Green’s function notes 2017 1 Introduction Back in the "formal" notes, we derived the potential in terms of the Green’s function. Dirichlet problem: Equation (7) in "formal" notes is Φ (x) = 1 4πε0 V GD (x, x ) ρ (x ) d3 x − 1 4π Φ (x ) S ∂GD (x, x ) dA ∂n (1) which is also Jackson 1.44. The Dirichlet Green’s function is symmetric in x and x (see Lea §C.7.1). GD (x, x ) = GD (x , x) Neumann problem: Writing <Φ>S = A1 S Φ dA, the average value of the potential over the surface S, equation (9) in "formal" notes is Φ (x) − < Φ >S = 1 4πε0 GN (x, x ) ρ (x ) d3 x + V 1 4π GN S ∂Φ dA ∂n (2) In order to make use of these expressions, we need a form for the Green’s function that is relatively easy to integrate. That suggests that we expand the Green’s function in orthogonal functions. The Dirichlet Green’s function is symmetric in the two sets of coordinates x and x . (See Lea pg 514 and J problem 1.14.) In the Neumann case it is possible to impose the symmetry as an additional condition. (In problems 1.14 and 3.27 you can see why this does not affect the computed potential). So it does not matter whether we compute G (x, x ) or G (x , x) . I find it easier to use x as the variable and x as fixed while finding G to reduce the number of primes I have to write. Then the differential equation satisfied by G is ("formal" notes eqn 3): ∇2 G (x, x ) = −4πδ (x − x ) (3) This means that G represents the potential at x due to a unit point charge1 at x , multiplied by 4πε0 . This shows that the physical dimensions of G are 1/length. The boundary conditions are Dirichlet case: (4) GD (x, x ) = 0 for x on S and Neumann case: 4π ∂GN = n̂ · ∇GN = − for x on S ∂n A where A is the total area of the surface S bounding the volume V. 1 In 2 dimensions it is a line charge. 1 (5) 2 Division of region method The 10-step method is outlined in Lea (pg 515). We begin by (Step 1) drawing the region under consideration and (Step 2) choosing a coordinate system so that the boundaries are represented by constant values of one or more of the coordinates. In this method (Step 3) we place the unit point charge at an arbitrary point x within the volume, and (Step 5) use this point to divide the region into two separate regions, I and II, with x on the boundary between them. Then G satisifies the simpler differential equation ∇2 G (x, x ) = 0 within each of regions I and II, (but not on the boundary between them). This means that we can (Step 4) make use of the eigenfunctions of Laplace’s equation. 2.1 Dirichlet Green’s Function in Spherical Coordinates Suppose our volume is the interior of a sphere of radius a. We place a unit point charge at an arbitrary (but, for the moment, fixed) point in the region with coordinates r , θ , φ . This point then divides the volume into two regions: Region I: 0 ≤ r < r Region II: r < r ≤ a 2 (Step 6) Then in region I the appropriate solution to Laplace’s equation is GI (x, x ) = ∞ +l Alm rl Ylm (θ, φ) (6) l=0 m=−l where we have used only the functions rl and excluded r−(l+1) because the potential should be finite at r = 0. The dependence on the coordinates r , θ and φ is contained in the coefficient Alm . Region II contains neither r = 0 nor r → ∞, so we need both functions of r: +l ∞ Clm Blm rl + l+1 Ylm (θ, φ) GII (x, x ) = r l=0 m=−l However, here we have to deal with the boundary at r = a where G has to be zero: ∞ +l Clm Blm al + l+1 Ylm (θ, φ) = 0 GII (xon S , x ) = a l=0 m=−l We make use of the orthogonality of the Ylm to argue that each term must separately equal zero: Clm Blm al + l+1 = 0 ⇒ Clm = −Blm a2l+1 a Then +l ∞ a2l+1 Blm rl − l+1 Ylm (θ, φ) (7) GII (x, x ) = r l=0 m=−l We still have two sets of unknown constants: the Alm and Blm . But we have one more boundary to consider at r = r . (Step 7) The first boundary condition we need is continuity of the potential (G) at r = r . GI (x, x )r=r = ∞ +l l Alm (r ) Ylm (θ, φ) l=0 m=−l = ∞ +l l l=0 m=−l Blm (r ) − a2l+1 Ylm (θ, φ) = GII (x, x )r=r (r )l+1 Again we make use of the orthogonality of the Ylm to argue that l a2l+1 l Alm (r ) = Blm (r ) − l+1 (r ) for each l, m. Thus GI (x, x ) = ∞ +l l=0 m=−l GII (x, x ) = ∞ (r )2l+1 Blm rl 1 − a2l+1 r2l+1 +l l=0 m=−l a2l+1 Blm rl 1 − 3 Ylm (θ, φ) Ylm (θ, φ) We’d like to display the symmetry in r and r more obviously, and we can do that by relabeling l Blm = β lm (r ) (Remember that for the moment r is a constant.) Then ∞ GI (x, x ) = +l l=0 m=−l ∞ GII (x, x ) = +l l l=0 m=−l or ∞ G (x, x ) = a2l+1 l β lm (r ) rl 1 − β lm (r ) rl 1 − +l l l=0 m=−l β lm (r ) rl 1 − Ylm (θ, φ) (r )2l+1 a2l+1 r2l+1 a2l+1 2l+1 r> Ylm (θ, φ) Ylm (θ, φ) (8) where r> = max (r, r ) and the same expression (8) holds in both regions. We still need to find the β lm and to do this (Step 8) we make use of the differential equation (3). First we insert expression (8) for G and evaluate the derivatives in θ and φ. We express the delta function in terms of the spherical coordinates using the result of Jackson Problem 1.2. ∇2 G = = 1 ∂ r2 ∂r ∞ r2 ∂ G + ∇2ang ∂r +l β lm l=0 m=−l − = − 1 r2 ∞ ∞ +l l l=0 m=−l β lm (r ) rl 1 − 1 ∂ a2l+1 l l 2 ∂ (r ) r 1 − r 2l+1 r2 ∂r ∂r r> +l l=0 m=−l l β lm (r ) rl 1 − a2l+1 2l+1 r> a2l+1 2l+1 r> Ylm (θ, φ) Ylm (θ, φ) l (l + 1) Ylm (θ, φ) 4π δ (r − r ) δ (µ − µ ) δ φ − φ r2 Now we multiply both sides of the equation by Yl∗m (θ, φ) and integrate over the whole solid angle of the sphere. On the LHS we use the orthogonality of the Ylm . On the RHS we use the sifting property. βl m ∂ ∂ l r2 (r r) r2 ∂r ∂r = − 1− a2l +1 2l +1 r> − βl m 4π δ (r − r ) Yl∗m θ , φ r2 (r r)l r2 1− a2l +1 2l +1 r> l (l + 1) (9) ∗ Thus each β lm contains a factor Ylm θ ,φ . ∗ β lm = γ lm Ylm θ ,φ 4 and eqn (8) becomes ∞ G (x, x ) = +l γ lm (r r) l l=0 m=−l 1− a2l+1 2l+1 r> ∗ θ ,φ Ylm (θ, φ) Ylm Now we have symmetry in all the coordinates, and the remaining set of constants γ lm should be independent of all coordinates. The remaining equation (9) now takes the form l a2l+1 γ lm ∂ l 2 ∂ (r r) 1 − r 2l+1 r2 ∂r ∂r r> −γ lm (r r) r2 1− a2l+1 2l+1 r> l (l + 1) = − 4π δ (r − r ) r2 (Step 9) To make use of this equation we multiply both sides by r2 , then integrate across the internal boundary from r = r − ε to r = r + ε. r +ε ∂ ∂ l r2 (r r) ∂r ∂r γ lm r −ε 1− a2l+1 2l+1 r> − (r r) l 1− a2l+1 2l+1 r> l (l + 1) dr r +ε = −4π δ (r − r ) dr r −ε The integral on the RHS equals 1. The second term on the LHS → 0 as ε → 0 because the integrand is continuous by construction and has no singularities in the range of integration. Thus we are left with lim γ lm r2 (r ) ε→0 l r +ε ∂ a2l+1 rl 1 − 2l+1 ∂r r> r −ε = −4π At the upper limit, r = r + ε is > r , so r> = r. At the lower limit, r = r − ε is < r , so r> = r . Thus l γ lm (r ) r2 l+2 γ lm (r ) a2l+1 ∂ rl − l+1 ∂r r l−1 l (r ) + (l + 1) − r2 r a2l+1 l+2 (r ) γ lm (r ) a2l+1 ∂ rl 1 − ∂r (r )2l+1 l−1 − l (r ) l+2 (l + 1) 1− a2l+1 (r )l+2 a2l+1 (r )2l+1 +l a2l+1 (r )l+2 r = −4π = −4π = −4π 4π 1 2l + 1 a2l+1 is independent of all coordinates, as expected, and thus γ lm = − γ lm G (x, x ) = ∞ +l l=0 m=−l 4π (r )l rl 2l + 1 a2l+1 a2l+1 ∗ θ ,φ − 1 Ylm (θ, φ) Ylm 2l+1 r> 5 (10) (Step 10) G has dimensions of 1/length, as required, and displays the necessary symmetry. It is also positive, since a ≥ r> throughout the region. In the limit a → ∞ we get G → = ∞ +l l=0 m=−l ∞ +l l=0 m=−l = ∞ +l l=0 m=−l 4π (r )l rl a2l+1 ∗ θ ,φ Y (θ, φ) Ylm 2l+1 lm 2l + 1 a2l+1 r> 4π (r )l rl ∗ θ ,φ Y (θ, φ) Ylm 2l+1 lm 2l + 1 r> l 1 4π r< ∗ θ ,φ = Ylm (θ, φ) Ylm l+1 2l + 1 r> |x − x | which is the correct result for a point charge in infinite space. 2.2 Use of the result Suppose we have a sphere of radius a with potential V on the top and −V on the bottom. Inside the sphere, a line charge of length 2b (b < a) with uniform line charge density λ runs along the diameter of the dividing plane and is centered at the center of the sphere. Find the potential inside. First we have to choose coordinates. No matter what we do, we do not have azimuthal symmetry. I’m going to put the polar axis along the line charge, giving a charge density ρ (x) = λ [δ (µ − 1) + δ (µ + 1)] S (b − r) 2πr2 We can check this by finding the total charge on a differential piece of the line that runs from r to r + dr with r < b. Then 2π dq +1 = 2λdr = −1 0 = λ [δ (µ − 1) + δ (µ + 1)] r2 drdµdφ 2πr2 λ (2) 2πdr = 2λdr 2π [ (Do you understand the factor of 2? Draw a picture and see!) The potential on the surface is then ΦS = +V = −V if 0 ≤ φ < π if π ≤ φ < 2π Thus the potential is (eqn 1) Φ (x) = 1 4πε0 − 1 4π 2π +1 a GD (x, x ) 0 2π −1 +1 0 −1 2 2π (r ) [δ (µ − 1) + δ (µ + 1)] S (b − r ) (r ) dr dµ dφ ∂GD (x, x ) dA ∂n (11) 0 Φ (x ) λ 6 2 Now the field point x is fixed and x is variable. The first integral gives potential Φ1 where 2π a ∞ +1 4πε0 Φ1 (x) = −1 0 +l 4π (r )l rl 2l + 1 a2l+1 l=0 m=−l 0 × λ a2l+1 ∗ θ ,φ − 1 Ylm (θ, φ) Ylm 2l+1 r> 2 2π (r ) 2 [δ (µ − 1) + δ (µ + 1)] S (b − r ) (r ) dr dµ dφ By orthogonality of the eimφ ,the integral over φ gives zero unless m = 0, in which case we get 2π, so we have a ∞ +1 −1 0 l=0 4πλ (r )l rl 2l + 1 a2l+1 a2l+1 2 − 1 Nl0 Pl (µ) Pl (µ ) [δ (µ − 1) + δ (µ + 1)] S (b − r ) dr dµ 2l+1 r> where Nl0 = (2l + 1) /4π. Next we use the sifting property of the deltafunctions to do the integral over µ . a ∞ 0 λ l=0 (r )l rl a2l+1 a2l+1 − 1 Pl (µ) [Pl (1) + Pl (−1)] S (b − r ) dr 2l+1 r> Since Pl (−1) = (−1)l , the result is zero unless l is even, when the square bracket equals 2. Finally we do the integral over r . The integrand is zero for r > b, so we have ∞ 4πε0 Φ1 (x) = 2λ l=0, even b rl l (r ) a2l+1 0 a2l+1 − 1 dr Pl (µ) 2l+1 r> (12) Looking at the integral over r by itself, we note that if r < b we have to split the integral into two parts: r < r and r > r . b (r ) 0 l a2l+1 − 1 dr 2l+1 r> r = (r ) a2l+1 − 1 dr + r2l+1 l 0 = = b l (r ) r a2l+1 (r )2l+1 − 1 dr rl+1 a2l+1 a2l+1 1 1 bl+1 − rl+1 −1 − − l − 2l+1 l l+1 r l b r l+1 2l+1 2l+1 l+1 b a (2l + 1) a − for r < b, l > 0 − rl l (l + 1) lbl l+1 Note that this fails for l = 0 because of the l in the denominator. For l = 0, we get b 0 a − 1 dr r> r b a a − 1 dr + − 1 dr r r 0 r b = a − r + a ln − (b − r) r b = a − b + a ln r = 7 Including the factor of 1/4πε0 , the first term in the potential for r < b is Φ1 (x) = 2λ 4πε0 1 a a − b + a ln ∞ rl l=2, even = λ 2πε0 1− b r a2l+1 b b + ln a r ∞ + P0 (µ) + bl+1 a2l+1 (2l + 1) a2l+1 − − (µ) P l rl l (l + 1) lbl l+1 rl (2l + 1) − l l (l + 1) lb l=2, even 1+ (13) Pl (µ) l b2l+1 l + 1 a2l+1 The log term in (13) is expected near a line charge, and even l indicates the reflection symmetry about the equatorial (z = 0) plane. If r > b then r = r> throughout the range of integration, and the integral over r is b l (r ) 0 bl+1 a2l+1 − 1 dr = r2l+1 l+1 a2l+1 −1 r2l+1 for r>b and the potential (first term) is ∞ Φ1 (x) = l=0,even λ rl bl+1 2l+1 2πε0 a l+1 a2l+1 − 1 Pl (µ) r2l+1 (14) Separating out the l = 0 term, we have 1 1 − r a 2λb Φ1 (x) = 4πε0 λb + 2πε0 ∞ rl l=2, even bl a2l+1 l + 1 a2l+1 − 1 Pl (µ) r2l+1 The first term is the potential due to a point charge q = 2λb at the center of a grounded sphere of radius a. Again this is what we would expect. Finally we note that the potential Φ1 is continuous at r = b. We still need to evaluate the second term in (11). It contains ∂G ∂G = n̂ · ∇G = ∂n ∂r where the outward normal from the volume at the surface r = a is n̂ = +r̂. Thus we have 2π −4πΦ2 (x) = +1 Φ (x ) 0 −1 π = V 0 2π − π ∂GD (x, x ) dA ∂n +1 −1 ∂ ∂r ∞ +l l=0 m=−l 4π (r )l rl 2l + 1 a2l+1 a2l+1 −1 2l+1 r> ∗ θ , φ a2 dµ dφ × Ylm (θ, φ) Ylm 8 r =a On the outer surface, r = a > r, so r> = r and we have V ∞ +l π 4π Ylm (θ, φ) 2l + 1 l=0 m=−l 0 2π − ∂ (r )l rl ∂r a2l+1 +1 −1 π a2l+1 −1 2l+1 (r ) ∗ × Ylm r =a 2 θ , φ a dµ dφ Doing the integral over φ first, we get zero if m = 0 and for m = 0 π 2π − 0 −imφ e dφ π e−imφ −im = π 2π e−imφ − −im 0 π e−imπ − 1 e−im2π − e−imπ − −im −im 2 m (1 − (−1) ) im = = So we get zero for m even and 4/im for m odd. Since l ≥ m, the sum over l now starts at 1. Thus the integral has reduced to V ∞ +l 16πNlm Ylm (θ, φ) ∂ rl 2l + 1 im ∂r a2l+1 l=1 m=−l, odd a2l+1 (r ) +1 l l+1 − (r ) Plm (µ ) a2 dµ r =a −1 Plm (µ) is an even function of µ if l + m is even and an odd function if l + m is odd. Thus for the integral over µ to be non-zero, we need l + m to be even, and thus l odd. Let’s call the integral Ilm .The derivative is ∂ rl ∂r a2l+1 a2l+1 l+1 (r ) − (r ) l r =a = − (l + 1) rl al+2 −l rl a2l+1 al−1 = − (2l + 1) rl al+2 and thus we have −4πΦ2 (x) = −V ∞ +l (2l + 1) l=1,odd m=−l, odd r a l 16πNlm Ylm (θ, φ) Ilm 2l + 1 im Finally we should tidy this up by combining the positive and negative m terms. ∗ and so Nl,−m Pl−m = (−1)m Nlm Plm . That Remember that Yl,−m = (−1)m Ylm m makes Nl,−m Il,−m = (−1) Nlm Ilm . Thus Nlm Ylm (θ, φ) Ilm Nl,−m Yl,−m + Il,−m im −im 2 = Nlm Plm (µ) eimφ 2 = 2Nlm Plm (µ) 9 2 Plm (µ) Ilm Nl,m + Ilm e−imφ im −im Ilm sin mφ m and so the second term in the potential is ∞ 32πV 4π Φ2 (x) = = 8V +l l=1,odd m=1, odd ∞ +l l=1,odd m=1, odd 2V π = ∞ +l l=1,odd m=1, odd r a r a r a l l 2 Nlm Plm (µ) Ilm sin mφ m Ilm 2l + 1 (l − m)! m Pl (µ) sin mφ 4π (l + m)! m l 2l + 1 m (l − m)! Ilm Plm (µ) sin mφ (15) (l + m)! The total potential is the sum of the two terms (13 or 14 and 15): ∞ λ b rl (2l + 1) l b Φ (x) = − l 1+ + 1 − + ln 2πε0 a r l (l + 1) lb l+1 l=2, even + 2V π ∞ +l l=1,odd m=1, odd (2l + 1) (l − m)! r Ilm m (l + m)! a l b a 2l+1 Plm (µ) sin mφ ... r < b and λb 2πε0 Φ (x) = + 2V π 1 1 − r a + ∞ +l λb 2πε0 l=1,odd m=1, odd ∞ l=2, even rl a2l+1 bl l+1 a2l+1 − 1 Pl (µ) r2l+1 (2l + 1) (l − m)! r Ilm m (l + m)! a l Plm (µ) sin mφ ... r > b Compare the second term, in method and result, with pages 393-395 in Lea. Let’s evaluate the first few terms in our result. π I11 = 0 (− sin θ) sin θdθ = − π 2 Thus for r < b λ b r2 r2 b3 1 b 5 − 2− 5 3µ2 − 1 1 − + ln + 2πε0 a r 6 2b a 3 2 2V 1 π r 3 (− sin θ) sin φ + · · · − π 22 a 3 cos2 θ − 1 λ b b b3 r2 = 1 − + ln + 5− 2 3−2 3 4πε0 a r b a 12 Φ (x) = + 3V r sin θ sin φ + · · · ... r < b 2 a 10 Pl (µ) and for r > b Φ (x) = = λ r2 b3 a5 3V r 1 1 1 − + 3µ2 − 1 + sin θ sin φ + · · · −1 r a 2πε0 a5 3 r5 2 2 a 1 1 r2 b2 a5 3V r − + sin θ sin φ + · · · − 1 3 cos2 θ − 1 + r a 6a5 r5 2 a λb 2πε0 λb 2πε0 Lea 8.67 gives the value of Ilm for larger odd values of l and m. 2.3 Dirichlet Green’s function in Cylindrical coordinates Here we will find the Green’s function for the interior of an infinitely long tube of radius a. Because we are going to use the result to find a potential that does depend on z, we need the three-dimensional Green’s function. (Step 1: see Lea Figure C.6) (Step 2) We choose cylindrical coordinates with z-axis along the axis of the tube, and (Step 3) place our unit point charge at x with (fixed) coordinates (ρ , φ , z ). (Step 4) The solutions of Laplace’s equation in this coordinate system are Jm (kρ) eimφ e±kz Nm (kρ) or sin kz Im (kρ) eimφ cos kz Km (kρ) The sets of functions {eimφ times Jm (kρ) or Nm (kρ)} and {eimφ times sin kz or cos kz} form complete orthogonal sets of functions, so we may divide our space in either z or ρ. (Step 5) Let’s divide in ρ. (The other choice is in Lea pg 521-525.) (Step 6) Then in region I, ρ < ρ , we need a function that is finite at ρ = 0, which is I. Here we have no boundaries at finite z, so we have no way to determine specific values for k. So we have +∞ GI (x, x ) = ∞ Am (k) Im (kρ) eikz eimφ dk (16) m=−∞ −∞ In region II, a > ρ > ρ , we have both modified Bessel functions. +∞ GII (x, x ) = ∞ Bm (k) [Im (kρ) + Cm Km (kρ)] eikz eimφ dk m=−∞ −∞ At ρ = a, GII = 0, so +∞ ∞ m=−∞ −∞ 0= Bm (k) [Im (ka) + Cm Km (ka)] eikz eimφ dk By orthogonality of the eikz eimφ in z and φ, we can equate each term separately to zero, so we get Im (ka) Cm = − Km (ka) 11 and thus +∞ ∞ Im (ka) Km (kρ) eikz eimφ dk K (ka) m −∞ m=−∞ (17) (Step 7) Now we use continuity of the potential at ρ = ρ to get GII (x, x ) = +∞ ∞ Bm (k) Im (kρ) − Am (k) Im (kρ ) eikz eimφ dk m=−∞ −∞ +∞ ∞ = m=−∞ −∞ Bm (k) Im (kρ ) − Im (ka) Km (kρ ) eikz eimφ dk Km (ka) and again by orthogonality we have Am (k) = Bm (k) 1 − Im (ka) Km (kρ ) Im (kρ ) Km (ka) Thus (16) becomes +∞ ∞ Im (ka) Km (kρ ) Im (kρ) eikz eimφ dk I (kρ ) K (ka) m m −∞ m=−∞ (18) We may combine the two results (18) and (17) to get GI (x, x ) = Bm (k) 1 − +∞ G (x, x ) = ∞ Bm (k) gm (ρ, ρ ) eikz eimφ dk (19) m=−∞ −∞ where gmI ≡ 1 − Im (ka) Km (kρ ) Im (kρ) Im (kρ ) Km (ka) and gmII ≡ Im (kρ) − Im (ka) Km (kρ) Km (ka) (20) (21) (Step 8) Next we make use of the differential equation, expressing the delta function on the right in cylindrical coordinates (cf Problem 1.2): ∇2 G = 1 ∂ 2G ∂ 2G 1 ∂ 4π (ρG) + 2 + = − δ (ρ − ρ ) δ φ − φ δ (z − z ) 2 2 ρ ∂ρ ρ ∂φ ∂z ρ +∞ m=−∞ 0 = − ∞ Bm (k) eikz eimφ 1 ∂ ∂gm (ρ) m2 ρ − 2 gm − k2 gm dk ρ ∂ρ ∂ρ ρ 4π δ (ρ − ρ ) δ φ − φ δ (z − z ) ρ 12 Now we multiply both sides by e−im φ and integrate from 0 to 2π in φ. On the RHS we use the sifting property, and on the left hand side, we use orthogonality of the eimφ. ∞ 2π Bm (k) eikz −∞ 1 ∂ ∂gm (ρ) (m )2 ρ − gm − k2 gm ρ ∂ρ ∂ρ ρ2 dk = − 4π δ (ρ − ρ ) δ (z − z ) e−im φ ρ Now we can drop the prime on m. Similarly we multiply by e−ik z and integrate over all z. We use Lea eqn 6.16 to get ∞ −∞ Bm (k) 2πδ (k − k ) Bm (k ) π 1 ∂ ∂gm (ρ) m2 ρ − 2 gm − k2 gm dk ρ ∂ρ ∂ρ ρ 1 ∂ ∂gm (ρ) m2 2 ρ − 2 gm − (k ) gm ρ ∂ρ ∂ρ ρ 2 = − δ (ρ − ρ ) e−ik z e−imφ ρ 1 = − δ (ρ − ρ ) e−ik z e−imφ ρ Drop the primes on the k , and relabel, remembering that z and φ are fixed for the moment. Bm (k) ≡ β m (k) e−ikz e−imφ (Step 9) Finally we multiply both sides by ρ and integrate across the boundary at ρ = ρ ρ +ε πβ m (k) ρ −ε ∂ ∂gm (ρ) m2 ρ − gm − k2 ρgm dρ = − ∂ρ ∂ρ ρ ρ +ε ρ −ε δ (ρ − ρ ) dρ Making use of the fact that gm /ρ and ρgm are well behaved in the range of integration, we get ρ +ε ∂gm (ρ) 1 =− lim β m (k) ρ ε→0 ∂ρ π ρ −ε At the upper limit we are in region II where g = gII (21), and at the lower limit we are in region I where g = gI (20), so β m (k) kρ Im (ka) Im (ka) Km (kρ ) Km (kρ ) − 1 − I (kρ ) Km (ka) Im (kρ ) Km (ka) m Km (kρ ) Im (kρ ) Im (ka) β m (k) kρ − Km (kρ ) + Im (ka) Km (ka) Km (ka) Im (kρ ) Im (kρ ) − Thus β m (k) = 1 Km (ka) Im (kρ ) πkρ Im (ka) [Km (kρ ) Im (kρ ) − Im (kρ ) Km (kρ )] The denominator is the Wronskian W (kρ ) of the modified Bessel differential equation. To evaluate it, let’s use the large argument form of the functions. We can do this because W (x) is the same function for all x. (Also see http://www.physics.sfsu.edu/~lea/courses/grad/Besselwronskian.pdf. ) Km (x) π −x e ; 2x 13 Im (x) 1 √ ex 2πx 1 π 1 = − π = − W (x) = Km (x) Im (x) − Im (x) Km (x) 1 π −x 1 e − √ − 3/2 2 x 2x 1 = − x 1 x e − 2πx = Thus β m (k) = − π x e 2 1 1 √ − 3/2 x 2x e−x √ 2πx (22) 1 Km (ka) Im (kρ ) π Im (ka) and then (18) becomes +∞ ∞ GI (x, x ) = −1 Km (ka) Im (kρ ) ik(z−z ) e π Im (ka) m=−∞ −∞ × 1− 1 π = +∞ ∞ m=−∞ −∞ Im (ka) Km (kρ ) Im (kρ) eim(φ−φ ) dk Im (kρ ) Km (ka) eik(z−z ) [Im (ka) Km (kρ ) − Km (ka) Im (kρ )] Im (kρ) im(φ−φ ) e dk Im (ka) for ρ < ρ and (17) +∞ ∞ GII (x, x ) = m=−∞ −∞ 1 π = +∞ Im (ka) −1 Km (ka) Im (kρ ) ik(z−z ) e Km (kρ) eim(φ−φ ) dk Im (kρ) − π Im (ka) Km (ka) ∞ m=−∞ −∞ Im (kρ ) ik(z−z ) [Im (ka) Km (kρ) − Km (ka) Im (kρ)] eim(φ−φ ) dk e Im (ka) for ρ > ρ , or, in both cases, (19) +∞ ∞ Im (kρ< ) [Im (ka) Km (kρ> ) − Km (ka) Im (kρ> )] eik(z−z ) eim(φ−φ ) dk I (ka) m m=−∞ −∞ (23) (Step 10) The Green’s function has dimensions 1/length (from the integral over k) as expected. It also displays the necessary symmetry. As a → ∞, Km (ka) → 0 and so G (x, x ) = G→ 1 π 1 π +∞ ∞ Im (kρ< ) Km (kρ> ) eik(z−z ) eim(φ−φ ) dk = m=−∞ −∞ 1 |x − x | (Jackson 3.148), as required. Now let’s solve the same problem that is in the math phys book (pg 524) with V0 on the wall between z = −a and z = +a, and the rest of the cylinder 14 grounded. The outward normal is n̂ = +ρ̂, and at ρ = a, ρ> = ρ , so Φ (x) = − 1 4π = − V0 4π Φ (x ) S a ∂G(x, x ) dA ∂n 2π −a +∞ −∞ 0 × +∞ 1 Im (kρ) ik(z−z ) im(φ−φ ) e e π Im (ka) m=−∞ ∂ [Im (ka) Km (kρ ) − Km (ka) Im (kρ )]|ρ =a dkadφ dz ∂ρ The integral over φ gives zero unless m = 0, so Φ is independent of φ, as expected. Φ (x) = − V0 2π 4π +∞ −∞ a −a 1 I0 (kρ) ik(z−z ) k [I0 (ka) K0 (ka) − K0 (ka) I0 (ka)] dkadz e π I0 (ka) Here again we have the Wronskian of the modified Bessel functions W (ka) (22), so Φ (x) = + = V0 2π V0 2π = V0 2π = V0 π = 2V0 π +∞ −∞ +∞ −∞ +∞ −∞ +∞ −a I0 (kρ) ik(z−z ) k e dkadz I0 (ka) ka I0 (kρ) eik(z−z ) I0 (ka) −ik +a dk −a −ika − eika I0 (kρ) eikz e dk I0 (ka) −ik I0 (kρ) eikz sin ka dk I0 (ka) k −∞ +∞ 0 a I0 (kρ) sin ka cos kz dk I0 (ka) k The result is dimensionally correct. Since ρ ≤ a, I0 (kρ) ≤ I0 (ka) , and so the integral converges. Let’s see how this looks for ρ → a. Φ (a, z) = = = = = V0 a +∞ ikz V0 +∞ eikz sin ka dk = e cos ku dkdu π −∞ k π 0 −∞ a V0 δ (z + u) + δ (z − u) 2π du π 2 0 V0 if 0 ≤ z ≤ a (from the second delta function) V0 if − a ≤ z ≤ 0 (from the first delta function) 0 otherwise So we get back the correct boundary values. 15 Comparing with the result in the book (pg 525), Φ (x) = 2V0 ∞ J0 (x0n ρ/a) z 1 − e−x0n cosh x0n x J (x ) a 0n n=1 0n 1 , we see that the main difference is that we have an integral instead of an infinite sum. We can evaluate the integral numerically. For z = a/2, we have +∞ I0 (.1k) sin k cos(k/2) ρ = 0.1a : π2 0 dk = 0.768 66 I0 (k) k ρ = 0.2a : ρ = 0.3a : ρ = 0.4a : ρ = 0.5a : ρ = 0.6a : ρ = 0.7a : ρ = 0.8a : ρ = 0.9a : 2 π 2 π 2 π 2 π 2 π 2 π 2 π 2 π +∞ 0 +∞ 0 +∞ 0 +∞ 0 +∞ 0 +∞ 0 +∞ 0 +∞ 0 sin k cos k/2 dk = 0.774 76 k sin k cos k/2 dk = 0.785 18 k sin k cos k/2 dk = 0.800 28 k sin k cos k/2 dk = 0.820 58 k sin k cos k/2 dk = 0.846 6 k sin k cos k/2 dk = 0.878 66 k sin k cos k/2 dk = 0.916 36 k sin k cos k/2 dk = 0.957 96 k 2 +∞ I0 (.1k) sin k cos(2k) we have π 0 dk I0 (k) k I0 (.2k) I0 (k) I0 (.3k) I0 (k) I0 (.4k) I0 (k) I0 (.5k) I0 (k) I0 (.6k) I0 (k) I0 (.7k) I0 (k) I0 (.8k) I0 (k) I0 (.9k) I0 (k) For z/a = 2, ρ = 0.1a = 6.877 8 × 10−2 Compare with Lea Figure C.7. The results are the same. 3 Expansion in eigenfunctions without division. This method is outlined in Jackson section 3.12 and Lea sections C.2 and C.7.5. The result is a single function, valid everywhere in the region, at the expense of an extra sum. We’ll begin with a one-dimensional problem, and then extend the result to three dimensions. We start with the Sturm-Liouville equation d dx f dy dx − g (x) y + λw (x) y = 0 (24) valid for a ≤ x ≤ b, where we either have boundary conditions (Dirichlet or Neumann) that guarantee orthogonality of the solutions, or else f (x) = 0 on the boundary. The solutions are the eigenfunctions yn (x) with eigenvalues λn . Let’s normalize the eigenfunctions (as we did with the Ylm ) so that they satisfy the orthonormality relation b w (x) yn (x) ym (x) dx = δ nm (25) a Now we look for a Green’s functions that satisfies the differential equation d dx f dG (x, x ) dx − g (x) G (x, x ) + λw (x) G (x, x ) = −4πδ (x − x ) 16 (26) where the constant λ does not equal λn for any n. Since G is expected to be well-behaved, we may expand G (x, x ) in the eigenfunctions yn (x) : G (x, x ) = γ n (x ) yn (x) n and substitute into the differential equation (26). γ n (x ) n d dyn (x) f dx dx − g (x) γ n (x ) yn (x) + λw (x) n γ n (x ) yn (x) n = −4πδ (x − x ) We use the eigenfunction equation (24) to express the first two terms in terms of λn yn : γ n (x ) [−λn w (x) yn (x)] + λw (x) n n γ n (x ) yn (x) = −4πδ (x − x ) Now we multiply both sides by ym (x) and integrate over the range x = a to b. We use orthonormality (eqn 25) on the LHS and the sifting property on the RHS. (λ − λm ) γ m (x ) = −4πym (x ) Thus ym (x ) (λ − λm ) Now it is clear why λ cannot equal any λn . Then γ m (x ) = −4π G (x.x ) = 4π n yn (x ) yn (x) λn − λ (27) To extend this result to potential problems in 3-d, we start with equation (3). The eigenvalue λ in this equation is zero, so we need eigenfunctions that satisfy an equation with non-zero λ, and that is the Helmholtz equation. ∇2 f (x) + k2 f (x) = 0 (We have solved this equation before: See e.g waveguide notes pages 8 and 9.) Let’s find the Dirichlet Green’s function for the interior of a rectangular box measuring a by b by c. We put the origin at one corner, with Cartesian axes along the three sides, and solve by separation of variables: f (x, y, z) = X (x) Y (y) Z (z). Then the eigenfunctions we want are the solutions of Y Z X + + + k2 = 0 X Y Z with X (0) = X (a) = 0, Y (0) = Y (b) = 0 and Z (0) = Z (c) = 0. Then X = sin nπx/a, Y = sin mπy/b and Z = sin pπz/c, and 2 = π2 knmp n2 m2 p2 + 2 + 2 a2 b c 17 We still need to normalize the eigenfunctions. The orthogonality integral is a a nπx dx = a 2 sin2 0 so the normalized function is nπx 2 sin a a Xn (x) = and so nπx 2 mπy 2 pπz 2 sin sin sin a a b b c c Now we just stuff this result into (27) (extended to 3-d) with λ = 0. fnmp (x, y, z) = G (x, x ) = 4π = 2 ∞ 8 abc ∞ mπy pπz mπy pπz nπx sin nπx a sin b sin c sin a sin b sin c π2 n=1 m=1 p=1 ∞ ∞ ∞ ∞ sin nπx 32 a sin πabc n=1 m=1 p=1 mπy b n2 a2 + m2 b2 p2 c2 + mπy pπz nπx sin pπz c sin a sin b sin c n2 a2 + m2 b2 + p2 c2 Again check that G has dimensions of [1/length]. The benefit of this approach is that we have a single expression that we can use in the whole region. The disadvantage is that we have an extra sum. Suppose the box, with its walls remaining grounded, contains a sheet of charge with uniform surface charge density σ that extends from x = a/4 to x = 3a/4 and y = b/4 to y = 3b/4 at z = c/2. Find the potential inside the box. In this case we have the volume integral in (1), but the surface integral is zero. The charge density is c a/4 < x < 3a/4, b/4 < y < 3b/4 ρ (x) = σδ z − 2 = 0 otherwise So Φ (x) = = 1 4πε0 σ 4πε0 a b c G (x, x ) ρ (x ) dx dy dz 0 0 3a/4 a/4 0 3b/4 b/4 ∞ ∞ ∞ mπy b 0 sin nπx 32 a sin πabc n=1 m=1 p=1 ∞ c dx dy dz 2 mπy pπz pπ sin nπx a sin b sin c sin 2 c mπy pπz nπx sin pπz c sin a sin b sin c n2 a2 + m2 b2 + p2 c2 ×δ z − = ∞ ∞ σ 32 4πε0 πabc n=1 m=1 p=1 n2 a2 + m2 b2 + p2 c2 3a/4 × 18 sin a/4 nπx dx a 3b/4 sin b/4 mπy dy b The result is zero if p is even, so Φ (x) = ∞ ∞ 8σ ε0 π2 abc n=1 m=1 ∞ mπy pπz p−1 sin nπx a sin b sin c (−1)( 2 ) 2 2 2 p n m p=1,odd a2 + b2 + c2 × = ∞ ∞ ∞ 8σ (−1)( ε0 π4 c n=1 m=1 p=1,odd p−1 2 ) nπx a cos nπ a 3a/4 mπx b cos mπ b a/4 mπy nπx sin a sin b sin pπz c p2 n2 m2 nm a2 + b2 + c2 × cos nπ 3nπ − cos 4 4 cos 3b/4 b/4 3mπ mπ − cos 4 4 Now we combine the cosines to get Φ (x) = = ∞ ∞ 32σ ε0 π4 c n=1 m=1 ∞ (−1)(p−1)/2 mπy pπz sin nπx a sin b sin c nm p=1,odd n2 a2 + m2 b2 + p2 c2 sin nπ nπ mπ mπ sin sin sin 2 4 2 4 ∞ ∞ ∞ mπy pπz nπx mπ nπ 32σ (p−1)/2+(n−1)/2+(m−1)/2 sin a sin b sin c sin sin (−1) p2 n2 m2 ε0 π4 c n=1 m=1 p=1 4 4 nm a2 + b2 + c2 odd odd odd If n = 2l + 1, then sin nπ 4 (2l + 1) π lπ π = sin = sin + 4 2 4 √ lπ 2 lπ + cos = sin 2 2 2 √ 2 (−1)(l−1)/2 if l is odd = 2 √ 2 = (−1)l/2 if l is even 2 = sin π lπ π lπ cos + cos sin 2 4 2 4 Thus replacing n (odd) with 2n + 1 and similarly for m and p we get Φ (x) = ∞ ∞ ∞ σ 16 ε0 π4 c n=0 m=0 p=0 (−1)p+n+m+q (2n+1)2 a2 + × sin where q = integer part (2m+1)2 b2 + (2p+1)2 c2 (2m + 1) πy (2p + 1) πz (2n + 1) πx sin sin a b c m n + integer part 2 2 Check the dimensions! 19 At z = c/4 we have Φ (x, y) 16σa2 / (ε0 π4 c) = ∞ ∞ ∞ n=0 m=0 p=0 (−1)p+n+m+q (2n + 1) (2m + 1) (2n + 1)2 + × sin (2m+1)2 a2 b2 + (2p+1)2 a2 c2 (2m + 1) πy (2p + 1) π (2n + 1) πx sin sin a b 4 The diagram shows the dimensionless potential (28), computed using values of n, m and p from zero to five, and with a = b = c. 0.15 0.1 z 0.05 1 0.8 0.4 0.6 x 0 20 0.4 y 0.6 0.8 1 (28)
© Copyright 2025 Paperzz