mbytes DDR SDRAM Four 256-Mbit DDR SDRAM chips are connected to the SDRAM controller, giving a total of 128 Mbytes of 32-bit memory. Figure 3 on page 20 shows how they are arranged. Altera Corporation 19 EPXA10 DDR Development Board Hardware Reference Manual Figure 3. DDR SDRAM Interface Excalibur EPXA10 SD_CS0 Bank 0 SD_DQS0[3..0] Bank 1 x1 SD_DQM0[3..0] y2 y1 I/O[7..0] I/O[15..8] SD_DQ[7..0] BA[1..0] I/O[31..24] SD_DQ[31..24] SD_DQ[23..16] BA[1..0] Bank 3 x3 y3 I/O[23..16] SD_DQ[15..8] SD_DQ[31..0] Bank 2 x2 BA[1..0] BA[1..0] SD_A[12..0] SD_A[14..13] Key x1 SD_DQS1[3..0] x2 SD_DQS2[3..0] x3 SD_DQS3[3..0] y1 SD_DQM1[3..0] y2 SD_DQM2[3..0] y3 SD_DQM3[3..0] Table 15 provides information on the devices used to implement the DDR SDRAM interfaces. Table 15. DDR SDRAM Interface Device Reference Board Reference Part Number Manufacturer Website Address DDR1 MT46V32M8 Micron www.micron.com 256 Mbit × 8-bit SDRAM DDR2 MT46V32M8 Micron www.micron.com 256 Mbit × 8-bit SDRAM DDR3 MT46V32M8 Micron www.micron.com 256 Mbit × 8-bit SDRAM DDR4 MT46V32M8 Micron www.micron.com 256 Mbit × 8-bit SDRAM 20 Description Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Table 16 shows the timing parameters that should be used when setting up the EPXA10 SDRAM controller for use with Micron MT46V16M8 DDR devices. Table 16. Micron MT46V16M8 DDR Timing Parameters Parameter Value Active to Read or Write (RCD) 20ns Active to Precharge command (RAS) 45ns Active bank A to Active bank B command (RRD) 15ns Precharge command period (RP) 20ns Write recovery time (WR) 15ns Active to Active command period (RC) 65ns Auto Refresh period (RFC) 65ns Auto Refresh command interval (RFSH) 15625ns CAS latency (CL) 2 – 2.5 Burst Length (BL) 8 Row address bits 12 Column address bits 10 Bank address bits 2 Flash Memory Four 8-Mbyte flash memory chips are connected to the EBI of the EPXA10 device, giving a total of 32-Mbytes of 16-bit memory (see Figure 4). Figure 4. Flash Memory Interface Flash Memory (4 x 8 Mbyte) 1 EPXA10 A1-A21 2 3 4 A0-A20 D0-D15 EBI OE, WE, CE 3.3 V 12 V Programming voltage Altera Corporation 21 EPXA10 DDR Development Board Hardware Reference Manual Table 17 provides information on the devices used to implement the flash memory interfaces. Table 17. Flash Memory Interface Device Reference Reference Part Number Manufacturer Website Address FLASH1 28F640C3 Intel www.Intel.com 256 Mbit × 16-bit flash memory Description FLASH2 28F640C3 Intel www.Intel.com 256 Mbit × 16-bit flash memory FLASH3 28F640C3 Intel www.Intel.com 256 Mbit × 16-bit flash memory FLASH4 28F640C3 Intel www.Intel.com 256 Mbit × 16-bit flash memory LED & Switch Interfaces The EPXA10 DDR development board provides a variety of LED and switch interfaces. Some are user-definable and some are function-specific. Figure 5 on page 23 shows the location of LEDs and switches on the development board. 22 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Figure 5. Switches & LEDs on the EPXA10 DDR development Board Application LEDs. See Table 19 on page 24 for details Ethernet switches. See Table 9 on page 17 for details Ethernet LEDs. See Table 19 on page 24 for details Userdefined switches. See Table 18 on page 24 for details. Application LEDs. See Table 19 on page 24 for details Altera Corporation User-defined LEDs. See Table 20 on page 25 for details. User-defined pushbutton switches. See Table 22 on page 26 for details Push-button switches. See Table 21 on page 26 for details. 23 EPXA10 DDR Development Board Hardware Reference Manual User-Defined LEDs On the EPXA10 DDR development board, there are eight user-definable LEDs. They connect directly to the EPXA10 device I/O pins and can be used for any kind of application. Table 18 lists the user LEDs on the development board. Table 18. LED Interface Characteristics Feature Board Reference EPXA10 I/O Pin Voltage (V) USER_LED7 U26 T6 3.3 USER_LED6 U25 U7 3.3 USER_LED5 U24 V8 3.3 USER_LED4 U23 V7 3.3 USER_LED3 U22 U6 3.3 USER_LED2 U21 V5 3.3 USER_LED1 U20 U5 3.3 USER_LED0 U19 V6 3.3 Table 56 on page 65 provides more information on EPXA10 device pins connected to LEDs. Function-Specific LEDs LEDs are also used for specific application functions, such as the configuration, RS-232, and Ethernet interfaces. Table 19 lists the functionspecific LEDs, their power supply voltage, their connection details, and their use. Table 19. Function-Specific LED Usage (Part 1 of 2) Signal Board Reference EPXA10 I/O Pin (or Board Connector) Description Voltage (V) VCC_–5V U27 –5-V power supply indicator VCC_5V U28 5-V power supply indicator VCC_2.5V U29 2.5-V power supply indicator 2.5 VCC_12V U30 12-V power supply indicator –12 VCC_3.3V U31 3.3-V power supply indicator 3.3 VCC_–12V U32 –12-V power supply indicator –12 VCC_1.8V U33 1.8-V power supply indicator 1.8 LED link signal indicator 3.3 LEDL 24 LEDL (1) –5 5 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Table 19. Function-Specific LED Usage (Part 2 of 2) Signal LEDTX Board Reference EPXA10 I/O Pin (or Board Connector) Description Voltage (V) LEDTX (1) LED transmit signal indicator 3.3 LEDRX (1) LED receive signal indicator 3.3 LEDFDX LEDFDX (1) LED full-duplex signal indicator 3.3 LEDCOL LEDCOL (1) LED collision signal indicator 3.3 LEDBTX LEDBTX (1) LED 100-BASE TX signal indicator 3.3 LEDRX LEDBT (1) LED 10-BASE T signal indicator 3.3 UART1_TXD TX_UART1 D28 Embedded stripe UART signal indicator 3.3 UART1_RXD RX_UART1 D29 Embedded stripe UART signal indicator 3.3 LEDBT UART2_TXD TX_UART2 J29 FPGA UART signal indicator 3.3 UART2_RXD RX_UART2 K29 FPGA UART signal indicator 3.3 INIT_DONE INIT_DONE D14 Used by FPGA initialization; signifies that initialization is complete 3.3 Note (1) These pins are connected to the Ethernet transceiver and not directly to the EPXA10 device. Switch Interfaces In addition to the dip-switches used for the Ethernet interface, which are listed in Table 9 on page 17, the EPXA10 DDR development board provides nine user-definable switches in another dip-switch block, four push-button switches, two dedicated reset switches and a switch to generate an interrupt on the EBI controller. Table 20 documents the interface characteristics of the dip-switch block, DIP_SW1. Table 20. DIPSW1 Switch Connection Board Reference Altera Corporation EPXA1 I/O Pin Board Connector Voltage (V) DIPSW1.1 U8 U18.12 3.3 DIPSW1.2 T5 U18.13 3.3 DIPSW1.3 V4 U18.15 3.3 DIPSW1.4 V10 U18.16 3.3 DIPSW1.5 T7 U18.17 3.3 DIPSW1.6 W12 U18.19 3.3 DIPSW1.7 U9 U18.20 3.3 DIPSW1.8 V11 U18.21 3.3 DIPSW1.9 R6 U18.23 3.3 25 EPXA10 DDR Development Board Hardware Reference Manual The push-button switches and integrated LEDs are connected to the EPXA10 I/O pins. Tables 21 and 22 detail the push-button switches. Table 21. Push-Button Switches Board Reference SW_RESET SW_DEV_CLR_N SW4 INT EPXA10 I/O Pin Signal Use Voltage (V) R30 NCONFIG Generates a warm reset 3.3 H3 GLOBNRS Resets the FPGA 3.3 G25 int_extpin_n Generates an interrupt on the EBI interface when enabled by the interrupt controller; also connected to user-defined I/O 3.3 Table 22. User-Definable Push-Button Switches Board Reference EPXA10 I/O Pins Board Connector Signal Voltage (V) SW1 T8 U18.24 USER_PB0 3.3 SW2 R5 U18.25 USER_PB1 3.3 SW3 U4 U18.27 USER_PB2 3.3 SW4 U10 U18.28 3.3 SW4 INT G25 USER_PB3 also int_extpin_n 3.3 Trace Port Interface A matched-impedance connector (MICTOR) is connected to the ETM9 trace module. It is used in conjunction with trace tools such as ARM Trace and Lauterbach to debug the software in real time. ETM9 trace tools are connected to PROC_JTAG signals. Table 23 gives details of the device used. Table 23. Interface Device Reference Board Reference TRACE PORT Part Number Manufacturer AMP ref 2-767004-2 AMP Website Address http:/www.amp.com Description Connected to the ETM9 10-Pin IDC Header Interface The 10-pin header interface, HEADER1, facilitates connection to pins on the expansion header, which in turn connect to the user I/O on the EPXA10 device. The pins on the header are arranged in a 5 × 2 matrix. 26 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Expansion Header Interface The EPXA10 DDR development board hosts the EPXA10 device and four expansion headers, which are implemented on the board for use with daughter cards. The expansion headers are implemented using Samtec TOLC 200-pin connectors, as listed in Table 24 on page 27. They are connected to I/O pins on the EPXA10 device. Headers U16, U17, and U18 include +5-V, +3.3-V, ±12-V, and ground signals, as well as I/O signals. Header U15 only has I/O signals and clock signals. Table 24 on page 27 provides information on the devices used to implement the expansion header interface. Table 24. Expansion Header Interface Device Reference Board Reference Part Number Manufacturer Website Address Description U15 SAMTEC TOLC-150-32-F-Q Samtec www.samtec.com Connector to expansion card U16 SAMTEC TOLC-150-32-F-Q Samtec www.samtec.com Connector to expansion card U17 SAMTEC TOLC-150-32-F-Q Samtec www.samtec.com Connector to expansion card U18 SAMTEC TOLC-150-32-F-Q Samtec www.samtec.com Connector to expansion card Note: (1) Altera recommends that you use Samtec SOLC-150-02-F-Q for the daughter board connectors. Table 25 lists the expansion header interface characteristics. Table 25. Expansion Header Interface Characteristics Interface Expansion header I/O Pins Signalling Voltage (V) 501 ±3.3 Clock Voltages (V) 33 MHz +3.3, +5, ±12 All USER LEDs, switches, push buttons, and the 10-pin IDC connector are accessible from the expansion headers. The expansion headers can be used to interface to special-function daughter cards; contact your Altera representative for details of the daughter cards available. By using the I/O pins on the EPXA10 device and power supplies from the EPXA10 DDR development board, you can design expansion cards to your specific requirements. Altera Corporation 27 EPXA10 DDR Development Board Hardware Reference Manual The connectors are stackable, so more than one card can be plugged on each header, allowing you to develop different cards for individual modules within a complex design. 1 Refer to Figures 6 to 9 for mechanical drawings of the board expansion headers and Tables 56 through 59 for EPXA10 pin details and their connections on the expansion headers. Figure 6 on page 28 shows the location of the expansion headers on the EPXA10 DDR development board. Figure 6. EPXA10 DDR development Board TOLC Expansion Header Connections U16 U15 EPXA10 U18 U17 28 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual The dimensions given in Figures 7 to 9 are inches, measured from the centre of the pad. Figure 7 gives dimensions for the TOLC expansion headers categorized in Table 24 on page 27. 1.9500 Figure 7. EPXA10 DDR development Board TOLC Dimensions 2.7250 3.8000 0.8700 0.6830 1 All dimensions are in inches. To connect to the motherboard, a daughter board must use SOLC connectors, for which dimensions are given in Figure 8 on page 30. Altera Corporation 29 EPXA10 DDR Development Board Hardware Reference Manual Figure 8. Daughter Board SOLC Dimensions 1.9400 2.7250 3.8000 0.8570 0.6690 a 1 All dimensions are in inches. Figure 9 on page 31 is a mechanical diagram giving the position of the TOLC connectors on the motherboard layout. 1 30 The PCB footprints for TOLC and SOLC connectors differ. Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Figure 9. Mechanical Diagram of the EPXA10 DDR development Board Expansion Headers X DIA. 0.132" x 4 off X Centre of U15 pin 1 PCB pad X 2.100 2.800 2.300 2.075 O O Centre of U16 pin 1 PCB pad 0.125 X 0, 0 0 X XA1 center O 1.725 O 2.800 X 2.600 2.250 X Centre of U18 pin 1 PCB pad X Centre of U17 pin 1 PCB pad 0.900 1.400 1.600 1.250 1.370 2.050 2.200 1 Altera Corporation All dimensions are in inches. 31 EPXA10 DDR Development Board Hardware Reference Manual To design a matching daughter board, designers must do one of the following: ■ ■ Jumper Configuration Base designs on the SOLC expansion header dimensions given in Figure 8 on page 30 Translate dimensions from the TOLC motherboard dimensions The jumpers on the EPXA10 DDR development board serve several functions: ■ ■ ■ ■ ■ ■ ■ Clock distribution Enabling clocks Selecting clocks JTAG configuration Enabling the PLL interface Selecting VPP voltage Driving logic signals to the MAX 3032 device Figure 10 on page 33 shows the location of the jumpers on the development board. 32 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Figure 10. Jumper Locations JP8 JP7 JP3 JP_VPP JP2 JP1 JP6 JP5 JP4 MSEL0 MSEL1 JSELECT BOOT_FLASH DEBUG_EN JF2 JF1 JP9 JP10 JP_AGND2GND Altera Corporation 33 EPXA10 DDR Development Board Hardware Reference Manual Table 26 lists the jumpers on the EPXA10 DDR development board. Table 26. Jumpers on the EPXA10 DDR development Board Jumper & Description EPXA10 I/O Pin (Board Connection) Pins 1-2 Connected Pins 2-3 Connected Default JP1 (7) X1 Osc Disabled X1 Osc Enabled 2-3 JP2 (7) X2 Osc Disabled X2 Osc Enabled 2-3 JP3 (5) CLK1=Ext_Osc0 CLK1=TX_CLK 1-2 JP4 (7) X4 Osc Disabled X4 Osc Enabled 2-3 JP5 (7) X5 Osc Disabled X5 Osc Enabled 2-3 JP6 (7) X6 Osc Disabled X6 Osc Enabled 2-3 JP7 (6) PHY 25MHz Clock Disabled PHY 25MHz Clock Enabled 2-3 JP8 (5) CLK2=Ext_Osc1 1-2 CLK2=RX_CLK JP9 (2) Y30 (U13.87) CLK3->LVDSTXINCLK1p - None JP10 (2) W30 nCLK3->LVDSTXINCLK1n - None JF1(8) JF2(8) MAX3032.2 MAX3032.3 MAX3032.5 - MSEL0 (1) J30 MSEL0=0 MSEL=1 1-2 MSEL1 (1) K30 MSEL1=0 MSEL1=1 1-2 JSELECT (3) C24 JSELECT=0 JSELECT=1 1-2 DEBUG_EN (4) B10 DEBUG_EN=0 DEBUG_EN=1 2-3 BOOT_FLASH (1) C10 BOOT_FLASH=0 BOOT_FLASH=1 2-3 JP_VPP VPP=12 V VPP=3.3 V 2-3 JP_AGND2GND Analog to digital GND - 1-2 Note: (1) (2) (3) (4) (5) (6) (7) (8) 34 Used to select configuration mode. See “Configuration Schemes” on page 44. Connects clock 3 for LVDS. See AN 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices. Determines whether serial or dual JTAG chains are used for debugging. Enables/disables debugging. Connects clocks 1 or 2 to the Ethernet clock. Enables/disables the Ethernet clock. Enables/disables clocks. JF1 and JF2 used in combination to drive a signal to specific pins on the MAX 3032 device. Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Jumpers JF1 and JF2 are used to drive logic values to the MAX 3032 device. When corresponding pins on JF1 and JF2 are connected, logic 1 is driven to a pin on the MAX 3032; when they are not connected, logic 0 is driven. Table 27 on page 35 demonstrates this and indicates which pin on the MAX 3032 device is connected to the jumper pins. Table 27. JF1 & JF2 Connections Clocks JF1 & JF2 Pin Signal when Connected Signal when Disconnected MAX 3032 Pin 1 Logic 1 Logic 0 5 2 Logic 1 Logic 0 3 3 Logic 1 Logic 0 2 The clocks on the EPXA10 DDR development board can be enabled and disabled according to your design requirements. They supply the clocks for the EPXA10 device’s embedded stripe and FPGA, and also for the onboard peripherals. The Ethernet clock is a dedicated on-board 25-MHz crystal oscillator. The remaining clocks can be selected from the following clock sources: ■ ■ ■ On-board crystal oscillator (12 MHz, 25 MHz, 32 MHz, 48 MHz, depending on the clock) Alternative crystal oscillator, plugged into the appropriate DIL14 socket, depending on the clock Waveform generator, using the appropriate BNC connector, depending on the clock 1 If you plug in an alternative crystal oscillator for a clock, it drives the same clock line as the BNC connector. To drive a clock through the BNC connector, you must remove the alternative crystal oscillator (if one is connected) and disable the associated on-board crystal oscillator. CLK1 and CLK2 inputs can either be connected to the RX and TX ethernet clocks or to CLK1 or CLK2 on the board using jumpers 3 and 8. Refer to “Jumper Configuration for the Clock Input” on page 40 for more about configuring the clock options on the development board. Table 28 on page 36 lists the development board clocks and their selectable sources, and Figure 11 on page 37 shows their location on the EPXA10 DDR development board. Altera Corporation 35 EPXA10 DDR Development Board Hardware Reference Manual Table 28. Clocks Note (1) Board Reference EPXA10 Reference Selectable Board Source EPXA10 I/O Pin (Board Connection) Used In Speed (MHz) STRIPE_CLK CLK_REF BNCJ5/X5/U11 A28 EPXA10 stripe 50 CLK1_IN CLK1 BNCJ1/X1/U6 N30 FPGA 12 CLK2_IN CLK2 BNCJ2/X2/U5 Y3 FPGA 25 PCI_CLK_IN CLK3 BNCJ6/X6/U7 W30 (U9.B16, U10.B16) FPGA; PCI 32 CLK4_IN CLK4 BNCJ4/X4/U12 P3 FPGA 48 Ethernet 25 CKIN (U8.4) Note: (1) 36 See “Sources for the EPXA10 Clocks” on page 40 for details of selecting a source for the EPXA10 clocks. Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Figure 11. Clock Generators on the EPXA10 DDR development Board CLK_REF & the FPGA Clocks The reference clock for the EPXA10 embedded stripe (CLK_REF) uses a zero-delay clock buffer to allow a 3.3-V to 5-V interface as well as buffering the clock signal. The four FPGA clocks service the ClockLock™ and ClockBoost™ circuitry on the Excalibur device. They go through a MAX 3032 device to give 5-V compatibility and to act as a buffer. Altera Corporation 37 EPXA10 DDR Development Board Hardware Reference Manual MAX 3032 The Altera MAX 3032 is a PLD that is used in this design as an economic method of delivering maximum flexibility for the clock distribution on the EPXA10 DDR development board. It allows you to use 5-V clock input signals using DIL14 sockets or SMA connectors. Control signals have been added to the PLD to give some extra flexibility if, for example, the clock input signal needs to be sequenced or stopped. On the EPXA10 DDR development board, the MAX 3032 is programmed using minimal logic—all clocks use straight connections from input to output, as does the reset signal. The only logic used in the MAX 3032 is a tri-state buffer to held NSTATUS and prevent any power-up sequencing problem. Figure 12 shows the connections on the MAX 3032 device. Figure 12. Block Diagram Showing MAX 3032 Connections CLK1_IN CLK1 CLK2_IN CLK2 PCI_CLK_IN PCI_CLK CLK4_IN CLK4 NRESET MAX 3032 IO2MAX GLOBNRS_IN GLOBNRS INIT_DONE IO1 CONF_DONE IO2 IO_CLKUSR IO3 Embedded Stripe Clocks Table 29 on page 39 lists the clocks on the EPXA10 device and their sources on the development board. The clocks on the development board can be configured as required, depending on which devices are used. 38 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Table 29. EPXA10 DDR development Board Clock Sources EPXA10 Pin Name EPXA10 Pin Number Board Connection Description Test Point CLK_REF A28 STRIPE_CLK 50-MHz main clock provided to the synchronous memory and embedded processor. Dedicated input TP_CLK_REF CLK1 N30 CLK1_IN MAX3032.25 JP3 12-MHz clock input TP_CLK1 CLK2 Y3 CLK2_IN MAX3032.28 JP8 25-MHz clock input TP_CLK2 CLK3 W30 JP9 PCI_CLK_IN 32-MHz clock input TP_CLK3 CLK4 P3 CLK4_IN MAX3032.22 48-MHz clock input TP_CLK4 IO/CLK1A V30 NCLK1 Clock input in LVDS mode TP_NCLK1 IO/CLK2A R3 NCLK2 Clock input in LVDS mode TP_NCLK2 IO/CLK3A Y30 NCLK3 Clock input in LVDS mode TP_NCLK3 IO/CLK4A N3 NCLK4 Clock input in LVDS mode TP_NCLK4 IO/CLKFBIN1A AM28 NCLK1_FB Dedicated pin that allows external feedback to TP_NCLK1_FB the PLL in LVDS mode IO/CLKFBIN2A J3 NCLK2_FB Dedicated pin that allows external feedback to TP_NCLK2_FB the PLL in LVDS mode IO/LOCKOUT0 AC30 IO/LOCKOUT1 IO/LOCKOUT2 IO/LOCKOUT3 PLLENABL CLKOUT0 AM29 CLK1_OUT Dedicated pin that allows the PLL output to be TP_CLK1_OUT driven off-chip CLKOUT1 AH3 CLK2_OUT Dedicated pin that allows the PLL output to be TP_CLK2_OUT driven off-chip CLKFBIN0 AL28 CLK1_FBp Dedicated pin that allows external feedback to TP_CLK1_FBp the PLL CLKFBIN1 K3 CLK2_FBp Dedicated pin that allows external feedback to TP_CLK2_FBp the PLL Altera Corporation U16.83 Status of ClockLock PLL1 AK4 U16.8 Status of ClockLock PLL2 H30 U16.85 Status of ClockLock PLL3 AK5 U16.3 Status of ClockLock PLL4 P30 U16.83 Dedicated pin used for PLL circuitry 39 EPXA10 DDR Development Board Hardware Reference Manual Jumper Configuration for the Clock Input Jumpers JP1 to JP10 are used to select different clock inputs:. ■ ■ ■ ■ ■ JP1, JP2, and JP4 to JP6 enable and disable the clocks (X1, X2, and X4 to X6, respectively) JP3 is used to set CLK1 to oscillator 0 (position 1-2) or to the Ethernet clock, TX_CLK (position 2-3) JP7 enables and disables the Ethernet clock JP8 is used to set CLK2 to oscillator 1 (position 1-2) or to the Ethernet clock, RX_CLK (position 2-3) JP9 and JP10 can be used to connect CLK3 to lvdstxinclk1p and NCLK3 to lvdstxclk1n, respectively During development, if you need to run any of the clocks at a slower or faster rate, you can do so using either the external clock input or a variable oscillator. Sources for the EPXA10 Clocks There are three options for providing a source for the EPXA10 stripe clocks: ■ ■ ■ External clock generator Main clock An alternative crystal oscillator Using an External Clock Generator To select the external clock generator for a clock input, set the appropriate jumper to position 1-2 to disable the main clock. Using the Main Clock To use the main clock for a clock input, set the appropriate jumper to position 2-3 to enable the crystal oscillator. Using a Variable Oscillator To use a variable oscillator as a clock input, follow the steps below: 40 1. Plug in the DIL14 crystal oscillator package to the appropriate socket. 2. Disable the relevant main clock, by connecting pins 1 and 2 of the appropriate jumper (see Table 26 on page 34). Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual 3. Provide a 5-V power supply on the board, either by connecting the ATX power supply or by connecting an alternative 5-V input to JP11. 1 Device Configuration The clock buffer and the MAX 3032 are 5-V compatible; they convert 5-V input from the crystal oscillator to the 3.3 V required for the clocks’ inputs. There are three methods of configuring and programming the EPXA10 device: ■ ■ ■ Booting from flash memory Configuring the device from the EPC16 Using the Quartus® II software to configure the device using the JTAG interface 1 On the EPXA10 device, the settings of BOOT_FLASH, MSEL0, and MSEL1 determine the configuration mode and method. See Figure 10 on page 33 for their location on the EPXA10 DDR development board. See “JTAG Interfaces” on page 45 for more details about using a JTAG interface. Booting from Flash Memory The Altera flash memory programmer (exc_flash_programmer.exe) is a utility that allows you to program flash memory on the EBI using the JTAG interface and the ByteBlasterMV or MasterBlaster download cable. After reset, the processor boots up and executes the bootloader from flash memory. The bootloader configures the stripe, loads the user software into memory, configures the FPGA side of the EPXA10, and then begins to execute the user code. Table 30 summarizes the board jumper requirements for booting from flash memory. Table 30. Jumper Settings for Booting from Flash Memory f Altera Corporation BOOT_FLASH MSEL0 MSEL1 Mode 1 0 0 Boot from 16-bit flash For further details about booting the device from flash memory, refer to the Excalibur Devices Hardware Reference Manual. 41 EPXA10 DDR Development Board Hardware Reference Manual Configuring Using the EPC16 The Quartus II software can generate a programmer object file (.pof) containing both hardware and software, for downloading into the EPC16 device on the EPXA10 DDR development board. For more details, see “EPC16 Configuration Device” on page 44. 1 The EPC16 device can be programmed with the Quartus II software version 1.1 or higher, using either the MasterBlaster or ByteBlasterMV download cables. Table 31 summarizes the jumper requirements for booting your system from an EPC16. Table 31. Jumper Settings for Booting from a Serial Device BOOT_FLASH MSEL0 MSEL1 Mode 0 0 0 Serial When power is applied to the development board, the EPC16 configuration device loads configuration data into the EPXA10 device, if it has been programmed. If you change the configuration device’s programming information, you must turn the board off and on before new information can be loaded into the EPXA10 device. The EPC16 device can be programmed through the JTAG interface; see “EPC16 Configuration Device” on page 44. To configure the device using the EPC16 device, start the Quartus II software, and specify the EPC16 as an output option to create the required .pof files. If the EPC16 is not specified, the Quartus II software generates a single file to program the EPXA10 device directly. When configuring an Excalibur device using the EPC16 configuration device, some simple logic must be placed in the system to allow both the Excalibur and EPC16 devices to fully come out of reset before any configuration begins. During a configuration, the EPC16 uses the signals OE (connected to nSTATUS on the Excalibur device) and nCS (connected to CONF_DONE on the Excalibur device) to determine what action it should take. 42 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual In its long power-on-reset (POR) mode, the EPC16 begins sampling CONF_DONE and OE approximately 100 ms after power-up. If the Excalibur device is still in POR after this 100 ms, the signals from the Excalibur device that control the state of the EPC16 could be in an unknown state when the EPC16 begins sampling them, which results in indeterminate behavior. Therefore, you must provide logic to hold these signals low until the Excalibur device’s nRESET signal is deasserted. By holding nSTATUS and OE low, the reset of the EPC16 can be extended until the Excalibur device has also come out of POR. By holding CONF_DONE and nCS low, the EPC16 does not erroneously sample it as being high, which falsely indicates that the Excalibur device has already been configured. Because both signals are open-drain, they can safely be driven low by external logic without causing contention. Once nRESET goes high, the Excalibur device is ready and the signals can be tri-stated by the external logic to operate normally. As opposed to nPOR, nRESET deasserts some time after the Excalibur device comes out of POR. For this reason use the nRESET signal, not NPOR, to control the tri-stating of nSTATUS and CONF_DONE, to provide a margin of safety. Figure 13 shows the circuit that accomplishes the reset dependency requirements. Figure 13. Reset Dependency Circuit nRESET nSTATUS and OE CONF_DONE and nCS Configuring Using JTAG The Quartus II software can generate an SRAM object file (.sof) containing both hardware and software. The Quartus II programmer uses the .sof file to configure the EPXA10 device via JTAG, using either the MasterBlaster or ByteBlasterMV download cables. For more details, see “MasterBlaster/ByteBlasterMV Communications Cable” on page 44. For further details of how to create a .sof file and configure the EPXA10 device via JTAG, consult the Quartus II Help. Table 32 summarizes the jumper requirements for booting your system from an EPC16. Altera Corporation 43 EPXA10 DDR Development Board Hardware Reference Manual Table 32. Jumper Settings for Configuring Using JTAG BOOT_FLASH MSEL0 MSEL1 Mode 1 0 0 Serial Configuration Schemes Table 33 lists the serial configuration schemes that are available for the EPXA10 device. Table 33. Supported Serial Configuration Schemes Configuration Scheme Data Source Configuration device EPC16 configuration device JTAG MasterBlaster/ByteBlasterMV download cable EPC16 Configuration Device The EPC16 is part of the on-board JTAG chain that allows in-system programming. The device is an EPC16 88-pin Ultra FineLine BGA; it contains reprogrammable flash memory to use for serial device configuration. For more details about configuring these devices, refer to the data sheet Configuration Devices for ACEX, APEX, FLEX & Mercury Devices. f For signal details of the EPC16 device, refer to the EPC16 pin-out table. MasterBlaster/ByteBlasterMV Communications Cable The ByteBlasterMV and MasterBlaster cables have a 10-pin header for use with the development board. The cable allows you to download hardware and software configuration data directly to the EPXA10 device or to the EPC16 configuration device. The development board supports only JTAG download mode, not passive serial download mode. The MasterBlaster and ByteBlasterMV cables also support in-circuit hardware debugging with the SignalTap® embedded logic analyzer. 1 Debugging Features 44 The MasterBlaster cable can also be used in conjunction with the ARM debugger to debug your software using JTAG. On the EPXA10 DDR development board, a variety of debugging tools, both Altera and third-party products, can be used in conjunction with the JTAG interfaces to debug systems under development. Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Third-Party Debugging Tools Third-party debugging tools such as Lauterbach and the GNUPro XRAY debugger can be used with the EPXA10 DDR development board. For latest details of which tools are available, access the Altera website at http:/www.Altera.com. JTAG Interfaces There are three JTAG interfaces on the EPXA10 DDR development board: ■ ■ ■ The MB_BLASTER connector is used to connect an Altera ByteBlaster or MasterBlaster download cable The MULTI_ICE connector is used to connect a Multi-ICE cable or any other compatible cable The TRACE_PORT connector is used to connect a trace capture unit or logic analyzer The MB_BLASTER connector can be used with both the flash programmer and the Quartus programmer, using the ByteBlasterMV and MasterBlaster cables; and can be used to program the EPC16. The MasterBlaster and ByteBlasterMV cables also support in-circuit hardware debugging on the MB_BLASTER connector, using the SignalTap® embedded logic analyzer. The JSELECT setting does not affect these functions. Using JSELECT The JSELECT jumper determines whether a JTAG debugger can be connected to the MB_BLASTER connector, the MULTI_ICE connector, or the TRACE_PORT connector. shows the JSELECT settings required. Table 34. Using JSELECT to Select a Debugging Connector Debugger Altera Corporation JSELECT Value Altera-RDI via a ByteBlasterMV or MasterBlaster cable ‘1’ Multi-ICE or a compatible device on the Multi-ICE connector ‘0’ Trace port connector or a compatible device on the trace port connector ‘0’ 45 EPXA10 DDR Development Board Hardware Reference Manual 1 Damage can result if you simultaneously connect a device that drives the JTAG pins on the trace port connector and another device on the Multi-ICE connector. You can simultaneously connect one device to the MB_BLASTER connector and another to one of the other two connectors; or you can connect devices to the trace port and Multi_ICE connectors at the same time, providing that the device on the trace port connector does not drive the JTAG pins on that connector. Using MasterBlaster/ByteBlasterMV Cable to Program the EPC16 Device The EPC16 device can be programmed using the Quartus II software, version 1.1, or higher, using either the MasterBlaster or ByteBlasterMV download cable. Figure 14 on page 47 shows how the MasterBlaster, ByteBlasterMV, and Multi-ICE cables are connected. 46 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Figure 14. Connecting the MasterBlaster, ByteBlasterMV or Multi-ICE Cables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 VCC VCC PROC_NTRST GND PROC_TDI GND PROC_TMS GND PROC_TCK GND GND GND PROC_TDO GND NSRST GND NC GND NC GND 2 4 6 8 10 12 14 16 18 20 9 7 5 3 1 1 3 5 7 9 11 13 15 17 19 10 8 6 4 2 Multi_ICE 1 2 3 4 5 6 7 8 9 10 TCK GND TDO VCC TMS VIO TCK NC TDI GND M/B Blaster EPXA10 Device JSELECT Development Board Power Supply The EPXA10 DDR development board can be powered by either a laboratory bench power supply or a commercially-available, PC-style power supply (ATX). The bench supply provides 3.3-V; the ATX supply provides voltage levels of ±12 V, ±5 V, and +3.3 V. The development board derives VTT (1.25-V), VREF (1.25-V), +2.5-V, and +1.8-V supplies from the input power supply. If there are no devices attached to the PCI connectors, only the 3.3-V supply input is necessary, but to use devices on the PCI connectors, you need an ATX power supply to provide the different voltages. 1 Ensure that the voltage setting on the ATX power supply is set to the appropriate voltage, based on the AC power outlet supply. Figure 15 on page 48 shows the location of the power supply inputs for the EPXA10 DDR development board. Altera Corporation 47 EPXA10 DDR Development Board Hardware Reference Manual Figure 15. EPXA10 Power Supply Inputs 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 5V 5V -5 V GND GND GND main switch GND -12 V 3.3 V 12 V NC PWR_OK GND 5V GND 5V GND 3.3 V 3.3 V 10 20 1 11 NC GND GND 5V 3.3 V 1 See Figure 1 on page 11 to see the development board layout in greater detail. A status LED is provided for each power supply source; see Table 19 on page 24. 48 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual 1 The total current that can be drawn depends on the daughter card power supply, as follows: 1 A for 3.3 V, 5 V, or 12 V; and 100 mA for –12 V. This can be drawn from a single pin, but designers should use as many of pins available on the header as possible, to ease the power distribution on the daughter card. Tables 35 through 40 list the estimated power requirements for the development board. Table 35. ±12.0-V Supply Requirements Module PCIs mA (12 V) 500 mA (–12 V) 100 Table 36. 5.0-V Supply Requirements Module PCI mA (5 V) Depends on system Alternative crystal oscillator CLK_REF CLK1 5 CLK2 5 CLK3 5 CLK4 5 ATX PSU 1000 (to provide adequate regulation) Table 37. 3.3-V Supply Requirements Module EPXA10 I/O Flash memory PCIs UARTs Ethernet LEDs EPC16 Crystal oscillator Power-on reset Clock buffers Altera Corporation mA (3.3 V) Depends on application 300 7.6A (system-dependent) 50 20 × 22 50 15 × 5 10 32 × 2 49 EPXA10 DDR Development Board Hardware Reference Manual Table 38. 2.5-V Supply Requirements Module DDR SDRAM mA (2.5 V) 500 mA Table 39. 1.8-V Supply Requirements Module EPXA10 device core mA (1.8 V) Depends on application Table 40. 1.25-V Supply Requirements Module VTT VREF 50 mA (1.25 V) 1500 25 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Test Points Table 41 on page 51 lists the test points on the EPXA10 DDR development board. Table 41. EPXA10 DDR development Board Test Points Test Point Connected To Test Point Connected To GND1 GND TP_NCLK1_FB NCLK1_FB GND2 GND TP_NCLK2_FB NCLK2_FB GND3 GND TP_CS0_N CS0_N GND4 GND TP_CS1_N CS1_N GND5 GND TP_CS2_N CS2_N GND6 GND TP_CS3_N CS3_N GND7 GND TP_EBI_CLK EBI_CLK TP_CLK_REF CLK_REF TP_OE_N OE_N TP_CLK1 CLK1 TP_WE_N WE_N TP_CLK2 CLK2 TP_TCK TCK TP_CLK3 CLK3 TP_TDI TDI1 TP_CLK4 CLK4 TP_TDO TDO1 TP_CLK1_FBP CLK1_FBP TP_TMS TMS1 TP_CLK1_OUT CLK1_OUT TP_CLK2_FBP CLK2_FBP –12V –5V Test points for input power supply TP_CLK2_OUT CLK2_OUT 1.8V TP_NCLK1 NCLK1 12V TP_NCLK2 NCLK2 2.5V TP_NCLK3 NCLK3 3.3V TP_NCLK4 NCLK4 5V U34 Altera Corporation ATX POWER_OK 51 EPXA10 DDR Development Board Hardware Reference Manual Signals Tables 42 through 46 document the signals for the following peripherals: ■ ■ ■ ■ UART PCI card Trace port Configuration/debugging interfaces UART Figure 16 shows the UART DB9 male connector used on the development board. Figure 16. DTE UART DB9 Male Connector 1 2 6 4 3 7 8 5 9 Table 42 lists the UART DB9 signals. Table 42. DTE UART DB9 Male Connector Signals Note (1) Pin Signal Description 1 DCD Data carrier detect 2 RXD Receive data 3 TXD Transmit data 4 DTR Data terminal ready 5 GND Signal ground 6 DSR Data set ready 7 RTS Request to send 8 CTS Clear to send 9 RI Ring indicator Note: (1) The EPXA10 DDR development board has two DB9 male connectors. See Table 53 on page 64 for UART pin-out information. 52 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual PCI Table 43 lists the PCI connector signals used on the development board. Table 43. PCI Card 3.3-V-Only Connector Pin Signal Pin Signal Pin Signal Pin SIgnal A1 TRST# A2 +12 V B1 –12 V B2 TCK A3 TMS A4 TDI B3 GND B4 TDO A5 +5 V A6 INTA# B5 +5 V B6 +5 V A7 INTC# A8 +5 V B7 INTB# B8 INTD# A9 RESERVED A10 V I/O B9 PRSNT1# B10 RESERVED A11 RESERVED A12 RESERVED B11 PRSNT2# B12 RESERVED A13 RESERVED A14 3.3 V AUX B13 RESERVED B14 RESERVED A15 RST# A16 V I/O B15 GND B16 PCI_CLK A17 V I/O A18 GNT1# B17 GND B18 REQ1# A19 GND A20 AD [30] B19 V I/O B20 AD [31] A21 + 3.3 V A22 AD [28] B21 AD [29] B22 GND A23 AD [26] A24 GND B23 AD [27] B24 AD [25] A25 AD[24] A26 IDSEL B25 VCC B26 C/BE3# A27 + 3.3 V A28 AD[22] B27 AD[23] B28 GND A29 AD[20] A30 GND B29 AD[21] B30 AD[19] A31 AD[18] A32 AD[16] B31 VCC B32 AD[17] A33 + 3.3 V A34 FRAME# B33 C/BE2# B34 GND A35 GND A36 TRDY# B35 IRDY# B36 + 3.3 V A37 GND A38 STOP# B37 DEVSEL# B38 GND A39 + 3.3 V A40 RESERVED B39 LOCK# B40 PERR# A41 RESERVED A42 GND B41 + 3.3 V B42 SERR# A43 PAR A44 AD[15] B43 + 3.3 V B44 C/BE1# A45 + 3.3 V A46 AD[13] B45 AD[14] B46 GND A47 AD[11] A48 GND B47 AD[12] B48 AD[10] A49 AD[9] A50 GND B49 M66EN B50 GND A51 GND A52 C/BE0# B51 GND B52 AD[8] A53 + 3.3 V A54 AD[6] B53 AD[7] B54 + 3.3 V A55 AD[4] A56 GND B55 AD[5] B56 AD[3] A57 AD[2] A58 AD[0] B57 GND B58 AD[1] A59 V I/O A60 REQ64# B59 + 3.3 V B60 ACK64# A61 +5V A62 +5V B61 + 5 V B62 +5V See Table 52 on page 63 for pin-out information for the PCI connectors. Altera Corporation 53 EPXA10 DDR Development Board Hardware Reference Manual Trace Port Table 44 lists the ETM9 trace port signals. Table 44. Trace Port Signals Pin Signal Description Pin Signal Description 1 NC No connection 2 NC No connection 3 NC No connection 4 NC No connection 5 GND Ground 6 TRACECLK Clock output for the trace port 7 DBGRQ Not used 8 DBGACK Output (not used) 9 nSRST System reset detector 10 EXTTRIG Output (not used) 11 TDO Test data input 12 VTRef Reference voltage input 13 RTCK Input (not used) 14 VSupply Power input for the debug equipment 15 TCK Test clock output 16 TRACEPKT7 17 TMS Test mode select output 18 TRACEPKT6 Data/address information output on pipeline status 19 TDI Test data output 20 TRACEPKT5 21 nTRST Reset input/output 22 TRACEPKT4 23 TRACEPKT15 Data/address information output 25 TRACEPKT14 on pipeline status 24 TRACEPKT3 27 TRACEPKT13 28 TRACEPKT1 29 TRACEPKT12 30 TRACEPKT0 31 TRACEPKT11 32 TRACESYNC 33 TRACEPKT10 34 PIPESTAT2 35 TRACEPKT9 36 PIPESTAT1 37 TRACEPKT8 38 PIPESTAT0 26 TRACEPKT2 Processor pipeline status 39 GND Ground 40 GND Ground 41 GND Ground 42 GND Ground 43 GND Ground See Table 57 on page 66 for pin-out information for the ETM9 trace port. 54 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Configuration/Debugging Interfaces On the development board, there are interfaces for a MasterBlaster or ByteBlasterMV cable, and a Multi-ICE connector. Table 45 lists the signals on the MasterBlaster/ByteBlasterMV interface. Table 45. MasterBlaster/ByteBlasterMV Female Interface Pin JTAG Mode Signal Description 1 TCK Clock signal 2 GND Signal ground 3 TDO Data from device 4 Vcc Power supply 5 TMS JTAG state machine control 6 Vio Reference voltage for MasterBlaster/ByteBlasterMV output driver 7 TCK Clock signal 8 – No connection 9 TDI Data to device 10 GND Signal ground See Table 47 on page 58 for pin-out information for the development board configuration and debugging interfaces. Altera Corporation 55 EPXA10 DDR Development Board Hardware Reference Manual Table 46 lists the signals on the Multi-ICE interface. Table 46. Multi-ICE Connector Pin Signal Description Direction 1 Vcc Power supply N/A 2 Vcc Power supply N/A 3 PROC_NTRTS Processor reset 4 GND Ground 5 PROC_TDI Processor test data input 6 GND Ground 7 PROC_TMS Processor test mode select 8 GND Ground 9 PROC_TCK Processor test clock input O N/A I N/A I N/A I 10 GND Ground N/A 11 GND Ground N/A 12 GND Ground N/A 13 PROC_TDO Processor test data output 14 GND Ground N/A 15 NSRST Warm reset I/O 16 GND Ground N/A 17 NC No connection N/A 18 GND Ground N/A 19 NA No connection N/A 20 GND Ground N/A O See Table 47 on page 58 for pin-out information for the development board configuration and debugging interfaces. f For signal details of the EPC16 device, refer to the EPC16 pin-out table. See Table 57 on page 66 for pin-out information for the trace port. 56 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Pin-Outs The main component of the development board is the EPXA10F1020C1 device. The pins on the EPXA10 device are assigned to functions on the board. When generating IP cores for the EPXA10 device, the pins must be used as defined to avoid damaging the device and any unused pins must be tri-stated using the Quartus II software. The following sections list the interfaces and dedicated pins on the board. Any pins not used for a design should be left in the high-impedance (input) state to avoid contention. This section details the EPXA10 device pins that are assigned to the following purposes: ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Configuration DDR SDRAM EBI UARTs 1 and 2 Ethernet User LEDs, push buttons, and dip-switches Fast I/O pins IDC 10-pin header Trace port Test points Pin assignments are grouped into tables for control pins, bank address pins, and data bus pins where appropriate. The tables also detail signals passing across a connection. The remaining I/O pins on the EPXA10 device are listed at the end of this section. Configuration The EPXA10 device pins listed in Table 47 on page 58 are used exclusively for configuring the device. Refer to “Device Configuration” on page 41 for more information about EPXA10 configuration. . Altera Corporation 57 EPXA10 DDR Development Board Hardware Reference Manual Table 47. EPXA10 Device Configuration Pins Signal Name EPXA10 Device Pin Description MSEL0 J30 Configuration mode select (tied to GND) MSEL1 K30 Configuration mode select (tied to GND) NSTATUS AM14 OE for EPC16 NCONFIG R30 n_INIT_CONF for EPC16 DCLK W3 Data clock for EPC16 CONF_DONE AM13 INIT_DONE D14 Initialization complete indicator nCE AC3 Not connected nCEO D13 DATA0 V3 DATA1 D10 DATA2 A9 DATA3 B9 DATA4 C9 DATA5 D9 DATA6 A4 DATA7 B4 Configuration complete indicator Serial input for EPC16 configuration data Serial input for EPC16 configuration data; available for user I/O after configuration TDI AD3 JTAG data input TDO E11 JTAG data output (to next device in the chain TCK AM19 JTAG clock TMS AM20 JTAG mode select TRST C13 JTAG reset (pulled high) PROC_TDI H27 JTAG data input PROC_TDO H26 JTAG data output (to next device in the chain PROC_TCK D30 JTAG clock PROC_TMS E29 JTAG mode select PROC_TRST E30 JTAG reset (pulled high) H3 Global reset for the device DEV_CLRn DEV_OE AE3 Device output enable nWS C4 Write strobe nRS D4 Read strobe nCS D3 Signal providing handshaking between devices CS E3 Chip select RDYnBSY E14 Ready/busy CLKUSR A13 Clock signal 58 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual DDR SDRAM Interface There are four DDR chips (256-Mbit × 8) on the EPXA10 DDR development board, selectable using one chip-select, SD_CS0_N. The development board DDR interface can run at up to 266 MHz. f For more details on how to use the DDR SDRAM, ref to AN141: Using the SDRAM Controller. Table 48 lists the pin-outs for the DDR SDRAM control signals. Table 48. DDR SDRAM Control Signal Pin-Outs Signal Name EPXA10 Device Pin Description F17 Row address strobe SD_CAS_N F18 Column address strobe SD_WE_N G18 Write enable SD_CS0_N G14 Chip select SD_CS1_N F16 Chip select SD_CLKE F14 Clock enable SD_CLK F15 SDRAM clock SD_CLK_N G13 SDRAM clock - inverted SD_DQM(0) H14 Data byte mask SD_DQM(1) L14 Data byte mask SD_DQM(2) K9 Data byte mask SD_DQM(3) H9 Data byte mask SD_DQS(0) J14 DQS signal SD_DQS(1) K14 DQS signal SD_DQS(2) K10 DQS signal SD_DQS(3) H10 DQS signal SD_RAS_N Table 49 on page 60 lists the DDR SDRAM data bank and address bus pinouts. Altera Corporation 59 EPXA10 DDR Development Board Hardware Reference Manual Table 49. DDR SDRAM Data Bank & Address Bus Pin-Outs Signal Name EPXA10 Device Pin Signal Name EPXA10 Device Pin Signal Name EPXA10 Device Pin SD_DQ0 H18 SD_DQ1 H17 SD_DQ2 H16 SD_DQ3 J18 SD_DQ4 J17 SD_DQ5 H15 SD_DQ6 J16 SD_DQ7 J15 SD_DQ8 K18 SD_DQ9 K17 SD_DQ10 L18 SD_DQ11 K16 SD_DQ12 L17 SD_DQ13 L16 SD_DQ14 K15 SD_DQ15 L15 SD_DQ16 L13 SD_DQ17 K13 SD_DQ18 L12 SD_DQ19 K12 SD_DQ20 L11 SD_DQ21 K11 SD_DQ22 L10 SD_DQ23 L9 SD_DQ24 H13 SD_DQ25 H12 SD_DQ26 J13 SD_DQ27 J12 SD_DQ28 J11 SD_DQ29 J10 SD_DQ30 J9 SD_DQ31 H11 SD_ADD0 G12 SD_ADD1 F13 SD_ADD2 G11 SD_ADD3 F12 SD_ADD4 F11 SD_ADD5 G10 SD_ADD6 F10 SD_ADD7 F9 SD_ADD8 G9 SD_ADD9 F8 SD_ADD10 G8 SD_ADD11 F7 SD_ADD12 F6 SD_ADD13 G7 SD_ADD14 G6 60 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual EBI Table 50 lists the EPXA10 pin-outs for the EBI control signals. Table 50. EBI Control Signal Pin-Outs Signal Name Altera Corporation EPXA10 Device Pin Description EBI_BE0 F27 Byte enable EBI_BE1 E27 Byte enable EBI_OE F26 Output enable EBI_WE E26 Write enable EBI_CS0 A25 Chip select EBI_CS1 B25 Chip select EBI_CS2 C25 Chip select EBI_CS3 D25 Chip select EBI_CLK E25 EBI clock EBI_ACK F25 EBI acknowledge INT_EXTPIN_N G25 Interrupt generated by push-button SW4 61 EPXA10 DDR Development Board Hardware Reference Manual Table 51 lists the EBI data bank and address bus pin-outs. Table 51. EBI Data Bank and Address Bus Pin-Outs Signal Name 62 EPXA10 Device Pin Signal Name EPXA10 Device Pin EBI_DQ0 J21 EBI_DQ1 H21 EBI_DQ2 E20 EBI_DQ3 F20 EBI_DQ4 E19 EBI_DQ5 L20 EBI_DQ6 K20 EBI_DQ7 J20 EBI_DQ8 H20 EBI_DQ9 G20 EBI_DQ10 F19 EBI_DQ11 G19 EBI_DQ12 L19 EBI_DQ13 K19 EBI_DQ14 J19 EBI_DQ15 H19 EBI_A0 H25 EBI_A1 D24 EBI_A2 E24 EBI_A3 F24 EBI_A4 G24 EBI_A5 J24 EBI_A6 H24 EBI_A7 E23 EBI_A8 F23 EBI_A9 G23 EBI_A10 K23 EBI_A11 J23 EBI_A12 H23 EBI_A13 E22 EBI_A14 F22 EBI_A15 E21 EBI_A16 L22 EBI_A17 K22 EBI_A18 J22 EBI_A19 H22 EBI_A20 G22 EBI_A21 F21 EBI_A22 G21 EBI_A23 L21 EBI_A24 K21 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual PCI Table 52 lists the pins used for the PCI cards. Table 52. PCI Pin-Outs FPGA UART Embedded Stripe UART EPXA10 Device Device Signal (Board EPXA10 Device Device Signal (Board Pin Signal) Pin Signal) Altera Corporation AF21 C/BE0# AF22 A5 (PCI_BUS5) AE19 C/BE1# AG22 A6 (PCI_BUS6) AF19 C/BE2# AH22 A7 (PCI_BUS7) AJ18 C/BE3# AD21 A8 (PCI_BUS8) AG19 DEVSEL# AE21 A9 (PCI_BUS9) AH19 FRAME# AG21 A10 (PCI_BUS10) AB20 GNT1# AH21 A11 (PCI_BUS11) AC20 GNT2# AD20 A12 (PCI_BUS12) AB22 INTA# AE20 A13 (PCI_BUS13) AG23 INTB# AF20 A14 (PCI_BUS14) AC22 INTC# AH20 A15 (PCI_BUS15) AF23 INTD# AJ19 A16 (PCI_BUS16) AK20 PAR AK19 A17 (PCI_BUS17) AB18 PCI_RST# AL19 A18 (PCI_BUS18) AL18 PERR# AD18 A19 (PCI_BUS19) AB21 PRSNT1# AE18 A20 (PCI_BUS20) AC22 PRSNT2# AF18 A21 (PCI_BUS21) AD19 REQ1# AG18 A22 (PCI_BUS22) AC19 REQ2# AH18 A23 (PCI_BUS23) AB19 SERR# AK18 A24 (PCI_BUS24) AB17 STOP# AC17 A25 (PCI_BUS25) AC18 TRDY# AD17 A26 (PCI_BUS26) AK23 A0 (PCI_BUS0) AE17 A27 (PCI_BUS27) AL23 A1 (PCI_BUS1) AF17 A28 (PCI_BUS28) AM23 A2 (PCI_BUS2) AG17 A29 (PCI_BUS29) AD22 A3 (PCI_BUS3) AH17 A30 (PCI_BUS30) AE22 A4 (PCI_BUS4) AJ17 A31 (PCI_BUS31) 63 EPXA10 DDR Development Board Hardware Reference Manual UART1 & UART2 Table 53 lists the pins used for UARTs 1 and 2. Table 53. Extension Header UARTs 1 & 2 I/O Pin-Outs FPGA UART EPXA10 Device Pin Device Signal Embedded Stripe UART Expansion Board Connector EPXA10 Device Pin Device Signal Expansion Board Connector J27 UART2_DTR_N U16.171 G28 UART1_CTS_N NC J29 UART2_TXD U16.174 D29 UART1_RXD NC K29 UART2_RXD_N U16.177 E28 UART1_RI_N NC K27 UART2_DSR_N U16.179 C28 UART1_RTS_N NC J28 UART2_RTS_N U16.173 F28 UART1_DSR_N NC J26 UART2_RI_N U16.175 G27 UART1_DCD_N NC K28 UART2_DCD_N U16.178 D28 UART1_TXD NC K26 UART2_CTS_N U16.181 G26 UART1_DTR_N NC Ethernet Table 53 lists the pins used for the Ethernet interface. Table 54. Extension Header Ethernet Pin-Outs EPXA10 Device Pin 64 Device Signal Expansion Board Connector EPXA10 Device Pin Device Signal Expansion Board Connector R23 RXD1 U16.155 R24 TXD3 U16.153 R25 TXD0 U16.149 M19 MDC U16.145 M20 RST_N U16.146 M21 TX_ER U16.161 M22 TX_EN U16.162 M23 RXD2 U16.157 N19 CRS U16.166 N20 COL U16.163 N21 RX_DV U16.167 N22 MDIO U16.169 N23 RXD0 U16.154 P20 INTR U16.147 P21 RX_ER U16.165 P22 RX_D3 U16.158 N25 TXD1 U16.150 P25 TXD2 U16.151 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Fast I/O Pins Table 55 lists the pins used for the EPXA10 fast I/O pins. Table 55. EPXA10 Fast I/O Pins EPXA10 Pin Name Description EPXA10 Device Pin Expansion Board Connector Board Reference FAST0 Dedicated fast I/O pins E13 U16.133 FAST0 FAST1 Dedicated fast I/O pins E12 U16.134 FAST1 FAST2 Dedicated fast I/O pins AM18 U16.135 FAST2 FAST3 Connected to PCI to provide IRDY# AM15 IRDY# User LEDs, Switches & Push Button Switches Table 56 lists the pins used for the user-defined LEDs, push-button switches and dip-switches. Table 56. Expansion Header LED, Switch and Push Button I/O Pin-Outs EPXA10 Device Pin Device Signal Expansion Board Connector EPXA10 Device Pin Device Signal Board Connector V6 USER_LED0 U18.1 U5 USER_LED1 U18.3 V5 USER_LED2 U18.4 U6 USER_LED3 U18.5 V7 USER_LED4 U18.7 V8 USER_LED5 U18.8 U7 USER_LED6 U18.9 T6 USER_LED7 U18.11 U8 USER_SW0 U18.12 T5 USER_SW1 U18.13 V4 USER_SW2 U18.15 V10 USER_SW3 U18.16 T7 USER_SW4 U18.17 W12 USER_SW5 U18.17 U9 USER_SW6 U18.20 V11 USER_SW7 U18.21 R6 USER-SW8 U18.23 T8 USER_PB0 U18.24 R5 USER_PB1 U18.25 U4 USER_PB2 U18.27 U10 USER_PB3 U18.28 Altera Corporation 65 EPXA10 DDR Development Board Hardware Reference Manual Trace Port Table 57 lists the pins used on the trace port interface. Table 57. Trace Port Pin-Out EPXA10 Device Pin Device Signal EPXA10 Device Pin Device Signal H6 TRACEPKT15 N7 TRACEPKT4 J6 TRACEPKT14 H8 TRACEPKT3 K6 TRACEPKT13 J8 TRACEPKT2 L6 TRACEPKT12 K8 TRACEPKT1 M6 TRACEPKT11 L8 TRACEPKT0 N6 TRACEPKT10 M8 TRACESYNC H7 TRACEPKT9 M9 PIPESTAT2 J7 TRACEPKT8 N9 PIPESTAT1 K7 TRACEPKT7 N10 PIPESTAT0 L7 TRACEPKT6 N8 TRACECLK M7 TRACEPKT5 IDC 10-Pin Header Table 56 lists the pins used for the 10-pin IDC header. Table 58. IDC Header Pin-Outs EPXA10 Device Pin 66 Header Pin Expansion Board Connector L5 Header1.1 U18.71 K4 Header1.2 U18.72 J4 Header1.3 U18.73 H4 Header1.4 U18.75 K5 Header1.5 U18.76 E4 Header1.6 U18.77 J5 Header1.7 U18.79 H5 Header1.8 U18.80 GND Header1.9 n/a GND Header1.10 n/a Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Expansion Header The pins on the expansion header cards connect to I/O pins on the EPXA10 device, to ground or to VCC supplies. I/O Pin-Outs Tables 59 to 62 list the pins on the EPXA10 DDR development board expansion header cards that connect to I/O pins on the EPXA10 device. Some of these pins can optionally be dedicated to the Ethernet, UART, user LEDs, push-button switches, and dip-switches. Table 59. Development Board Expansion Header U15 I/O Pin-Outs (Part 1 of 2) U15.1-50 Device U15.51-100 Device U15. 101-150 Device U15. 151-200 Device U15.1 AB24 U15.51 AC23 U15.101 GND U15.151 Y5 U15.2 GND U15.52 AD23 U15.102 W4 U15.152 Y8 U15.3 L24 U15.53 AE23 U15.103 W5 U15.153 GND U15.4 L26 U15.54 GND U15.104 AA6 U15.154 Y7 U15.5 L27 U15.55 AL20 U15.105 GND U15.155 Y4 U15.6 GND U15.56 AJ20 U15.106 W8 U15.156 B24 U15.7 AJ29 U15.57 AG20 U15.107 Y6 U15.157 GND U15.8 AK29 U15.58 GND U15.108 W7 U15.158 A24 U15.9 AH28 U15.59 AJ30 U15.109 GND U15.159 D23 U15.10 GND U15.60 IO/Data7 U15.110 W6 U15.160 C23 U15.11 AJ28 U15.61 IO/Data6 U15.111 AF5 U15.161 GND U15.12 AK28 U15.62 GND U15.112 AE4 U15.162 B23 U15.13 AH27 U15.63 IO/Data5 U15.113 GND U15.163 A23 U15.14 GND U15.64 IO/Data4 U15.114 AD4 U15.164 D20 U15.15 AH26 U15.65 IO/Data3 U15.115 AC4 U15.165 GND U15.16 AG26 U15.66 GND U15.116 AE5 U15.166 C20 U15.17 AF26 U15.67 IO/Data2 U15.117 GND U15.167 B20 U15.18 GND U15.68 IO/Data1 U15.118 AD8 U15.168 A20 U15.19 AM25(1) U15.69 N26 U15.119 AA12 U15.169 GND U15.20 AL25 U15.70 GND U15.120 AC9 U15.170 D19 U15.21 AK25(1) U15.71 N29 U15.121 GND U15.171 C19 U15.22 GND U15.72 IO/CLKUSR U15.122 AD5 U15.172 B19 U15.23 AJ25(1) U15.73 IO/RDYNBSY U15.123 AC5 U15.173 GND U15.24 AH25 U15.74 GND U15.124 AD7 U15.174 A19 U15.25 AG25 U15.75 NRS U15.125 GND U15.175 A18 Altera Corporation 67 EPXA10 DDR Development Board Hardware Reference Manual Table 59. Development Board Expansion Header U15 I/O Pin-Outs (Part 2 of 2) U15.1-50 Device U15.51-100 Device U15. 101-150 Device U15. 151-200 Device U15.26 GND U15.76 IO/NWS U15.126 AA11 U15.176 B18 U15.27 AF25 U15.77 IO/NCS U15.127 Y12 U15.177 GND U15.28 AE25 U15.78 GND U15.128 AC8 U15.178 D18 U15.29 AD25 U15.79 IO/CS U15.129 GND U15.179 E18 U15.30 GND U15.80 M25 U15.130 AB5 U15.180 D17 U15.31 AC25 U15.80 M26 U15.131 AB9 U15.181 GND U15.32 AB25 U15.81 P27 U15.132 AA10 U15.182 E17 U15.33 AM24 U15.82 GND U15.133 GND U15.183 D16 U15.34 GND U15.83 M28 U15.134 Y11 U15.184 E16 U15.35 AL24 U15.84 NC U15.135 AD6 U15.185 GND U15.36 AK24 U15.85 NC U15.136 AA5 U15.186 D15 U15.37 AJ24 U15.86 GND U15.137 GND U15.187 B15 U15.38 GND U15.87 NCLK3 U15.138 AC7 U15.188 A15 U15.39 AH24 U15.88 GND U15.139 AB8 U15.189 GND U15.40 AC24 U15.89 NCLK4 U15.140 Y10 U15.190 B14 U15.41 AD24 U15.90 GND U15.141 GND U15.191 A14 U15.42 GND U15.91 CLK2_OUT U15.142 W11 U15.192 E15 U15.43 AE24 U15.92 GND U15.143 AA8 U15.193 GND U15.44 AF24 U15.93 NCLK2_FB U15.144 AB7 U15.194 C14 U15.45 AG24 U15.94 GND U15.145 GND U15.195 NCLK1_FB U15.46 GND U15.95 CLK2_FBP U15.146 AC6 U15.196 GND U15.47 AJ23 U15.96 GND U15.147 W10 U15.197 CLK1_FBP U15.48 AH23 U15.97 NCLK2 U15.148 AA7 U15.198 GND U15.49 AB23 U15.98 GND U15.149 GND U15.199 NCLK1 U15.50 GND U15.99 CLK1_OUT U15.150 AB6 U15.200 GND 68 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual . Table 60. Development Board Expansion Header U16 I/O Pin-Outs (Part 1 of 2) U16.1-50 Device U16.51100 Device U16. 101-150 Device U16. 151-200 Device U16.1 GND U16.51 AD2 U16.101 IO/LVDSDSKW U16.151 P25 U16.2 AE3 U16.52 GND U16.102 GND U16.152 GND U16.3 AK5 U16.53 AE1 U16.103 W32 U16.153 R24 U16.4 GND U16.54 AE2 U16.104 W31 U16.154 N23 U16.5 AM5 U16.55 GND U16.105 GND U16.155 R23 U16.6 AL5 U16.56 AH1 U16.106 V31 U16.156 GND U16.7 GND U16.57 AH2 U16.107 V32 U16.157 M23 U16.8 AK4 U16.58 GND U16.108 GND U16.158 P22 U16.9 AJ3 U16.59 AJ1 U16.109 R32 U16.159 NC U16.10 GND U16.60 AJ2 U16.110 R31 U16.160 GND U16.11 AL4 U16.61 GND U16.111 GND U16.161 M21 U16.12 AM4 U16.62 B29 U16.112 P31 U16.162 M22 U16.13 GND U16.63 A29 U16.113 P32 U16.163 N20 U16.14 D1 U16.64 GND U16.114 GND U16.164 GND U16.15 D2 U16.65 AJ32 U16.115 N32 U16.165 P21 U16.16 GND U16.66 AJ31 U16.116 N31 U16.166 N19 U16.17 E1 U16.67 GND U16.117 GND U16.167 N21 U16.18 E2 U16.68 AH31 U16.118 K31 U16.168 GND U16.19 GND U16.69 AH32 U16.119 K32 U16.169 N22 U16.20 H1 U16.70 GND U16.120 GND U16.170 J26 U16.21 H2 U16.71 AE32 U16.121 J32 U16.171 J27 U16.22 GND U16.72 AE31 U16.122 J31 U16.172 GND U16.23 J1 U16.73 GND U16.123 GND U16.173 J28 U16.24 J2 U16.74 AD31 U16.124 H31 U16.174 J29 U16.25 GND U16.75 AD32 U16.125 H32 U16.175 UART2_RI_N U16.26 K1 U16.76 GND U16.126 GND U16.176 GND U16.27 K2 U16.77 AC32 U16.127 E32 U16.177 K29 U16.28 GND U16.78 AC31 U16.128 E31 U16.178 K28 U16.29 N2 U16.79 GND U16.129 GND U16.179 K27 U16.30 N1 U16.80 Y31 U16.130 D31 U16.180 GND U16.31 GND U16.81 Y32 U16.131 D32 U16.181 K26 U16.32 P1 U16.82 GND U16.132 GND U16.182 L28 U16.33 P2 U16.83 AC30 U16.133 FAST0 U16.183 L23 U16.34 GND U16.84 AL29 U16.134 FAST1 U16.184 GND Altera Corporation 69 EPXA10 DDR Development Board Hardware Reference Manual Table 60. Development Board Expansion Header U16 I/O Pin-Outs (Part 2 of 2) U16.1-50 Device U16.51100 Device U16. 101-150 Device U16. 151-200 Device U16.35 R1 U16.85 H30 U16.135 FAST2 U16.185 GND U16.36 R2 U16.86 GND U16.136 GND U16.186 12V U16.37 GND U16.87 5V U16.137 R26 U16.187 3.3V U16.38 V1 U16.88 3.3V U16.138 R27 U16.188 12V- U16.39 V2 U16.89 5V U16.139 R28 U16.189 3.3V U16.40 GND U16.90 3.3V U16.140 GND U16.190 12V- U16.41 W1 U16.91 5V U16.141 R29 U16.191 3.3V U16.42 W2 U16.92 3.3V U16.142 P28 U16.192 12V U16.43 GND U16.93 5V U16.143 P29 U16.193 3.3V U16.44 Y2 U16.94 3.3V U16.144 GND U16.194 12V U16.45 Y1 U16.95 5V U16.145 M19 U16.195 3.3V U16.46 GND U16.96 3.3V U16.146 M20 U16.196 12V U16.47 AC1 U16.97 5V U16.147 P20 U16.197 3.3V U16.48 AC2 U16.98 3.3V U16.148 GND U16.198 12V U16.49 GND U16.99 5V U16.149 R25 U16.199 3.3V U16.50 AD1 U16.100 3.3V U16.150 N25 U16.200 12V 70 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual . Table 61. Development Board Expansion Header U17 I/O Pin-Outs (Part 1 of 2) U17.1-50 Device U17.51-100 Device U17. 101-150 Device U17. 151-200 Device U17.1 AC11 U17.51 AJ5 U17.101 GND U17.151 W22 U17.2 GND U17.52 AH5 U17.102 NC U17.152 V21 U17.3 AB11 U17.53 AJ4 U17.103 NRESET U17.153 GND U17.4 AH10 U17.54 GND U17.104 NC U17.154 AA28 U17.5 AJ10 U17.55 AH4 U17.105 GND U17.155 AC27 U17.6 GND U17.56 AG5 U17.106 NC U17.156 AB26 U17.7 AK10 U17.57 T27 U17.107 NC U17.157 GND U17.8 AL10 U17.58 GND U17.108 NC U17.158 AA25 U17.9 AG10 U17.59 U27 U17.109 GND U17.159 Y24 U17.10 GND U17.60 V27 U17.110 NC U17.160 W23 U17.11 AF10 U17.61 V26 U17.111 NC U17.161 GND U17.12 AE10 U17.62 GND U17.112 NC U17.162 V22 U17.13 AD10 U17.63 T29 U17.113 GND U17.163 U21 U17.14 GND U17.64 T28 U17.114 AG28 U17.164 AB28 U17.15 AC10 U17.65 T26 U17.115 AH29 U17.165 GND U17.16 AB10 U17.66 GND U17.116 AG27 U17.166 Y28 U17.17 AH9 U17.67 U26 U17.117 GND U17.167 AB27 U17.18 GND U17.68 W27 U17.118 AH30 U17.168 AA26 U17.19 AJ9 U17.69 T25 U17.119 AF27 U17.169 GND U17.20 AK9 U17.70 GND U17.120 AF28 U17.170 Y25 U17.21 AL9 U17.71 U25 U17.121 GND U17.171 V23 U17.22 GND U17.72 U29 U17.122 AE26 U17.172 U22 U17.23 AM9 U17.73 U28 U17.123 AE27 U17.173 GND U17.24 AG9 U17.74 GND U17.124 AE30 U17.174 T21 U17.25 AF9 U17.75 R22 U17.125 GND U17.175 W28 U17.26 GND U17.76 Y27 U17.126 AE29 U17.176 W29 U17.27 AE9 U17.77 W26 U17.127 AE28 U17.177 GND U17.28 AD9 U17.78 GND U17.128 AA21 U17.178 R20 U17.29 AM8 U17.79 V25 U17.129 GND U17.179 T22 U17.30 GND U17.80 U24 U17.130 AD26 U17.180 AA27 U17.31 AL8 U17.81 T23 U17.131 AD30 U17.181 GND U17.32 AK8 U17.82 GND U17.132 AD29 U17.182 Y26 U17.33 AJ8 U17.83 R21 U17.133 GND U17.183 W25 U17.34 GND U17.84 V29 U17.134 AC29 U17.184 U23 Altera Corporation 71 EPXA10 DDR Development Board Hardware Reference Manual Table 61. Development Board Expansion Header U17 I/O Pin-Outs (Part 2 of 2) U17.1-50 Device U17.51-100 Device U17. 101-150 Device U17. 151-200 Device U17.35 AH8 U17.85 V28 U17.135 AA22 U17.185 GND U17.36 AG8 U17.86 GND U17.136 AD27 U17.186 12V U17.37 AF8 U17.87 5V U17.137 GND U17.187 3.3V U17.38 GND U17.88 3.3V U17.138 AD28 U17.188 12V- U17.39 AE8 U17.89 5V U17.139 Y29 U17.189 3.3V U17.40 AH7 U17.90 3.3V U17.140 Y21 U17.190 12V- U17.41 AF7 U17.91 5V U17.141 GND U17.191 3.3V U17.42 GND U17.92 3.3V U17.142 AA23 U17.192 12V U17.43 AG7 U17.93 5V U17.143 AC28 U17.193 3.3V U17.44 AE7 U17.94 3.3V U17.144 AC26 U17.194 12V U17.45 AH6 U17.95 5V U17.145 GND U17.195 3.3V U17.46 GND U17.96 3.3V U17.146 Y22 U17.196 12V U17.47 AG6 U17.97 5V U17.147 W21 U17.197 3.3V U17.48 AF6 U17.98 3.3V U17.148 AA24 U17.198 12V U17.49 AE6 U17.99 5V U17.149 GND U17.199 3.3V U17.50 GND U17.100 3.3V U17.150 Y23 U17.200 12V 72 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual . Table 62. Development Board Expansion Header U18 I/O Pin-Outs (Part 1 of 2) U18.1-50 Device U18.51-100 Device U18. 101-150 Device U18. 151-200 Device U18.1 V6 U18.51 N5 U18.101 GND U18.151 AF13 U18.2 GND U18.52 R10 U18.102 AK17 U18.152 AG13 U18.3 U5 U18.53 R11 U18.103 AK16 U18.153 GND U18.4 V5 U18.54 GND U18.104 AJ16 U18.154 AB13 U18.5 U6 U18.55 R12 U18.105 GND U18.155 AH12 U18.6 GND U18.56 R13 U18.106 AH16 U18.156 AE12 U18.7 V7 U18.57 P10 U18.107 AG16 U18.157 GND U18.8 V8 U18.58 GND U18.108 AF16 U18.158 AF12 U18.9 U7 U18.59 P11 U18.109 GND U18.159 AG12 U18.10 GND U18.60 P12 U18.110 AE16 U18.160 AG11 U18.11 T6 U18.61 P13 U18.111 AD16 U18.161 GND U18.12 U8 U18.62 GND U18.112 AC16 U18.162 AD12 U18.13 T5 U18.63 P4 U18.113 GND U18.163 AF11 U18.14 GND U18.64 N4 U18.114 AB16 U18.164 AH11 U18.15 V4 U18.65 N11 U18.115 AL15 U18.165 GND U18.16 V10 U18.66 GND U18.116 AK15 U18.166 AC12 U18.17 T7 U18.67 N12 U18.117 GND U18.167 AE11 U18.17 W12 U18.68 N13 U18.118 AJ15 U18.168 AB12 U18.18 GND U18.69 M5 U18.119 AH15 U18.169 GND U18.19 USER_SW5 U18.70 GND U18.120 AG15 U18.170 AD11 U18.20 U9 U18.71 L5 U18.121 GND U18.171 A8 U18.21 V11 U18.72 K4 U18.122 AF15 U18.172 E6 U18.22 GND U18.73 J4 U18.123 AE15 U18.173 GND U18.23 R6 U18.74 GND U18.124 AD15 U18.174 E7 U18.24 T8 U18.75 H4 U18.125 GND U18.175 C8 U18.25 R5 U18.76 K5 U18.126 AC15 U18.176 B8 U18.26 GND U18.77 E4 U18.127 AB15 U18.177 GND U18.27 U4 U18.78 GND U18.128 AL14 U18.178 E9 U18.28 U10 U18.79 J5 U18.129 GND U18.179 E8 U18.29 R7 U18.80 H5 U18.130 AK14 U18.180 D8 U18.30 GND U18.81 G5 U18.131 AJ14 U18.181 GND U18.31 V12 U18.82 GND U18.132 AH14 U18.182 B5 U18.32 U11 U18.83 F5 U18.133 GND U18.183 A5 U18.33 R8 U18.84 E5 U18.134 AG14 U18.184 E10 Altera Corporation 73 EPXA10 DDR Development Board Hardware Reference Manual Table 62. Development Board Expansion Header U18 I/O Pin-Outs (Part 2 of 2) U18.1-50 Device U18.51-100 Device U18. 101-150 Device U18. 151-200 Device U18.34 GND U18.85 D5 U18.135 AF14 U18.185 GND U18.35 P6 U18.86 GND U18.136 AE14 U18.186 12V U18.36 T4 U18.87 5V U18.137 GND U18.187 3.3V U18.37 P5 U18.88 3.3V U18.138 AD14 U18.188 12V- U18.38 GND U18.89 5V U18.139 AC14 U18.189 3.3V U18.39 T10 U18.90 3.3V U18.140 AB14 U18.190 12V- U18.40 U12 U18.91 5V U18.141 GND U18.191 3.3V U18.41 T11 U18.92 3.3V U18.142 AL13 U18.192 12V U18.42 GND U18.93 5V U18.143 AK13 U18.193 3.3V U18.43 P7 U18.94 3.3V U18.144 AJ13 U18.194 12V U18.44 R9 U18.95 5V U18.145 GND U18.195 3.3V U18.45 T12 U18.96 3.3V U18.146 AH13 U18.196 12V U18.46 GND U18.97 5V U18.147 AC13 U18.197 3.3V U18.47 T13 U18.98 3.3V U18.148 AD13 U18.198 12V U18.48 P8 U18.99 5V U18.149 GND U18.199 3.3V U18.49 R4 U18.100 3.3V U18.150 AE13 U18.200 12V U18.50 GND U18.51 N5 U18.101 GND U18.151 AF13 GND Connections Table 59 lists the pins on the EPXA10 DDR development board expansion header cards that connect to GND. Table 63. Development Board Expansion Header GND Connections Header Pin U15 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 88, 90, 92, 94, 96, 98, 100, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 196, 198, 200 U16 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 86, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 185 U17 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185 U18 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185 74 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual VCC Connections Table 59 lists the pins on the EPXA10 DDR development board expansion header cards that connect to VCC power supplies. Table 64. Development Board Expansion Header VC C Connections Expansion Header U16 U17 U18 VC C Pin 3.3 V 88, 90, 92, 94, 96, 98, 100, 187, 189, 191, 193, 195, 197, 199 5V 87, 89, 91, 93, 95, 97, 99 12 V 186, 192, 194, 196, 198, 200 –12 V 188, 190 3.3 V 88, 90, 92, 94, 96, 98, 100, 187, 189, 191, 193, 195, 197, 199 5V 87, 89, 91, 93, 95, 97, 99 12 V 186, 192, 194, 196, 198, 200 –12 V 188, 190 3.3 V 88, 90, 92, 94, 96, 98, 100, 187, 189, 191, 193, 195, 197, 199 5V 87, 89, 91, 93, 95, 97, 99 12 V 186, 192, 194, 196, 198, 200 –12 V 188, 190 Altera Corporation 75 EPXA10 DDR Development Board Hardware Reference Manual General Usage Guidelines To use the development board properly, and to avoid damage to it, follow the guidelines in this section. Anti-Static Handling Before handling the card, you should take proper anti-static precautions, otherwise the board can be damaged. Power-Up When power is initially applied to the board, the LEDs flash according to the software test running on the embedded processor. The test suite is programmed directly into flash memory, and when the embedded processor boots it configures the FPGA and runs the software using the test image. Power Consumption Power consumption issues need to be addressed only if the board is powered from a terminal strip and not the provided ATX power supply adaptor. Altera recommends that you monitor the input current to ensure that sufficient power is supplied. The power required by the board is directly related to the following: ■ ■ ■ Number of interfaces used Density and speed of the device Population of the interfaces The typical maximum current is 5.0 A, which can be exceeded if the board is heavily loaded with many interfaces running at high-clock speeds. PCI Cards 1 Do not use 5-V PCI cards. The PCI slots on the development board are suitable only for 3.3-V and universal PCI cards. The keying slots on 5-V PCI cards are not designed to mate with the motherboard connectors, because the signalling voltage on 5-V cards is incorrect for the development board. 76 Altera Corporation EPXA10 DDR Development Board Hardware Reference Manual Unused EPXA10 Device Pins All unused general-purpose I/O EPXA10 device pins have been allocated to the expansion headers. To avoid unnecessary power consumption and possible contention, unused pins must be left in the high impedance (input) state. Follow the steps below to put the unused EPXA10 device pins into a high-impedance state: 1. Run the Quartus II software. 2. Choose Compiler Settings (Processing menu). 3. Click the Chips & Devices tag. 4. Click the Device & Pin Options button. 5. Click the Unused Pins tag. 6. Under Reserve all unused pins, select As inputs, tri-stated. All the critical control lines for the interfaces on the board are pulled to the inactive state. 1 If a device is not used, it can be ignored and the EPXA10 device interface pins left as inputs. Test Core Functionality For implementing a test plan, Altera provides test cores with the development board, which can be programmed onto the EPXA10 device using the JTAG chain. Each test core tests one or more interfaces (pushbuttons, LEDs, switches, etc.). Diagnostic software is also provided to test the board, the EPXA10 device, and its test cores, with results displayed on a terminal. Altera Corporation 77 EPXA10 DDR Development Board Hardware Reference Manual 78 Altera Corporation
© Copyright 2025 Paperzz