CONTENTS Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Symposium Organizing Committee, Acknowledgement of Support and Sponsorship, and Session Chairmen and Paper Reviewers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv International Advisory Committee and Symposia Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi Harold Grad Lecture: Some Solved and Unsolved Problems in Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . 1 M. N. Kogan (invited) Lloyd Thomas Lecture: Microscale Molecular Tennis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 L. J. F. Hermans (invited) CHAPTER 1 KINETIC THEORY AND THE BOLTZMANN EQUATION Eternal Solutions of the Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 A. V. Bobylev and C. Cercignani A New Renormalized Form of the Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 V. L. Saveliev and K. Nanbu Exact Evaluation of Collision Integrals for the Nonlinear Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . 35 K. Kabin and B. D. Shizgal A Variable Multigroup Approach to the Nonlinear Boltzmann Equation Based on the Method of Weighted Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 M. Galler, A. Rossani, and F. Schürrer On Stationary and Time-Dependent Solutions to the Linear Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . 51 R. Pettersson An Accurate Kinetic Scheme for 3D Solution of the Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 A. J. Christlieb and W. N. G. Hitchon Numerical Solution of One-Dimensional Problems in Binary Gas Mixture on the Basis of the Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A. A. Raines CHAPTER 2 TRANSPORT PHENOMENA Non-Equilibrium Kinetics and Transport Properties in Reacting Flows in Nozzles . . . . . . . . . . . . . . . . . . . . 77 T. Y. Alexandrova, A. Chikhaoui, E. V. Kustova, and E. A. Nagnibeda Investigation of Thermal Conductivity in High-Temperature Nitrogen Using the DSMC Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 N. Alves and J. Stark Numerical and Analytical Applications of Multiband Transport in Semiconductors. . . . . . . . . . . . . . . . . . . . 92 L. Demeio, P. Bordone, and C. Jacoboni Heat Transfer and Diffusion in Mixtures Containing CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 E. V. Kustova, E. A. Nagnibeda, and A. Chikhaoui Various Transport Coefficients Occurring in Binary Gas Mixtures and Their Database . . . . . . . . . . . . . . . 106 S. Takata, S. Yasuda, K. Aoki, and T. Shibata Constitutive Relations for Stresses and Heat Flux. Non-Newtonian Gasdynamics. . . . . . . . . . . . . . . . . . . . . 114 A. I. Erofeev, O. G. Friedlander, and A. V. Kozlov CHAPTER 3 RAREFIED FLOW STUDIES Modeling Expansions of Nitrogen–Xe Gas Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 A. E. Beylich v DSMC Study of Three-Dimensional Forced Chaotic Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 G. A. Bird Variational Approach to Plane Poiseuille Flow with General Boundary Conditions . . . . . . . . . . . . . . . . . . . 141 C. Cercignani, M. Lampis, and S. Lorenzani Comparison of Kinetic Theory and Hydrodynamics for Poiseuille Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Y. Zheng, A. L. Garcia, and B. J. Alder Supersonic Flow Through a Permeable Obstacle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 M. Y. Plotnikov and A. K. Rebrov Slip Coefficients for Gaseous Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 F. Sharipov and D. Kalempa Spectroscopy of H2- ¿ N2- Mixture in Rarefied Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 H. Mori and C. Dankert Particle Simulation of Detonation Waves in Rarefied Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 D. Bruno and S. Longo Direct Simulation of Pathological Detonations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 J. B. Anderson and L. N. Long The Attractors of the Rayleigh–Bénard Flow of a Rarefied Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 S. Stefanov, V. Roussinov, and C. Cercignani Direct Simulation of a Flow Produced by a Plane Wall Oscillating in Its Normal Direction. . . . . . . . . . . . 202 T. Ohwada and M. Kunihisa On the Numerical Simulation of Rotating Rarefied Flow in the Cylinder with Smooth Surface. . . . . . . . . 210 T. Soga and K. Ooue Rarefied Aerothermodynamics of Mars Odyssey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 N. Takashima and R. G. Wilmoth Aerodynamics of Fragment in Spacecraft Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 P. Vashchenkov, A. Kashkovsky, and M. Ivanov Thermophoresis in Rarefied Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 D. J. Rader, M. A. Gallis, and J. R. Torczynski Phoresis in a Shearing Gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 L. H. Söderholm and K. I. Borg Numerical and Experimental Investigations of Thermal Stress Effect on Nonlinear Thermomolecular Pressure Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 V. Y. Alexandrov, O. G. Friedlander, and Y. V. Nikolsky Kinetic Effects in Spherical Expanding Flows of Binary-Gas Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 V. V. Riabov Vibrational Relaxation of Diatomic Molecules in Rarefied Gas Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 H. Yamaguchi, S. Takagi, and Y. Matsumoto Vibrational Population Depletion in Thermal Dissociation for Nonequilibrium Energy Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 E. Josyula and W. F. Bailey CHAPTER 4 NUMERICAL METHODS On Vlasov–Fokker–Planck Type Kinetic Models for Multilane Traffic Flow . . . . . . . . . . . . . . . . . . . . . . . . 283 R. Illner, A. Klar, and T. Materne (invited) Models of Collisional Dissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 R. G. Lord Comprehensive Kinetic Model for Weakly Rarefied Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 H. Oguchi Multi-Scale Analysis for Rarefied Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Y. Sakiyama, S. Takagi, and Y. Matsumoto Dynamic Molecular Collision „DMC… Model for General Diatomic Rarefied Gas Flows . . . . . . . . . . . . . . . 312 T. Tokumasu, Y. Matsumoto, and K. Kamijo Numerical Solutions for the BGK-Model with Velocity-Dependent Collision Frequency . . . . . . . . . . . . . . . 320 L. Mieussens and H. Struchtrup vi Numerical Computations of Nonequilibrium Diatomic Gas Flows Using Eu’s Generalized Hydrodynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 R. S. Myong and J. E. Kim CHAPTER 5 DSMC DEVELOPMENT Current Status and Prospects of the DSMC Modeling of Near-Continuum Flows of Non-Reacting and Reacting Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 M. S. Ivanov and S. F. Gimelshein (invited) Reconsideration of DSMC Models for Internal Energy Transfer and Chemical Reactions . . . . . . . . . . . . . 349 N. E. Gimelshein, S. F. Gimelshein, D. A. Levin, M. S. Ivanov, and I. J. Wysong Variable Sphere Molecular Model in the Monte Carlo Simulation of Rarefied Gas Flow . . . . . . . . . . . . . . 358 H. Matsumoto A Generalized Soft-Sphere Model for Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 J. Fan Intermolecular Collision Scheme of DSMC Taking Molecular Locations within a Cell into Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 M. Usami and T. Nakayama Validation of a Hybrid Grid Scheme of DSMC in Simulating Three-Dimensional Rarefied Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 H. Liu, J. Fan, and C. Shen On the Time Step Error of the DSMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 T. Hokazono, S. Kobayashi, T. Ohsawa, and T. Ohwada Numerical Study of a Direct Simulation Monte Carlo Method for the Uehling–Uhlenbeck– Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 A. L. Garcia and W. Wagner Concurrent DSMC Method Using Dynamic Domain Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 J.-S. Wu and K.-C. Tseng CHAPTER 6 HYPERSONICS AND SHOCK WAVES Validation of DSMCÕNavier–Stokes Computations for Laminar Shock WaveÕBoundary Layer Interactions in Hypersonic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 J. K. Harvey, M. S. Holden, and G. V. Candler Hypersonic Shock Interactions about a 25°Õ65° Sharp Double Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 J. N. Moss, G. J. LeBeau, and C. E. Glass Simulation of Hypersonic Laminar Flow Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 M. A. Gallis, C. J. Roy, T. J. Bartel, and J. L. Payne Comparison of a 3-D CFD-DSMC Solution Methodology with a Wind Tunnel Experiment . . . . . . . . . . . . 441 C. E. Glass and T. J. Horvath New Test Cases in Low Density Hypersonic Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 B. Chanetz, T. Pot, R. Benay, and J. Moss Statistical Simulation of Near-Continuum Flows with Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 G. N. Markelov, M. S. Ivanov, S. F. Gimelshein, and D. A. Levin Numerical Study of Comprehensive Kinetic Model in Plane Shock Wave Problem . . . . . . . . . . . . . . . . . . . 465 R. Nagai, K. Maeno, and H. Honma A Moment Solution of Comprehensive Kinetic Model Equation for Shock Wave Structure . . . . . . . . . . . . 473 K. Maeno, R. Nagai, H. Honma, T. Arai, and A. Sakurai Study of the Shock Wave Structure about a Body Entering the Martian Atmosphere . . . . . . . . . . . . . . . . . 481 M. S. Ivanov, Y. A. Bondar, G. N. Markelov, S. F. Gimelshein, and J.-P. Taran Aerodynamics of Two Interfering Simple-Shape Bodies in Hypersonic Rarefied-Gas Flows . . . . . . . . . . . . 489 V. V. Riabov vii Non-Equilibrium Distributions and Heat Transfer Near a Catalytic Surface of Re-Entering Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 E. V. Kustova, E. A. Nagnibeda, I. Armenise, and M. Capitelli Mass and Heat Transfer in the Problem of a Finite Thickness Ablating Piston. . . . . . . . . . . . . . . . . . . . . . . 505 L. M. de Socio and L. Marino Low Reynolds Number Effects on Hypersonic Blunt Body Shock Standoff . . . . . . . . . . . . . . . . . . . . . . . . . . 514 G. R. Inger CHAPTER 7 PROPULSION, PLUMES, AND JETS Ion Thruster Modeling: Particle Simulations and Experimental Validations . . . . . . . . . . . . . . . . . . . . . . . . . 525 J. Wang, J. Polk, and D. Brinza (invited) What We Have Learned by Studying the P5 Hall Thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 A. D. Gallimore (invited) Computation of Neutral Gas Flow from a Hall Thruster into a Vacuum Chamber . . . . . . . . . . . . . . . . . . . 541 I. D. Boyd, C. Cai, M. L. R. Walker, and A. D. Gallimore Modeling of the Hall-Effect Thruster Plume by Combined PIC-MCCÕDSMC Method . . . . . . . . . . . . . . . . 549 Y. A. Bondar, V. A. Schweigert, and M. S. Ivanov Low Reynolds Number Performance Comparison of an Underexpanded Orifice and a DeLaval Nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 A. J. Jamison and A. D. Ketsdever Study of Orifice Flow in the Transitional Regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 A. A. Alexeenko, S. F. Gimelshein, D. A. Levin, A. D. Ketsdever, and M. S. Ivanov Experimental and Numerical Investigation of Rarefied Interacting Plumes . . . . . . . . . . . . . . . . . . . . . . . . . . 572 I. A. Chirokov, T. G. Elizarova, J.-C. Lengrand, I. Gibek, and I. A. Graur DSMC Study of Flowfield and Kinetic Effects on Vibrational Excitations in Jet–Freestream Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 D. H. Campbell and I. J. Wysong Further Studies Using a Novel Free Molecule Rocket Plume Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 M. Woronowicz A Theoretical Study of Vapor Phase Nucleation of the Rocket Propellant N2O4 . . . . . . . . . . . . . . . . . . . . . . 596 P. Pal Numerical Simulation of Rarefied Plume Flow Exhausting from a Small Nozzle . . . . . . . . . . . . . . . . . . . . . 604 T. Hyakutake and K. Yamamoto Spectroscopic Study of Rotational Nonequilibrium in Supersonic Free Molecular Flows . . . . . . . . . . . . . . 612 H. Mori, A. Takasu, K. Niwa, T. Ishida, and T. Niimi CHAPTER 8 MULTIPHASE FLOWS Evaporation and Condensation on a Plane Condensed Phase in the Basis of Discrete Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 I. Nicodin and R. Gatignol Evaporation and Condensation from or onto the Condensed Phase with an Internal Structure. . . . . . . . . 630 Y. Onishi and K. Yamada Numerical Simulation of a Vapor Flow with Evaporation and Condensation in the Presence of a Small Amount of Noncondensable Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638 K. Aoki, S. Takata, and K. Suzuki Bifurcation of a Flow of a Gas between Rotating Coaxial Circular Cylinders with Evaporation and Condensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 Y. Sone and T. Doi Simulation of Evaporation Flows from the Condensed Phase with an Internal Structure Based on the Fluid Dynamic Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 Y. Onishi, K. Yamada, and S. Nakajima viii Using DSMC to Compute the Force on a Particle in a Rarefied Gas Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 662 J. R. Torczynski, M. A. Gallis, and D. J. Rader The Effect of Nozzle Geometry on Cluster Formation in Molecular Beam Sources . . . . . . . . . . . . . . . . . . . 670 J. T. McDaniels, R. E. Continetti, and D. R. Miller Spectroscopic Investigation of Polycyclic Aromatic Hydrocarbons Trapped in Liquid Helium Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 F. Huisken and S. Krasnokutski CHAPTER 9 TOPICS IN ASTROPHYSICS The Role of Solar Wind Heavy Ions in the Space Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687 D. E. Shemansky 共invited兲 DSMC Simulation of the Cometary Coma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 V. M. Tenishev and M. R. Combi DSMC Modeling of Gasdynamics, Radiation, and Fine Particulates in Ionian Volcanic Jets . . . . . . . . . . . 704 J. Zhang, D. B. Goldstein, P. L. Varghese, N. E. Gimelshein, S. F. Gimelshein, D. A. Levin, and L. Trafton Rarefied Gas Dynamics of Water Vapor on the Moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712 D. B. Goldstein The Boltzmann Equation to Study the Escape of Light Atoms from Planetary Atmospheres . . . . . . . . . . . 720 V. Pierrard On the Coefficients in Meteor Physics Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726 D. Y. Khanukaeva CHAPTER 10 MICRO- AND NANO-SCALE FLOWS Molecular Transport in Sub-Nano-Scale Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735 S. Y. Krylov (invited) Thermal Transpiration in Microsphere Membranes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743 M. Young, Y. L. Han, E. P. Muntz, G. Shiflett, A. Ketsdever, and A. Green A Hybrid ContinuumÕParticle Approach for Micro-Scale Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 Q. Sun, I. D. Boyd, and G. V. Candler Numerical Investigation of Physical Processes in High-Temperature MEMS-Based Nozzle Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 A. A. Alexeenko, D. A. Levin, S. F. Gimelshein, and B. D. Reed Application of the Transition Probability Matrix Method to High Knudsen Number Flow Past a Micro-Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768 A. J. Christlieb, W. N. G. Hitchon, Q. Sun, and I. D. Boyd Motion of a Spherical Aerosol Particle in a Micro-Pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 M. Ota, K. Kuwahara, and S. Stefanov Statistical Simulation of Micro-Cavity Flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 J.-Z. Jiang, J. Fan, and C. Shen Grad’s Moment Equations for Microscale Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792 H. Struchtrup Rarefied Gas Flows in Micro-Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 C. Xie, J. Fan, and C. Shen Numerical Simulation of Low Reynolds Number Slip Flow Past a Confined Microsphere . . . . . . . . . . . . . 808 R. W. Barber and D. R. Emerson The Effect of Thermal Accommodation on Unsteady Microscale Heat Transfer . . . . . . . . . . . . . . . . . . . . . . 816 J. H. Park and S. W. Baek A Coupled DSMCÕNavier–Stokes Method for Multiscale Analysis of Gas Flow in Microfluidic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824 O. Aktas, U. Ravaioli, and N. Aluru DSMC Simulations of Low-Density Choked Flows in Parallel-Plate Channels . . . . . . . . . . . . . . . . . . . . . . . 831 M. Ilgaz and M. C. Çelenligil ix CHAPTER 11 PLASMA FLOWS Kinetic Modeling of Rarefied Plasmas and Gases in Materials Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 841 K. Nanbu and M. Shiozawa (invited) Modelling Neutral and Plasma Chemistry with DSMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849 T. J. Bartel (invited) The Kinetic Treatment of Space Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 J. F. Lemaire and V. Pierrard (invited) Numerical Analysis of RF Magnetron Discharges of OxygenÕArgon Mixture . . . . . . . . . . . . . . . . . . . . . . . . 865 S. Yonemura and K. Nanbu Numerical Study of Flow and Plasma in an Inductive Chlorine Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . 873 M. Shiozawa and K. Nanbu PIC-MC Simulation of Charge Accumulation Process inside Teflon Film. . . . . . . . . . . . . . . . . . . . . . . . . . . . 881 R. Watanabe, N. A. Gatsonis, and N. Tomita Electron Thermalization in Molecular Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888 T. Nishigori CHAPTER 12 HYBRID MODELING METHODS Predicting Breakdown of the Continuum Equations under Rarefied Flow Conditions . . . . . . . . . . . . . . . . . 899 I. D. Boyd (invited) A Hybrid Continuum–Atomistic Scheme for Viscous, Incompressible Gas Flow . . . . . . . . . . . . . . . . . . . . . 907 H. S. Wijesinghe and N. G. Hadjiconstantinou Algorithm Refinement for Stochastic Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915 F. J. Alexander, A. L. Garcia, and D. M. Tartakovsky Assessment of a Hybrid Method for Hypersonic Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 W.-L. Wang, Q. Sun, and I. D. Boyd Deterministic Hybrid Computation of Rarefied Gas Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931 T. Ohsawa and T. Ohwada A Hybrid MD-DSMC Model of Picosecond Laser Ablation and Desorption . . . . . . . . . . . . . . . . . . . . . . . . . 939 M. I. Zeifman, B. J. Garrison, and L. V. Zhigilei Kinetic–Fluid Coupling in the Field of the Atomic Vapor Laser Isotopic Separation: Numerical Results in the Case of a Monospecies Perfect Gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947 S. Dellacherie CHAPTER 13 GAS-SURFACE INTERACTIONS Numerical Study of Molecular Scattering on the Thermal Equilibrium Surface with Adsorbates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957 J. Matsui Gas–Surface Interaction Model Evaluation for DSMC Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965 D. C. Wadsworth, D. B. VanGilder, and V. K. Dogra Dynamical Monte-Carlo Simulation on Surface Kinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973 V. Guerra and J. Loureiro A Kinetic Model for Equilibrium and Non-Equilibrium Structure of the Vapor–Liquid Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980 A. Frezzotti and L. Gibelli Molecular Boundary Conditions and Temperature Jump at Liquid–Vapor Interface . . . . . . . . . . . . . . . . . 988 T. Tsuruta Scattering of Rarefied Gas Atoms from Rough Surface Simulated with Fractals . . . . . . . . . . . . . . . . . . . . . 996 O. A. Aksenova Effect of Physical Adsorption on Heat Fluxes to Catalytic Surfaces in Carbon Dioxide . . . . . . . . . . . . . . 1001 V. Kovalev, N. Afonina, and V. Gromov x Effect of Wall Characteristics on the Behaviors of Reflected Gas Molecules in a Thermal Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008 K. Yamamoto, H. Takeuchi, and T. Hyakutake Using a Thin Wire in a Free-Molecular Flow for Determination of Accommodation Coefficients of Translational and Internal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 A. K. Rebrov, A. A. Morozov, M. Y. Plotnikov, N. I. Timoshenko, and A. V. Shishkin CHAPTER 14 APPLICATIONS OF RGD Optical Diagnostics of Nonequilibrium Phenomena in Highly Rarefied Gas Flows. . . . . . . . . . . . . . . . . . . 1025 T. Niimi (invited) Analysis of a Two Wrap Meso Scale Scroll Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033 E. J. Moore, E. P. Muntz, F. Erye, N. Myung, O. Orient, K. Shcheglov, and D. Wiberg Vacuum Pump without a Moving Part and Its Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041 Y. Sone and H. Sugimoto Rarefied Gas Flow through an Orifice at Finite Pressure Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049 F. Sharipov Thrust Measurements of an Underexpanded Orifice in the Transitional Regime . . . . . . . . . . . . . . . . . . . . 1057 A. D. Ketsdever Laminar Hypersonic Separated Flows Modeled with the DSMC Method . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 S. F. Gimelshein, G. N. Markelov, M. S. Ivanov, and D. A. Levin Comparison of Navier–Stokes and DSMC Gas Flow Models in Semiconductor Process Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 L. A. Gochberg Velocity Distribution of Ions Incident on a Wafer in Two Frequency Capacitively-Coupled Plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1079 G. Wakayama and K. Nanbu Photos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091 APPENDIX ON CD-ROM ONLY Influence of Rotational Relaxation on the Effects of Translational Nonequilibrium of Gas Mixture in the Shock Wave Front S. V. Koulikov Regularization of the Chapman–Enskog Expansion and the Shock Structure Calculation K. Xu Angle of Attack Effect on Rarefied Hypersonic Flow over Power Law Shaped Leading Edges W. F. N. Santos and M. J. Lewis Rarefied Flow Heat Transfer Model for Slender Bodies at Large Angle of Attack G. T. Chrusciel DSMC Calculations of Shock Structure with Various Viscosity Laws C. R. Lilley and M. N. Macrossan New Thermal Conditions at the Wall in High Speed Flows J. G. Meolans and I. Graur A Java-Based Direct Monte Carlo Simulation of a Nano-Scale Pulse Detonation Engine D. J. Genovesi and L. N. Long A Continuum Model for the Transitional Regime: Solutions of Instationary Problems by the Moment Method M. Torrilhon A Multigroup M1 Model for Radiation Hydrodynamics and Applications R. Turpault Skeleton Notation for Reciprocity Modelling of Rarefied Gas Processes A. A. Agbormbai xi Energy Exchange Modelling of Internally Excited Gas Surface Interactions A. A. Agbormbai Grain-Boundary Diffusion of Helium in Palladium with Submicron-Grained Structure A. N. Zhiganov and A. Y. Kupryazhkin Joint Determination of Several Interaction Potentials for Gas–Ion Pairs from Measurements of the Gas Diffusion and Solubility in Ionic Crystals K. A. Nekrassov and A. Y. Kupryazhkin Asymptotic and Numerical Analysis of Charged Particle Beams M. Asadzadeh Determination of Potentials of Interaction between Rare Gases and Multiply Charged Ions A. Y. Kupryazhkin, K. A. Nekrassov, M. V. Ryzhkov, and B. Delley Density Evolution of Atoms and Atomic Radicals in Plasma Expansions R. Engeln, S. Mazouffre, P. Vankan, and D. C. Schram Evaluating Test Parameters in an Arc Wind Tunnel G. Zuppardi and D. Paterna Simulations of Gas Film Lubrication in Magnetic Disc Storage: DSMC Method Coupled with a Continuum Solution S. V. Denisikhin, V. P. Memnonov, and S. E. Zhuravleva Hierarchy of Vortexes in 3-D Confined Flow A. Malahov, Y. Vorobyov, V. Demidenko, and A. Kaluev Minimal Boltzmann Models for Flows at Low Knudsen Number S. Ansumali and I. V. Karlin Unsteady Computations of Rarefied Gas Flows Induced by a Rotor–Stator Interaction in a Disk-Type Drag Pump Y.-K. Hwang, J.-S. Heo, and M.-K. Kwon Non-Maxwellian and Multi-Stream Flows in a Two-Level Gas A. Muriel and L. Boot A Nonlinear Transport Problem of Monochromatic Photons in Resonance with a Gas G. Lauro, R. Monaco, and M. P. Bianchi The Transversal Force on a Spinning Sphere Moving in a Rarefied Gas K. I. Borg, L. H. Söderholm, and H. Essén Non-Steady Behavior of Vapor between Heater and Liquid Surfaces A. P. Kryukov and A. K. Yastrebov Strong Evaporation–Condensation in Gas–Dust Mixture A. P. Kryukov, V. Y. Levashov, and I. N. Shishkova 3D Unstructured Couette Flow Simulation in Transition Region H. F. Liu xii
© Copyright 2025 Paperzz