Cache Memories 15-213 Cache memories are small, fast SRAM-based memories managed automatically in hardware. “The course that gives CMU its Zip!” ! Cache Memories Oct. 10, 2002 CPU looks first for data in L1, then in L2, then in main memory. Typical bus structure: Topics ! ! ! ! Hold frequently accessed blocks of main memory CPU chip Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance register file L1 cache L2 cache system bus memory bus main memory I/O bridge bus interface 15-213, F’02 –2– class14.ppt Inserting an L1 Cache Between the CPU and Main Memory The tiny, very fast CPU register file has room for four 4-byte words. The transfer unit between the CPU register file and the cache is a 4-byte block. The small fast L1 cache has room for two 4-word blocks. line 1 The transfer unit between the cache and main memory is a 4-word block (16 bytes). block 10 1 valid bit t tag bits per line per line valid tag 0 1 •!•!• B–1 E lines per set •!•!• set 0: Each line holds a block of data. B = 2b bytes per cache block valid tag valid tag 0 1 •!•!• B–1 0 1 •!•!• B–1 1 •!•!• B–1 1 •!•!• B–1 1 •!•!• B–1 •!•!• set 1: valid tag 0 abcd pqrs ... block 30 Cache is an array of sets. S = 2s sets ... block 21 General Org of a Cache Memory Each set contains one or more lines. line 0 •!•!• The big slow main memory has room for many 4-word blocks. valid –4– 0 •!•!• valid 15-213, F’02 tag set S-1: wxyz ... –3– ALU cache bus tag 0 Cache size: C = B x E x S data bytes 15-213, F’02 Addressing Caches Direct-Mapped Cache Address A: t bits v tag v tag v tag v tag set 0: set 1: 0 •!•!• 0 1 •!•!• B–1 1 •!•!• B–1 0 •!•!• 0 1 •!•!• B–1 1 •!•!• B–1 v tag v tag 0 •!•!• 0 1 •!•!• B–1 1 •!•!• B–1 Simplest kind of cache b bits m-1 0 Characterized by exactly one line per set. <tag> <set index> <block offset> The word at address A is in the cache if the tag bits in one of the <valid> lines in set <set index> match <tag>. •!•!• set S-1: s bits set 0: valid tag cache block set 1: valid tag cache block E=1 lines per set •!•!• set S-1: valid cache block tag The word contents begin at offset <block offset> bytes from the beginning of the block. 15-213, F’02 –5– 15-213, F’02 –6– Accessing Direct-Mapped Caches Accessing Direct-Mapped Caches Set selection Line matching and word selection ! Use the set index bits to determine the set of interest. set 0: valid tag cache block set 1: valid tag cache block ! Line matching: Find a valid line in the selected set with a matching tag ! Word selection: Then extract the word =1? (1) The valid bit must be set selected set •!•!• t bits m-1 tag s bits b bits 00 001 set index block offset0 set S-1: valid tag 0 selected set (i): cache block 1 0110 15-213, F’02 2 3 4 w0 5 –8– t bits 0110 tag 6 w1 w2 (2) The tag bits in the cache =? line must match the tag bits in the address m-1 –7– 1 s bits b bits i 100 set index block offset0 7 w3 (3) If (1) and (2), then cache hit, and block offset selects starting byte. 15-213, F’02 Direct-Mapped Cache Simulation t=1 s=2 x xx 11 00 01 10 11 Address trace (reads): 0 [00002], 1 [00012], 13 [11012], 8 [10002], 0 [00002] 0 [00002] (miss) tag data 0 v m[1] m[0] M[0-1] (1) (3) 13 [11012] (miss) tag data 11 0 m[1] m[0] M[0-1] 11 1 m[13] m[12] M[12-13] High-Order Bit Indexing 4-line Cache M=16 byte addresses, B=2 bytes/block, S=4 sets, E=1 entry/set b=1 x v Why Use Middle Bits as Index? High-Order Bit Indexing Adjacent memory lines would map to same cache entry Poor use of spatial locality ! ! Middle-Order Bit Indexing Consecutive memory lines map to different cache lines Can hold C-byte region of address space in cache at one time ! v (4) 8 [10002] (miss) tag data 11 1 m[9] M[8-9] m[8] 1 1 M[12-13] v (5) 0 [00002] (miss) tag data 11 0 m[1] m[0] M[0-1] 11 1 m[13] m[12] M[12-13] ! 15-213, F’02 –9– 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Middle-Order Bit Indexing 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 – 10 – 15-213, F’02 Set Associative Caches Accessing Set Associative Caches Characterized by more than one line per set Set selection ! set 0: set 1: valid tag cache block valid tag cache block valid tag cache block valid tag cache block identical to direct-mapped cache set 0: E=2 lines per set Selected set set 1: valid tag cache block valid tag cache block valid tag cache block valid tag cache block •!•!• •!•!• set S-1: valid tag cache block valid tag cache block t bits m-1 – 11 – 15-213, F’02 tag – 12 – set S-1: s bits b bits 00 001 set index block offset0 valid tag cache block valid tag cache block 15-213, F’02 Accessing Set Associative Caches Multi-Level Caches Line matching and word selection Options: separate data and instruction caches, caches, or a unified cache ! must compare the tag in each valid line in the selected set. =1? (1) The valid bit must be set. Processor 0 selected set (i): 1 1001 1 0110 (2) The tag bits in one of the cache lines must match the tag bits in the address 1 2 3 4 w0 m-1 6 w1 w2 Regs 7 w3 s bits b bits i 100 set index block offset0 15-213, F’02 – 13 – L1 d-cache L1 i-cache (3) If (1) and (2), then cache hit, and block offset selects starting byte. =? t bits 0110 tag 5 Intel Pentium Cache Hierarchy size: speed: $/Mbyte: line size: 200 B 3 ns 8-64 KB 3 ns 8B 32 B larger, slower, cheaper Unified Unified L2 L2 Cache Cache 1-4MB SRAM 6 ns $100/MB 32 B Memory Memory 128 MB DRAM 60 ns $1.50/MB 8 KB disk disk 30 GB 8 ms $0.05/MB 15-213, F’02 – 14 – Cache Performance Metrics Miss Rate Regs. L1 Data 1 cycle latency 16 KB 4-way assoc Write-through 32B lines L1 Instruction 16 KB, 4-way 32B lines ! L2 L2Unified Unified 128KB--2 128KB--2MB MB 4-way 4-wayassoc assoc Write-back Write-back Write Writeallocate allocate 32B 32Blines lines ! Main Main Memory Memory Up to Up to4GB 4GB Fraction of memory references not found in cache (misses/references) Typical numbers: " 3-10% for L1 " can be quite small (e.g., < 1%) for L2, depending on size, etc. Hit Time ! Processor ProcessorChip Chip ! Time to deliver a line in the cache to the processor (includes time to determine whether the line is in the cache) Typical numbers: " 1 clock cycle for L1 " 3-8 clock cycles for L2 Miss Penalty ! Additional time required because of a miss " Typically 25-100 cycles for main memory – 15 – 15-213, F’02 – 16 – 15-213, F’02 Writing Cache Friendly Code The Memory Mountain Repeated references to variables are good (temporal locality) Read throughput (read bandwidth) Stride-1 reference patterns are good (spatial locality) Memory mountain ! Examples: ! cold cache, 4-byte words, 4-word cache blocks int sumarrayrows(int a[M][N]) { int i, j, sum = 0; ! Measured read throughput as a function of spatial and temporal locality. ! Compact way to characterize memory system performance. int sumarraycols(int a[M][N]) { int i, j, sum = 0; for (i = 0; i < M; i++) for (j = 0; j < N; j++) sum += a[i][j]; return sum; } Number of bytes read from memory per second (MB/s) for (j = 0; j < N; j++) for (i = 0; i < M; i++) sum += a[i][j]; return sum; } Miss rate = 1/4 = 25% Miss rate = 100% 15-213, F’02 – 17 – Memory Mountain Test Function 15-213, F’02 – 18 – Memory Mountain Main Routine /* mountain.c - Generate the memory mountain. */ #define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */ #define MAXBYTES (1 << 23) /* ... up to 8 MB */ #define MAXSTRIDE 16 /* Strides range from 1 to 16 */ #define MAXELEMS MAXBYTES/sizeof(int) /* The test function */ void test(int elems, int stride) { int i, result = 0; volatile int sink; for (i = 0; i < elems; i += stride) result += data[i]; sink = result; /* So compiler doesn't optimize away the loop */ } /* Run test(elems, stride) and return read throughput (MB/s) */ double run(int size, int stride, double Mhz) { double cycles; int elems = size / sizeof(int); int data[MAXELEMS]; int main() { int size; int stride; double Mhz; /* The array we'll be traversing */ /* Working set size (in bytes) */ /* Stride (in array elements) */ /* Clock frequency */ init_data(data, MAXELEMS); /* Initialize each element in data to 1 */ Mhz = mhz(0); /* Estimate the clock frequency */ for (size = MAXBYTES; size >= MINBYTES; size >>= 1) { for (stride = 1; stride <= MAXSTRIDE; stride++) printf("%.1f\t", run(size, stride, Mhz)); printf("\n"); } exit(0); test(elems, stride); /* warm up the cache */ cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */ return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */ } } – 19 – 15-213, F’02 – 20 – 15-213, F’02 The Memory Mountain Ridges of Temporal Locality Pentium III Xeon 550 MHz 16 KB on-chip L1 d-cache 16 KB on-chip L1 i-cache 512 KB off-chip unified L2 cache 1000 L1 Slice through the memory mountain with stride=1 ! illuminates read throughputs of different caches and memory 1200 main memory region 800 L2 cache region L1 cache region 1000 600 400 Ridges of Temporal Locality xe L2 Slopes of Spatial Locality read througput (MB/s) read throughput (MB/s) 1200 200 800 600 400 200 2k 15-213, F’02 – 21 – A Slope of Spatial Locality – 22 – working set size (bytes) 1k 2k 4k 8k 16k 32k 64k 128k 512k 256k 1024k 4m 2m 0 working set size (bytes) 8m 8k 32k 128k 512k 2m s15 8m s13 s9 stride (words) s11 s5 mem s7 s1 s3 0 15-213, F’02 Matrix Multiplication Example Slice through memory mountain with size=256KB ! shows cache block size. Major Cache Effects to Consider ! 800 Total cache size " Exploit temporal locality and keep the working set small (e.g., by using blocking) 700 ! read throughput (MB/s) 600 Block size " Exploit spatial locality 500 one access per cache line 400 Description: 300 ! Multiply N x N matrices 200 ! 100 ! O(N3) total operations Accesses /* Variable sum /* ijk ijk */ */ for for (i=0; (i=0; i<n; i<n; i++) i++) {{ held in register for for (j=0; (j=0; j<n; j<n; j++) j++) {{ sum = 0.0; sum = 0.0; for for (k=0; (k=0; k<n; k<n; k++) k++) sum sum += += a[i][k] a[i][k] ** b[k][j]; b[k][j]; c[i][j] c[i][j] == sum; sum; }} }} " N reads per source element 0 s1 s2 s3 s4 s5 s6 s7 s8 s9 " N values summed per destination s10 s11 s12 s13 s14 s15 s16 » but may be able to hold in register stride (words) – 23 – 15-213, F’02 – 24 – 15-213, F’02 Miss Rate Analysis for Matrix Multiply Layout of C Arrays in Memory (review) Assume: C arrays allocated in row-major order ! Line size = 32B (big enough for 4 64-bit words) ! Matrix dimension (N) is very large ! Stepping through columns in one row: " Approximate 1/N as 0.0 ! ! for (i = 0; i < N; i++) ! accesses successive elements if block size (B) > 4 bytes, exploit spatial locality sum += a[0][i]; Cache is not even big enough to hold multiple rows Analysis Method: ! ! Look at access pattern of inner loop k " compulsory miss rate = 4 bytes / B j Stepping through rows in one column: j ! i k A each row in contiguous memory locations i for (i = 0; i < n; i++) sum += a[i][0]; ! C B ! accesses distant elements no spatial locality! " compulsory miss rate = 1 (i.e. 100%) 15-213, F’02 – 25 – Matrix Multiplication (ijk) /* /* ijk ijk */ */ for for (i=0; (i=0; i<n; i<n; i++) i++) {{ for (j=0; j<n; for (j=0; j<n; j++) j++) {{ sum = 0.0; sum = 0.0; for for (k=0; (k=0; k<n; k<n; k++) k++) sum += a[i][k] sum += a[i][k] ** b[k][j]; b[k][j]; c[i][j] c[i][j] == sum; sum; }} }} Matrix Multiplication (jik) Inner loop: (*,j) (i,j) (i,*) A B Row-wise Columnwise C Fixed /* /* jik jik */ */ for for (j=0; (j=0; j<n; j<n; j++) j++) {{ for for (i=0; (i=0; i<n; i<n; i++) i++) {{ sum = 0.0; sum = 0.0; for for (k=0; (k=0; k<n; k<n; k++) k++) sum += a[i][k] sum += a[i][k] ** b[k][j]; b[k][j]; c[i][j] c[i][j] == sum sum }} }} Misses per Inner Loop Iteration: Misses per Inner Loop Iteration: – 27 – 15-213, F’02 – 26 – A B C A B C 0.25 1.0 0.0 0.25 1.0 0.0 15-213, F’02 – 28 – Inner loop: (*,j) (i,j) (i,*) A B Row-wise Columnwise C Fixed 15-213, F’02 Matrix Multiplication (kij) /* /* kij kij */ */ for for (k=0; (k=0; k<n; k<n; k++) k++) {{ for for (i=0; (i=0; i<n; i<n; i++) i++) {{ rr == a[i][k]; a[i][k]; for for (j=0; (j=0; j<n; j<n; j++) j++) c[i][j] += c[i][j] += rr ** b[k][j]; b[k][j]; }} }} Matrix Multiplication (ikj) Inner loop: (i,k) (k,*) A Fixed B (i,*) C Row-wise Row-wise Misses per Inner Loop Iteration: B C A B C 0.0 0.25 0.25 0.0 0.25 0.25 15-213, F’02 Matrix Multiplication (jki) /* /* jki jki */ */ for for (j=0; (j=0; j<n; j<n; j++) j++) {{ for (k=0; k<n; for (k=0; k<n; k++) k++) {{ rr == b[k][j]; b[k][j]; for for (i=0; (i=0; i<n; i<n; i++) i++) c[i][j] += c[i][j] += a[i][k] a[i][k] ** r; r; }} }} Inner loop: (i,k) (k,*) A B (i,*) C Row-wise Row-wise Fixed Misses per Inner Loop Iteration: A – 29 – (*,k) (*,j) (k,j) A 15-213, F’02 – 30 – Matrix Multiplication (kji) Inner loop: Column wise B Fixed C /* /* kji kji */ */ for for (k=0; (k=0; k<n; k<n; k++) k++) {{ for for (j=0; (j=0; j<n; j<n; j++) j++) {{ rr == b[k][j]; b[k][j]; for for (i=0; (i=0; i<n; i<n; i++) i++) c[i][j] += c[i][j] += a[i][k] a[i][k] ** r; r; }} }} Columnwise Misses per Inner Loop Iteration: – 31 – /* /* ikj ikj */ */ for for (i=0; (i=0; i<n; i<n; i++) i++) {{ for (k=0; k<n; for (k=0; k<n; k++) k++) {{ rr == a[i][k]; a[i][k]; for for (j=0; (j=0; j<n; j<n; j++) j++) c[i][j] c[i][j] += += rr ** b[k][j]; b[k][j]; }} }} Inner loop: (*,k) (*,j) (k,j) A Columnwise B Fixed C Columnwise Misses per Inner Loop Iteration: A B C A B C 1.0 0.0 1.0 1.0 0.0 1.0 15-213, F’02 – 32 – 15-213, F’02 Summary of Matrix Multiplication kij (& ikj): Miss rates are helpful but not perfect predictors. jki (& kji): " Code scheduling matters, too. • 2 loads, 0 stores • 2 loads, 1 store • 2 loads, 1 store • misses/iter = 1.25 • misses/iter = 0.5 • misses/iter = 2.0 for (i=0; i<n; i++) { for (k=0; k<n; k++) { for (j=0; j<n; j++) { for (j=0; j<n; j++) { for (i=0; i<n; i++) { sum = 0.0; r = a[i][k]; r = b[k][j]; for (j=0; j<n; j++) for (i=0; i<n; i++) c[i][j] += r * b[k][j]; c[i][j] = sum; 40 c[i][j] += a[i][k] * r; } } 50 for (k=0; k<n; k++) { for (k=0; k<n; k++) sum += a[i][k] * b[k][j]; 60 Cycles/iteration ijk (& jik): Pentium Matrix Multiply Performance } } } kji jki kij ikj jik ijk 30 20 } 10 0 15-213, F’02 – 33 – Improving Temporal Locality by Blocking – 34 – “block” (in this context) does not mean “cache block”. ! Instead, it mean a sub-block within the matrix. ! Example: N = 8; sub-block size = 4 A11 A12 A21 A22 B11 B12 X C11 C12 C21 C22 Key idea: Sub-blocks (i.e., Axy) can be treated just like scalars. – 35 – C11 = A11B11 + A12B21 C12 = A11B12 + A12B22 C21 = A21B11 + A22B21 C22 = A21B12 + A22B22 15-213, F’02 Array size (n) 15-213, F’02 for (jj=0; jj<n; jj+=bsize) { for (i=0; i<n; i++) for (j=jj; j < min(jj+bsize,n); j++) c[i][j] = 0.0; for (kk=0; kk<n; kk+=bsize) { for (i=0; i<n; i++) { for (j=jj; j < min(jj+bsize,n); j++) { sum = 0.0 for (k=kk; k < min(kk+bsize,n); k++) { sum += a[i][k] * b[k][j]; } c[i][j] += sum; } } } } = B21 B22 75 100 125 150 175 200 225 250 275 300 325 350 375 400 Blocked Matrix Multiply (bijk) Example: Blocked matrix multiplication ! 25 50 – 36 – 15-213, F’02 Blocked Matrix Multiply Analysis ! Innermost loop pair multiplies a 1 X bsize sliver of A by a bsize X bsize block of B and accumulates into 1 X bsize sliver of C ! Loop over i steps through n row slivers of A & C, using same B for (i=0; i<n; i++) { for (j=jj; j < min(jj+bsize,n); j++) { sum = 0.0 for (k=kk; k < min(kk+bsize,n); k++) { sum += a[i][k] * b[k][j]; } c[i][j] += sum; Innermost } kk jj jj Loop Pair 50 C 15-213, F’02 Programmer can optimize for cache performance How data structures are organized ! How data are accessed " Nested loop structure " Blocking is a general technique All systems favor “cache friendly code” code” ! Getting absolute optimum performance is very platform specific ! Can get most of the advantage with generic code " Cache sizes, line sizes, associativities, etc. " Keep working set reasonably small (temporal locality) " Use small strides (spatial locality) – 39 – 30 20 10 Update successive elements of sliver Concluding Observations ! kji jki kij ikj jik ijk bijk (bsize = 25) bikj (bsize = 25) 40 15-213, F’02 – 38 – Array size (n) 0 40 0 32 5 35 0 37 5 30 20 0 22 5 25 0 27 5 10 0 12 5 15 0 17 5 0 50 row sliver accessed bsize times block reused n times in succession – 37 – 60 i B relatively insensitive to array size. 25 A ! 75 kk Blocking (bijk (bijk and bikj) bikj) improves performance by a factor of two over unblocked versions (ijk (ijk and jik) jik) Cycles/iteration i Pentium Blocked Matrix Multiply Performance 15-213, F’02
© Copyright 2025 Paperzz