15-213 “The course that gives CMU its Zip!” Machine-Level Programming III: Procedures Sept. 17, 2002 Topics class07.ppt IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Register %esp indicates lowest stack address Stack “Bottom” Increasing Addresses address of top element Stack Pointer %esp Stack Grows Down Stack “Top” –2– 15-213, F’02 IA32 Stack Pushing Stack “Bottom” Pushing pushl Src Fetch operand at Src Decrement %esp by 4 Increasing Addresses Write operand at address given by %esp Stack Pointer %esp Stack Grows Down -4 Stack “Top” –3– 15-213, F’02 IA32 Stack Popping Stack “Bottom” Popping popl Dest Read operand at address given by %esp Increment %esp by 4 Write to Dest Increasing Addresses Stack Pointer %esp Stack Grows Down +4 Stack “Top” –4– 15-213, F’02 Stack Operation Examples pushl %eax popl %edx 0x110 0x110 0x110 0x10c 0x10c 0x10c 0x108 –5– 123 0x108 123 0x108 123 0x104 213 0x104 213 %eax 213 %eax 213 %eax 213 %edx 555 %edx 555 %edx 555 213 %esp 0x108 %esp 0x108 0x104 %esp 0x104 0x108 15-213, F’02 Procedure Control Flow Use stack to support procedure call and return Procedure call: call label Push return address on stack; Jump to label Return address value Address of instruction beyond call Example from disassembly 804854e: e8 3d 06 00 00 8048553: 50 call pushl 8048b90 <main> %eax Return address = 0x8048553 Procedure return: –6– ret Pop address from stack; Jump to address 15-213, F’02 Procedure Call Example 804854e: 8048553: e8 3d 06 00 00 50 call 0x110 0x110 0x10c 0x10c 0x108 123 0x108 call pushl 8048b90 <main> %eax 8048b90 123 0x104 0x8048553 %esp 0x108 %esp %eip 0x804854e 0x108 0x104 %eip 0x8048b90 0x804854e %eip is program counter –7– 15-213, F’02 Procedure Return Example 8048591: c3 ret ret 0x110 0x110 0x10c 0x10c 0x108 123 0x108 0x104 0x8048553 %esp 0x104 %eip 0x8048591 123 0x8048553 %esp 0x104 0x108 %eip 0x8048553 0x8048591 %eip is program counter –8– 15-213, F’02 Stack-Based Languages Languages that Support Recursion e.g., C, Pascal, Java Code must be “Reentrant” Multiple simultaneous instantiations of single procedure Need some place to store state of each instantiation Arguments Local variables Return pointer Stack Discipline State for given procedure needed for limited time From when called to when return Callee returns before caller does Stack Allocated in Frames –9– state for single procedure instantiation 15-213, F’02 Call Chain Example Code Structure yoo(…) { • • who(); • • } – 10 – Call Chain yoo who(…) { • • • amI(); • • • amI(); • • • } Procedure amI recursive who amI amI(…) { • • amI(); • • } amI amI amI 15-213, F’02 Stack Frames Contents Local variables Return information Temporary space yoo who amI Management Space allocated when enter procedure “Set-up” code Deallocated when return “Finish” code Pointers – 11 – Stack pointer %esp indicates stack top Frame pointer %ebp indicates start of current frame Frame Pointer %ebp proc Stack Pointer %esp Stack “Top” 15-213, F’02 Stack Operation yoo(…) { • • who(); • • } – 12 – Call Chain yoo Frame Pointer %ebp • • • yoo Stack Pointer %esp 15-213, F’02 • • • Stack Operation who(…) { • • • amI(); • • • amI(); • • • } – 13 – Call Chain yoo Frame Pointer %ebp yoo who who Stack Pointer %esp 15-213, F’02 • • • Stack Operation amI(…) { • • amI(); • • } – 14 – Call Chain yoo yoo who Frame Pointer %ebp who amI amI Stack Pointer %esp 15-213, F’02 • • • Stack Operation amI(…) { • • amI(); • • } Call Chain yoo yoo who who amI amI Frame Pointer %ebp amI amI Stack Pointer %esp – 15 – 15-213, F’02 • • • Stack Operation amI(…) { • • amI(); • • } Call Chain yoo yoo who who amI amI amI amI Frame Pointer %ebp amI amI Stack Pointer %esp – 16 – 15-213, F’02 • • • Stack Operation amI(…) { • • amI(); • • } Call Chain yoo who who amI amI amI – 17 – yoo Frame Pointer %ebp amI amI Stack Pointer %esp 15-213, F’02 • • • Stack Operation amI(…) { • • amI(); • • } Call Chain yoo yoo who Frame Pointer %ebp amI amI amI who Stack Pointer %esp amI – 18 – 15-213, F’02 • • • Stack Operation who(…) { • • • amI(); • • • amI(); • • • } Call Chain yoo Frame Pointer %ebp yoo who who amI Stack Pointer %esp amI amI – 19 – 15-213, F’02 • • • Stack Operation amI(…) { • • • • } Call Chain yoo yoo Frame Pointer %ebp who amI amI who amI amI Stack Pointer %esp amI – 20 – 15-213, F’02 • • • Stack Operation who(…) { • • • amI(); • • • amI(); • • • } Call Chain Frame Pointer %ebp yoo yoo who who amI amI Stack Pointer %esp amI amI – 21 – 15-213, F’02 Stack Operation yoo(…) { • • who(); • • } Call Chain Frame Pointer %ebp • • • yoo Stack Pointer %esp yoo who amI amI amI amI – 22 – 15-213, F’02 IA32/Linux Stack Frame Current Stack Frame (“Top” to Bottom) Parameters for function about to call Caller Frame “Argument build” Local variables If can’t keep in registers Arguments Frame Pointer (%ebp) Saved register context Old frame pointer Saved Registers + Local Variables Caller Stack Frame Return Addr Old %ebp Return address Pushed by call instruction – 23 – Arguments for this call Stack Pointer (%esp) Argument Build 15-213, F’02 Revisiting swap Calling swap from call_swap int zip1 = 15213; int zip2 = 91125; void call_swap() { swap(&zip1, &zip2); } void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } – 24 – call_swap: • • • pushl $zip2 pushl $zip1 call swap • • • • • • # Global Var # Global Var Resulting Stack &zip2 &zip1 Rtn adr %esp 15-213, F’02 Revisiting swap void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } swap: pushl %ebp movl %esp,%ebp pushl %ebx movl movl movl movl movl movl Set Up 12(%ebp),%ecx 8(%ebp),%edx (%ecx),%eax (%edx),%ebx %eax,(%edx) %ebx,(%ecx) movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret – 25 – Body Finish 15-213, F’02 swap Setup #1 Resulting Stack Entering Stack %ebp %ebp • • • • • • &zip2 yp &zip1 xp Rtn adr %esp Rtn adr Old %ebp %esp swap: pushl %ebp movl %esp,%ebp pushl %ebx – 26 – 15-213, F’02 swap Setup #2 Resulting Stack Entering Stack %ebp • • • • • • &zip2 yp &zip1 xp Rtn adr %esp Rtn adr Old %ebp %ebp %esp swap: pushl %ebp movl %esp,%ebp pushl %ebx – 27 – 15-213, F’02 swap Setup #3 Resulting Stack Entering Stack %ebp • • • • • • &zip2 yp &zip1 xp Rtn adr %esp Rtn adr Old %ebp %ebp Old %ebx %esp swap: pushl %ebp movl %esp,%ebp pushl %ebx – 28 – 15-213, F’02 Effect of swap Setup Entering Stack Resulting Stack %ebp • • • Offset (relative to %ebp) &zip2 12 yp &zip1 8 xp 4 Rtn adr Rtn adr %esp movl 12(%ebp),%ecx # get yp movl 8(%ebp),%edx # get xp . . . – 29 – • • • 0 Old %ebp %ebp Old %ebx %esp Body 15-213, F’02 swap Finish #1 swap’s Stack Offset • • • Offset 12 yp 12 yp 8 xp 8 xp 4 Rtn adr 4 Rtn adr 0 Old %ebp %ebp 0 Old %ebp %ebp -4 Old %ebx %esp -4 Old %ebx %esp Observation – 30 – • • • Saved & restored register %ebx movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret 15-213, F’02 swap Finish #2 swap’s Stack Offset swap’s Stack • • • Offset • • • 12 yp 12 yp 8 xp 8 xp 4 Rtn adr 4 Rtn adr 0 Old %ebp %ebp -4 Old %ebx %esp 0 Old %ebp %ebp %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret – 31 – 15-213, F’02 swap Finish #3 swap’s Stack Offset %ebp swap’s Stack • • • Offset • • • 12 yp 12 yp 8 xp 8 xp 4 Rtn adr 4 Rtn adr 0 Old %ebp %ebp %esp %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret – 32 – 15-213, F’02 swap Finish #4 %ebp swap’s Stack %ebp • • • • • • 12 yp &zip2 8 xp &zip1 4 Rtn adr Offset Exiting Stack %esp %esp Observation – 33 – Saved & restored register %ebx Didn’t do so for %eax, %ecx, or %edx movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret 15-213, F’02 Register Saving Conventions When procedure yoo calls who: yoo is the caller, who is the callee Can Register be Used for Temporary Storage? yoo: • • • movl $15213, %edx call who addl %edx, %eax • • • ret – 34 – who: • • • movl 8(%ebp), %edx addl $91125, %edx • • • ret Contents of register %edx overwritten by who 15-213, F’02 Register Saving Conventions When procedure yoo calls who: yoo is the caller, who is the callee Can Register be Used for Temporary Storage? Conventions “Caller Save” Caller saves temporary in its frame before calling “Callee Save” Callee saves temporary in its frame before using – 35 – 15-213, F’02 IA32/Linux Register Usage Integer Registers %ebp, %esp Three managed as callee-save %ebx, %esi, %edi Old values saved on stack prior to using – 36 – Caller-Save Temporaries Register %eax also stores returned value %edx %ecx %ebx Callee-Save Temporaries %esi %edi Three managed as caller-save %eax, %edx, %ecx Do what you please, but expect any callee to do so, as well %eax Two have special uses %esp Special %ebp 15-213, F’02 Recursive Factorial int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1); return rval * x; } Registers – 37 – %eax used without first saving %ebx used, but save at beginning & restore at end .globl rfact .type rfact,@function rfact: pushl %ebp movl %esp,%ebp pushl %ebx movl 8(%ebp),%ebx cmpl $1,%ebx jle .L78 leal -1(%ebx),%eax pushl %eax call rfact imull %ebx,%eax jmp .L79 .align 4 .L78: movl $1,%eax .L79: movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret 15-213, F’02 Rfact Stack Setup pre %ebp %ebp pre %ebx Entering Stack Caller x Rtn adr %esp rfact: pushl %ebp movl %esp,%ebp pushl %ebx pre %ebp Caller Callee – 38 – pre %ebx 8 x 4 Rtn adr 0 Old %ebp %ebp -4 Old %ebx %esp 15-213, F’02 Rfact Body Recursion movl 8(%ebp),%ebx cmpl $1,%ebx jle .L78 leal -1(%ebx),%eax pushl %eax call rfact imull %ebx,%eax jmp .L79 .L78: # movl $1,%eax .L79: # int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1) ; return rval * x; } – 39 – # ebx = x # Compare x : 1 # If <= goto Term # eax = x-1 # Push x-1 # rfact(x-1) # rval * x # Goto done Term: # return val = 1 Done: Registers %ebx Stored value of x %eax Temporary value of x-1 Returned value from rfact(x-1) Returned value from this call 15-213, F’02 Rfact Recursion leal -1(%ebx),%eax x pushl %eax Rtn adr Old %ebp %ebp x Old %ebx %esp Rtn adr Old %ebp call rfact %ebp Old %ebx x-1 %eax x-1 %ebx x Rtn adr %esp Old %ebp %ebp Old %ebx %eax %ebx – 40 – x x-1 x-1 Rtn adr x %eax x-1 %ebx x %esp 15-213, F’02 Rfact Result imull %ebx,%eax Return from Call x x Rtn adr Rtn adr Old %ebp %ebp Old %ebp Old %ebx x-1 %ebp Old %ebx x-1 %esp %eax (x-1)! %eax (x-1)! x! %ebx x %ebx x %esp Assume that rfact(x-1) returns (x-1)! in register %eax – 41 – 15-213, F’02 Rfact Completion movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret pre %ebp pre %ebx 8 x 4 Rtn adr 0 Old %ebp pre %ebp -4 Old %ebx -8 x-1 pre %ebx pre %ebp 8 x pre %ebx 4 Rtn adr x %ebp %esp 0 Old %ebp %eax x! %ebx Old x %ebx %eax %ebp %esp %ebp %esp Rtn adr x! %ebx Old %ebx %eax x! %ebx Old %ebx – 42 – 15-213, F’02 Pointer Code Recursive Procedure void s_helper (int x, int *accum) { if (x <= 1) return; else { int z = *accum * x; *accum = z; s_helper (x-1,accum); } } – 43 – Top-Level Call int sfact(int x) { int val = 1; s_helper(x, &val); return val; } Pass pointer to update location 15-213, F’02 Creating & Initializing Pointer Initial part of sfact _sfact: pushl %ebp movl %esp,%ebp subl $16,%esp movl 8(%ebp),%edx movl $1,-4(%ebp) # # # # # Save %ebp Set %ebp Add 16 bytes edx = x val = 1 Using Stack for Local Variable Variable val must be stored on stack Need to create pointer to it – 44 – Compute pointer as 4(%ebp) Push on stack as second argument 8 x 4 Rtn adr %ebp 0 Old %ebp -4 val = 1 -8 -12 Temp. Space Unused -16 %esp int sfact(int x) { int val = 1; s_helper(x, &val); return val; } 15-213, F’02 Passing Pointer Calling s_helper from sfact leal -4(%ebp),%eax pushl %eax pushl %edx call s_helper movl -4(%ebp),%eax • • • # # # # # # Compute &val Push on stack Push x call Return val Finish Stack at time of call 8 x 4 Rtn adr 0 Old %ebp -4 val =x! = 1 -8 -12 int sfact(int x) { int val = 1; s_helper(x, &val); return val; } – 45 – %ebp Unused -16 &val x %esp 15-213, F’02 Using Pointer void s_helper (int x, int *accum) { • • • int z = *accum * x; *accum = z; • • • } accum*x accum %eax accum*x x %ecx x %edx • • • movl %ecx,%eax # z = x imull (%edx),%eax # z *= *accum movl %eax,(%edx) # *accum = z • • • Register %ecx holds x Register %edx holds pointer to accum Use access (%edx) to reference memory – 46 – 15-213, F’02 Summary The Stack Makes Recursion Work Private storage for each instance of procedure call Instantiations don’t clobber each other Addressing of locals + arguments can be relative to stack positions Can be managed by stack discipline Procedures return in inverse order of calls IA32 Procedures Combination of Instructions + Conventions Call / Ret instructions Register usage conventions Caller / Callee save %ebp and %esp – 47 – Stack frame organization conventions 15-213, F’02
© Copyright 2025 Paperzz