d05019.pdf

CYANO-SUBSTITUTED
POLYPYRAZOLYLBORATE
METAL COMPLEXES
A Dissertation by
Ningfeng Zhao
Submitted to the College of Liberal Arts & Sciences
and the faculty of the Graduate School of
Wichita State University in partial fulfillment of
the requirement for the degree of
Doctor of Philosophy
December 2005
CYANO-SUBSTITUTED
POLYPYRAZOLYLBORATE
METAL COMPLEXES
I have examined the final copy of this dissertation for form and content and
recommend that it be accepted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy with a major in Chemistry.
David M. Eichhorn, Committee Chair
We have read this dissertation and recommend its acceptance:
D. Paul Rillema, Committee Member
William C. Groutas, Committee Member
Michael J. VanStipdonk, Committee Member
Peer H.Moore-Jansen, Committee Member
Accepted for the College of Liberal Arts & Sciences
William D. Bischoff, Dean
Accepted for the Graduate School
Susan K. Kovar, Dean
ii
DEDICATION
For My Parents
iii
ACKNOWLEDGEMENTS
The first and the deepest appreciation, with all my heart, should be given to
my parents and my wife. My parents are the first instructors of my life and
have taught me how to be a man. Without their indoctrination and loving care,
I could never achieve so far. There is so much love in my heart that no words
can express enough. I wish my parents will be proud of me and I believe they
are. My wonderful wife, Liny, is the other half of my life. She is always there
with love, encouragement and help. We have been together through a lot and
it is my fortune to have her by my side.
Dr. David Eichhorn, my advisor, is the one I should give my special thanks
and respect. Things could be difficult without him. I believe it is my luck to
have David as my director. His intelligence, his patience and his graciousness
have impressed me and helped me all along the way. For five years he has
always been willing to offer directions, suggestions and, of course, the money.
He is the one who leads my way to this Ph.D. degree.
I would like to thank all the professors and staff of the Chemistry Department
at Wichita State University, especially my committee members: Dr. Rillema,
Dr. Groutas, and Dr. Van Stipdonk. They built my knowledge of chemistry and
showed me examples of how to be a good scientist and teacher. I would not
forget my labmates: Dr. Panja, Christopher Siemer, Curtis Moore and Joshua
iv
Zimmerman and my best friend here, Wei Huang. We have always been
working together and had a lot of fun. They helped to discuss and comment on
my results, whether good or bad. I wish you guys good luck in the future.
At last, I would like to acknowledge everyone who has helped me on my way to
this Ph.D. degree. The past five years in Wichita were great and will be forever
in my mind.
v
ABSTRACT
Polypyrazolylborates have become one of the most popular ligands used in
inorganic and organometallic chemistry. Because of the electron-withdrawing
and potential coordination property of the cyano group, as well as the steric
effect of bulky substituents on metal complexes, we were trying to synthesize
new trispyrazolylborates carrying both these substituents, which will
potentially produce molecular materials with desired electronic and magnetic
properties. Successful syntheses of TpPh,4CN, Tpt-Bu,4CN and TpMe2,4CN are
reported here. Thallium salts of TpPh,4CN and Tpt-Bu,4CN were made for structure
characterization. Steric effects of these bulky groups and short contacts
between CN substituents and metal ion were observed. The instability of the
TpMe2,4CN ligand was detected. Attempts were also made to produce some
heteroscorpionates. Although the desired product was detected, final yields
were too random to control.
Manganese, iron, cobalt and copper complexes of these new ligands were
synthesized and studied by X-ray crystallography. Ligand isomerization was
revealed in (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe complexes,
possibly due to reaction involving solvent or oxygen. The rearranged pyrazole
in the ligand has a much shorter metal-N bond thus reducing the symmetry
around the metal ion. Both copper(I) and copper(II) complexes of TpPh,4CN
and Tpt-Bu,4CN ligands were synthesized. The cyano substituents in some of
vi
these complexes show strong electron-withdrawing property by reducing the
electron density on the pyrazole rings and the metal center. X-ray
crystallography shows that [TpPh,4CNCu]n and [Tpt-Bu,4CNCu]n have 1-dimension
polymer structures with one CN substituent coordinate to the neighboring
metal. They represent the first crystallographically characterized examples of
this kind of cyano bridged polymers. Some metal pyrazole complexes were
also isolated due to the decomposition of the ligand. CN-metal contacts were
revealed
in
{[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n
and
(Hpzt-Bu,CN)2CuCl2,
reaffirming the coordination potential of the cyano substituent.
Attempts were made to construct heterogeneous cyano bridging coordination
polymers. Mass spectroscopy demonstrates the formation of a dinuclear
copper
species
although the only isolated crystalline product
was
TpPhCu(HpzPh,4CN)(NO3). Rh2(CF3COO)4 or Ni(cyclam)(ClO4)2 were used as
one building block of the coordination polymer, reacting with TlTpR,4CN.
Crystals isolated from these products, instead of the coordination polymers we
desired, are metal pyrazole complexes with the ring N atom coordination,
suggesting decomposition of the ligand.
vii
TABLE OF CONTENTS
Chapter 1
Introduction…………………………………………………….. 1
1.1
General Introduction………………………………………………………….. 1
1.2
Molecular Materials…………………………………………………………….4
1.3
Conductive Polymers………………………………………………………….. 7
1.4
Polypyrazolylborates………………………………………………………….. 10
1.5
Cyano-substituted Scorpionates………………………………………….. 15
Chapter 2 Polypyrazolylborates………………………………………… 19
2.1
Introduction………………………………………………………………………. 19
2.2
Tris(4-cyano-3-phenylpyrazolyl)borate………………………………… 21
2.2.1 Synthesis of TpPh,4CN……………………………………………………….21
2.2.2 Synthesis and Structure of TlTpPh,4CN……………………………….23
2.3
Tris(4-cyano-3-tert-butylpyrazolyl)borate……………………………..27
2.3.1 Synthesis and structure of Hpzt-Bu,4CN……………………………….27
2.3.2 Synthesis of Tpt-Bu,4CN……………………………………………………..28
2.3.3 Synthesis and Structure of TlTpt-Bu,4CN…………………………….. 29
2.4
Tris(4-cyano-3,5-dimethylpyrazolyl)borate…………………………...32
2.4.1 Synthesis of HpzMe2,4CN……………………………………………………32
2.4.2 Synthesis of TpMe2,4CN……………………………………………………..33
2.5
4-cyano-3-methylpyrazole……………………………………………………35
2.6
Heteroscorpionates……………………………………………………………..36
2.6.1 Heteroscorpionate Introduction………………………………………36
viii
2.6.2 Synthesis of pzPhBpPh,4CN…………………………………………………38
2.7
Conclusion………………………………………………………………………….40
2.8
Experimental………………………………………………………………………42
2.8.1 General Experimental……………………………………………………. .42
2.8.2 Synthesis of Potassium hydrotris(4-cyano-3-phenylpyrazolyl)
borate [KTpPh,4CN]…………………………………………………………..43
2.8.3 Synthesis of Thallium(I) hydrotris(3-phenyl-4-cyanopyrazolyl)
borate [TlTpPh,4CN]………………………………………………………….44
2.8.4 Synthesis of 4-cyano-3-tert-butylpyrazole [Hpzt-Bu,4CN]…….. 45
2.8.5 Synthesis of Potassium hydrotris(4-cyano-3-tert-butylpyrazolyl)
borate [KTpt-Bu,4CN]…………………………………………………………47
2.8.6 Synthesis of Thallium(I) hydrotris(4-cyano-3-tert-butylpyrazolyl)
borate [TlTpt-Bu,4CN]………………………………………………………..48
2.8.7 Synthesis of 4-cyano-3,5-dimethylpyrazole [HpzMe2,4CN]……48
2.8.8 Synthesis of Potassium hydrotris(4-cyano-3,5-dimethylpyrazolyl)
borate [KTpMe2,4CN]…………………………………………………………49
2.8.9 Synthesis of 4-cyano-3-methylpyrazole [HpzMe,4CN]………….. 49
2.8.10 Synthesis of pzPhBpPh,4CN…………………………………………………50
Chapter 3 Scorpionate Metal Complexes……………………………..51
3.1
Introduction………………………………………………………………………. 51
3.2
TpR,4CN Complexes of Cobalt, Manganese and Iron………………… 54
3.2.1 (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe……………….54
ix
3.2.2 Tpt-Bu,4CN Metal Complexes………………………………………………65
3.2.3 TpMe2,4CN Metal Complexes………………………………………………66
3.3
TpR,4CN Copper Complexes……………………………………………………68
3.3.1 [TpPh,4CNCu]n and TpPh,4CNCuX…………………………………………68
3.3.2 [Tpt-Bu,4CNCu]n and Tpt-Bu,4CNCuX……………………………………..70
3.3.3 TpPh,4CNCu(CO) and TpPhCu(CO)……………………………………..72
3.3.4 (TpMe2,4CN)2Cu………………………………………………………………..74
3.3.5 TpPhCu(NO3)………………………………………………………………….74
3.4
Metal Pyrazole Complexes……………………………………………………77
3.4.1 HpzPh,4CN Copper Complex………………………………………………77
3.4.2 Hpzt-Bu,4CN Metal Complexes……………………………………………79
3.4.3 HpzMe2 Copper Complex…………………………………………………86
3.5
Conclusion…………………………………………………………………………88
3.6
Experimental………………………………………………………………………90
3.6.1 General Experimental……………………………………………………..90
3.6.2 Synthesis
of
Bis(hydrobis(4-cyano-3-phenylpyrazolyl)
(4-cyano-5-phenylpyrazolyl)borato)cobalt(II)
[(TpPh,4CN)*2Co]………………………………………………………………90
3.6.3 Synthesis
of
Bis(hydrobis(4-cyano-3-phenylpyrazolyl)
(4-cyano-5-phenylpyrazolyl)borato)manganese(II)
[(TpPh,4CN)*2Mn]……………………………………………………………. 91
x
3.6.4 Synthesis
of
Bis(hydrobis(4-cyano-3-phenylpyrazolyl)
(4-cyano-5-phenylpyrazolyl)borato)iron(II)
[(TpPh,4CN)*2Fe]……………………………………………………………… 92
3.6.5 Synthesis of Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato)
cobalt(II) [(Tpt-Bu,4CN)2Co]……………………………………………… 93
3.6.6 Synthesis of Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato)
manganese(II) [(Tpt-Bu,4CN)2Mn]………………………………………93
3.6.7 Synthesis of Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato)
iron(II) [(Tpt-Bu,4CN)2Fe]…………………………………………………. 94
3.6.8 Synthesis
of
Bis(hydrotris(4-cyano-3,5-dimethylpyrazolyl)
borato)cobalt(II) [(TpMe2,CN)2Co]……………………………………. 94
3.6.9 Synthesis
of
Hydrotris(4-cyano-3-phenylpyrazolyl)borato
{[TpPh,4CNCu]n}
copper(I)
and
Hydrotris(4-cyano-3-phenylpyrazolyl)boratocopper(II)
perchlorate [TpPh,4CNCu(ClO4)]………………………………………..95
3.6.10 Synthesis
of
Hydrotris(4-cyano-3-tert-butylpyrazolyl)borato
copper(I)
{[Tpt-Bu,CNCu]n}
and
Hydrotris(4-cyano-3-tert-butylpyrazolyl)boratocopper(II)
trifluoromethylsulfonate [Tpt-Bu,CNCu(CF3SO3)]……………….. 96
3.6.11 Synthesis
of
Hydrotris(4-cyano-3-phenylpyrazolyl)borato
copper(I) carbonyl [TpPh,4CNCu(CO)]………………………………. 97
xi
3.6.12 Synthesis
of
Hydrotris(3-phenylpyrazolyl)boratocopper(I)
carbonyl [TpPhCu(CO)]………………………………………………….. 97
3.6.13 Synthesis
of
Bis(hydrotris(4-cyano-3,5-dimethylpyrazolyl)
borato)copper(II) [(TpMe2,4CN)2Cu]………………………………….. 98
3.6.14 Synthesis
of
Hydrotris(3-phenylpyrazolyl)boratocopper(II)
nitrate [TpPhCu(NO3)]…………………………………………………….98
3.6.15 Synthesis
of
Dichlorotetrakis(4-cyano-3-tert-butylpyrazole)
cobalt(II) [(Hpzt-Bu,4CN)4CoCl2]……………………………………….. 99
3.6.16 Synthesis
of
Diaquabis(4-cyano-3-tert-butylpyrazole)bis
(trifluoromethylsulfonato)manganese(II)
[(Hpzt-Bu,4CN)2Mn(CF3SO3)2(H2O)2]………………………………….99
3.6.17 Synthesis of Dichlorobis(4-cyano-3-tert-butylpyrazole)copper(II)
[(Hpzt-Bu,CN)2CuCl2]……………………………………………………….. 100
Chapter 4 Coordination Polymers……………………………………… 101
4.1
Introduction………………………………………………………………………. 101
4.2
TpPhCu(NO3)-(HpzPh,4CN)2M(NO3)2……………………………………….104
4.3
TlTpR,4CN-Rh2(CF3COO)4…………………………………………………….. 110
4.4
TlTpPh,4CN-[Ni(cyclam)][ClO4]2……………………………………………. 113
4.5
Conclusion………………………………………………………………………… 116
4.6
Experimental…………………………………………………………………….. 117
4.6.1 General Experimental……………………………………………………. 117
4.6.2 TpPh,4CNCu(NO3)-(HpzPh,4CN)2Co(NO3)2…………………………… 117
xii
4.6.3 TpPh,4CNCu(NO3)-(HpzPh,4CN)2Cu(NO3)2…………………………… 118
4.6.4 TlTpPh,4CN-Rh2(CF3COO)4………………………………………………. 119
4.6.5 TlTpt-Bu,4CN-Rh2(CF3COO)4…………………………………………….. 119
4.6.6 TlTpPh,4CN-Ni(cyclam)(ClO4)2…………………………………………. 120
Chapter 5
Conclusions……………………………………………………… 121
References………………………………………………………………………… 123
Appendix (Crystallographic Data)……………………………………..... 129
xiii
LIST OF TABLES
Table 2.2.1
Bond Distances and Angles for TlTpPh,4CN……………………… 24
Table 2.2.2
Tl-N Bond Distances in Scorpionate Complexes…………….. 26
Table 2.3.1
Bond Distances and Angles for Hpzt-Bu,4CN…………………….. 27
Table 2.3.2
Bond Distances and Angles for TlTpt-Bu,4CN……………………. 31
Table 3.2.1
Bond Distances and Angles for (TpPh,4CN)*2Co……………….. 58
Table 3.2.2
Structural Data for “Sandwich” Metal Complexes………….. 59
Table 3.2.3
Bond Distances and Angles for (TpPh,4CN)*2Mn………………. 60
Table 3.2.4
Bond Distances and Angles for (TpPh,4CN)*2Fe………………… 63
Table 3.3.1
Bond Distances and Angles for [TpPh,4CNCu]n………………… 69
Table 3.3.2
Bond Distances and Angles for [Tpt-Bu,4CNCu]n………………..71
Table 3.3.3
Structural Data for TpR,4CN Copper(I) Complexes…………… 72
Table 3.3.4
Carbonyl
Stretching
Frequency
in
Tp
Copper(I)
Complexes……………………………………………………………………………………….. 73
Table 3.3.5
Bond Distances and Angles for TpPhCu(NO3)………………… 75
Table 3.4.1
Bond
Distances
and
Angles
for
{[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n…………………………………………………… 78
Table 3.4.2
Structural Data for Copper Pyrazole Complexes…………….. 78
Table 3.4.3
Bond Distances and Angles for (Hpzt-Bu,4CN)4CoCl2………….80
Table 3.4.4
Structural Data for Cobalt Pyrazole Complexes……………… 81
Table 3.4.5
Bond
Distances
and
Angles
for
(Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O………………………………………………………… 82
xiv
Table 3.4.6
Structural Data for Manganese Pyrazole Complexes………. 83
Table 3.4.7
Bond Distances and Angles for (Hpzt-Bu,4CN)2CuCl2………… 84
Table 3.4.8
Bond Distances and Angles for (HpzMe2)2CuCl2……………… 86
Table 4.2.1
Bond Distances and Angles for TpPhCo(HpzPh,4CN)(NO3)… 107
Table 4.2.2
Bond Distances and Angles for TpPhCu(HpzPh,4CN)(NO3)… 108
Table 4.2.3
Structural Data for TpPh Metal Complexes……………………. 109
Table 4.3.1
Bond
Distances
and
Angles
for
(Hpzt-Bu,4CN)2-Rh2(CF3COO)4………………………………………………………………. 111
Table 4.4.1
Bond Distances and Angles for (pzPh,4CN)2Ni(cyclam)………123
Appendix A: Complete Crystallographic Data……………………………. 130
Table A
Crystallographic Data…………………………………………………..130
Table B.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for TlTpPh,4CN…………………………………………………………………… 139
Table B.2
Anisotropic Displacement Parameters for TlTpPh,4CN……… 139
Table B.3
Bond Lengths for TlTpPh,4CN………………………………………….139
Table B.4
Bond Angles for TlTpPh,4CN…………………………………………… 140
Table C.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for Hpzt-Bu,4CN………………………………………………………………….. 141
Table C.2
Anisotropic Displacement Parameters for Hpzt-Bu,4CN…….. 141
Table C.3
Bond Lengths for Hpzt-Bu,4CN………………………………………… 141
Table C.4
Bond Angles for Hpzt-Bu,4CN………………………………………….. 141
Table D.1
Atomic Coordinates and Equivalent Isotropic Displacement
xv
Parameters for TlTpt-Bu,4CN…………………………………………………………………. 143
Table D.2
Anisotropic Displacement Parameters for TlTpt-Bu,4CN……. 143
Table D.3
Bond Lengths for TlTpt-Bu,4CN……………………………………….. 143
Table D.4
Bond Angles for TlTpt-Bu,4CN…………………………………………. 144
Table E.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for (TpPh,4CN)*2Co…………………………………………………………….. 145
Table E.2
Anisotropic Displacement Parameters for (TpPh,4CN)*2Co… 146
Table E.3
Bond Lengths for (TpPh,4CN)*2Co…………………………………… 148
Table E.4
Bond Angles for (TpPh,4CN)*2Co…………………………………….. 149
Table F.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for (TpPh,4CN)*2Mn……………………………………………………………. 153
Table F.2
Anisotropic Displacement Parameters for (TpPh,4CN)*2Mn..154
Table F.3
Bond Lengths for (TpPh,4CN)*2Mn………………………………….. 156
Table F.4
Bond Angles for (TpPh,4CN)*2Mn……………………………………. 157
Table G.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for (TpPh,4CN)*2Fe……………………………………………………………… 161
Table G.2
Anisotropic Displacement Parameters for (TpPh,4CN)*2Fe… 162
Table G.3
Bond Lengths for (TpPh,4CN)*2Fe…………………………………….164
Table G.4
Bond Angles for (TpPh,4CN)*2Fe……………………………………… 166
Table H.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for [TpPh,4CNCu]n……………………………………………………………… 171
Table H.2
Anisotropic Displacement Parameters for [TpPh,4CNCu]n…. 171
xvi
Table H.3
Bond Lengths for [TpPh,4CNCu]n……………………………………. 172
Table H.4
Bond Angles for [TpPh,4CNCu]n……………………………………… 173
Table I.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for [Tpt-Bu,4CNCu]n……………………………………………………………. 176
Table I.2
Anisotropic Displacement Parameters for [Tpt-Bu,4CNCu]n.. 176
Table I.3
Bond Lengths for [Tpt-Bu,4CNCu]n………………………………….. 177
Table I.4
Bond Angles for [Tpt-Bu,4CNCu]n……………………………………. 178
Table J.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for TpPhCu(NO3)……………………………………………………………… 180
Table J.2
Anisotropic Displacement Parameters for TpPhCu(NO3)…. 180
Table J.3
Bond Lengths for TpPhCu(NO3)……………………………………. 181
Table J.4
Bond Angles for TpPhCu(NO3)……………………………………… 182
Table K.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n……………………………..185
Table K.2
Anisotropic
Displacement
Parameters
for
{[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n…………………………………………………… 185
Table K.3
Bond Lengths for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n….. 186
Table K.4
Bond Angles for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n……..186
Table L.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for (Hpzt-Bu,4CN)4CoCl2……………………………………………………… 188
Table L.2
Anisotropic
Displacement
Parameters
for
(Hpzt-Bu,4CN)4CoCl2…………………………………………………………………………….. 188
xvii
Table L.3
Bond Lengths for (Hpzt-Bu,4CN)4CoCl2……………………………. 189
Table L.4
Bond Angles for (Hpzt-Bu,4CN)4CoCl2……………………………… 190
Table M.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O…………………………………. 192
Table M.2
Anisotropic
Displacement
Parameters
for
(Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O………………………………………………………… 192
Table M.3
Bond Lengths for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O……….. 193
Table M.4
Bond Angles for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O…………. 193
Table N.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for (Hpzt-Bu,CN)2CuCl2……………………………………………………….. 195
Table N.2
Anisotropic
Displacement
Parameters
for
(Hpzt-Bu,CN)2CuCl2……………………………………………………………………………… 195
Table N.3
Bond Lengths for (Hpzt-Bu,CN)2CuCl2………………………………195
Table N.4
Bond Angles for (Hpzt-Bu,CN)2CuCl2……………………………….. 196
Table O.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for (HpzMe2)2CuCl2…………………………………………………………… 198
Table O.2
Anisotropic
Displacement
Parameters
for
(HpzMe2)2CuCl2…………………………………………………………………………………. 198
Table O.3
Bond Lengths for (HpzMe2)2CuCl2…………………………………. 198
Table O.4
Bond Angles for (HpzMe2)2CuCl2…………………………………… 199
Table P.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for TpPhCo(HpzPh,4CN)(NO3)……………………………………………… 201
xviii
Table P.2
Anisotropic
Displacement
Parameters
for
TpPhCo(HpzPh,4CN)(NO3)…………………………………………………………………….. 202
Table P.3
Bond Lengths for TpPhCo(HpzPh,4CN)(NO3)……………………. 203
Table P.4
Bond Angles for TpPhCo(HpzPh,4CN)(NO3)……………………… 204
Table Q.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for TpPhCu(HpzPh,4CN)(NO3)……………………………………………… 206
Table Q.2
Anisotropic
Displacement
Parameters
for
TpPhCu(HpzPh,4CN)(NO3)……………………………………………………………………..207
Table Q.3
Bond Lengths for TpPhCu(HpzPh,4CN)(NO3)……………………. 208
Table Q.4
Bond Angles for TpPhCu(HpzPh,4CN)(NO3)……………………… 210
Table R.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4……………………………………….. 211
Table R.2
Anisotropic
Displacement
Parameters
for
(Hpzt-Bu,4CN)2-Rh2(CF3COO)4……………………………………………………………… 211
Table R.3
Bond Lengths for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4……………… 212
Table R.4
Bond Angles for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4……………….. 212
Table S.1
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters for (pzPh,4CN)2Ni(cyclam)………………………………………………….. 214
Table S.2
Anisotropic
Displacement
Parameters
for
(pzPh,4CN)2Ni(cyclam)…………………………………………………………………………. 214
Table S.3
Bond Lengths for (pzPh,4CN)2Ni(cyclam)………………………… 215
Table S.4
Bond Angles for (pzPh,4CN)2Ni(cyclam)………………………….. 215
xix
LIST OF FIGURES
Figure 1.1.1 Polypyrazolylborate……………………………………………………..1
Figure 1.1.2 Cyano-Scorpionate Ligand Coordination Mode……………… 2
Figure 1.4.1 Dihydrobispyrazolylborate
(Bp),
Hydrotrispyrazolylborate
(Tp), and Tetrakispyrazolylborate (pzTp)……………………………………………. 11
Figure 1.4.2 “Sandwich” Complex…………………………………………………… 13
Figure 1.4.3 “Half-Sandwich” Complex…………………………………………… 13
Figure 1.5.1 Multinuclear Trispyrazolylborate Metal Complex………….. 17
Figure 1.5.2 Cyano Bridged Coordination Polymer…………………………… 18
Figure 2.2.1 Synthesis Route of 4-cyano-3-R pyrazoles…………………….. 21
Figure 2.2.2 Synthesis of Bis and Tris(4-cyano-3-R-pyrazolyl)borate…. 22
Figure 2.2.3 MS of TpPh,4CN…………………………………………………………….. 23
Figure 2.2.4 ORTEP Drawing of TlTpPh,4CN……………………………………….24
Figure 2.2.5 Raster 3D Diagram Showing the Close Contacts Between Tl
and Cyano Groups of Adjacent Pyrazoles in TlTpPh,4CN…………………………..25
Figure 2.3.1 ORTEP Drawing of Hpzt-Bu,4CN……………………………………… 27
Figure 2.3.2 MS of Tpt-Bu,4CN…………………………………………………………… 29
Figure 2.3.3 ORTEP Drawing of TlTpt-Bu,4CN…………………………………….. 30
Figure 2.4.1 Synthesis of Tris(4-cyano-3,5-dimethylpyrazolyl)borate… 32
Figure 2.4.2 MS of TpMe2,4CN…………………………………………………………… 34
Figure 2.6.1 Bis-heteroscorpionate…………………………………………………. 36
Figure 2.6.2 Cyano Tris-heteroscorpionate……………………………………… 37
xx
Figure 2.6.3 MS of Heteroscorpionate 1……………………………………………38
Figure 2.6.4 MS of Heteroscorpionate 2………………………………………….. 39
Figure 3.2.1 Ligand Isomerization in Scorpionate Metal Complexes….. 55
Figure 3.2.2 1,2-Boratropic Shift…………………………………………………….. 56
Figure 3.2.3 ORTEP Drawing of (TpPh,4CN)*2Co………………………………… 58
Figure 3.2.4 ORTEP Drawing of (TpPh,4CN)*2Mn……………………………….. 61
Figure 3.2.5 ORTEP Drawing of (TpPh,4CN)*2Fe………………………………….63
Figure 3.3.1 ORTEP Drawing of One Asymmetric Unit [TpPh,4CNCu]n….68
Figure 3.3.2 Raster 3D Diagram Showing the Extended Structure of
[TpPh,4CNCu]n……………………………………………………………………………………..70
Figure 3.3.3 ORTEP
Drawing
of
One
Asymmetric
Unit
of
[Tpt-Bu,4CNCu]n……………………………………………………………………………………71
Figure 3.3.4 ORTEP Drawing of TpPhCu(NO3)…………………………………. 75
Figure 3.4.1 ORTEP
Drawing
of
the
Cationic
Repeat
Unit
of
{[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n…………………………………………………… 77
Figure 3.4.2 Raster 3D Diagram Showing the Extended Structure of
Cationic Part of {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n…………………………… 79
Figure 3.4.3 ORTEP Drawing of (Hpzt-Bu,4CN)4CoCl2…………………………. 80
Figure 3.4.4 ORTEP Drawing of (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O…….. 82
Figure 3.4.5 Mercury Diagram Showing the Hydrogen Bonding Network of
(Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O………………………………………………………… 84
xxi
Figure 3.4.6 ORTEP Drawing of Two Inversion Related Molecules of
(Hpzt-Bu,4CN)2CuCl2……………………………………………………………………………..85
Figure 3.4.7 ORTEP Drawing of (HpzMe2)2CuCl2………………………………. 87
Figure 4.1.1 Proposed
Structure
of
(BpPh,4CN)2Cu-Rh2(CF3COO)2
Coordination Polymer……………………………………………………………………….. 103
Figure 4.2.1 MS of TpPhCu(NO3)-(HpzPh,4CN)2Cu(NO3)2……………………..105
Figure 4.2.2 Magnification of Peak m/z = 1097 from Figure 4.2.1………. 106
Figure 4.2.3 ORTEP Drawing of TpPhCo(HpzPh,4CN)(NO3)…………………. 107
Figure 4.2.4 ORTEP Drawing of TpPhCu(HpzPh,4CN)(NO3)…………………. 108
Figure 4.3.1 ORTEP Drawing of (Hpzt-Bu,4CN)2-Rh2(CF3COO)4…………… 111
Figure 4.4.1 ORTEP Drawing of (pzPh,4CN)2Ni(cyclam)……………………… 114
xxii
Chapter 1 Introduction
1.1 General Introduction
Polypyrazolylborates have become among the most important ligands in
organometallic and bioinorganic chemistry today. They consist of a
tetrasubstituted boron atom attached to two or more pyrazoles through one N
atom of the ring (Figure 1.1.1). The other N atoms of the pyrazole rings become
the donor atoms of the ligand. Because they
always
adopt
a
polypyrazolylborates
multi-dentate
are
also
4
5
mode,
known
as
“scorpionate” ligands, and have a wide range of
Hn
B
3
N
N
1
2
4-n
Figure 1.1.1 Polypyrazolylborate
applications including reaction catalysis, enzyme modeling and C-H bond
activation.1 It is relatively easy to synthesize substituted polypyrazolylborates,
so-called 2nd generation polypyrazolylborates, with different ring substituents.
They result in molecules with varied structural and electronic properties.
Studies involving these 2nd generation scorpionate ligands have concentrated
on substitution at the 3- or 5-position of the pyrazole ring. It has been shown
that substituents at these positions can affect reactivities and electronic
properties of metal complexes.2
Transition
metals
can
easily
form
coordination
complexes
with
polypyrazolylborates. Scorpionate metal complexes have involved a number of
1
elements from almost every group in the periodic table. The research
described in this dissertation focuses on the synthesis and characterization of
new cyano-substituted polypyrazolylborates and their transition metal
complexes, with the ultimate goal of synthesis of coordination polymers.
These polypyrazolylborate ligands carry both bulky and electronically active
substituents. These substituents are shown to affect the molecular structures
and electronic properties of the metal complexes. Thus they are potentially
useful in producing new molecular materials with desired physical properties.
The cyano group, itself, is also a good
Hn
B
ligand for transition metals. This is the
N
C N
N
M2
4-n
M1
property we want to explore to make
multinuclear
species
and
conductive
R
Figure 1.1.2 Cyano-Scorpionate
Ligand Coordination Mode
coordination
polymers.
The
cyano-scorpionate ligand is thus capable
of coordinating metals through two types of N atoms – the pyrazole N and the
cyano N atom (Figure 1.1.2). The cyano-coordinated metal ions, therefore, link
up metalloscorpionate “monomers” to form a coordination polymer. In this
polymer different metal moieties can “talk” to each other, allowing for
electronic communication and magnetic interactions. This will enable electron
mobility along the multi-dimensional polymer chains; potentially producing a
conductive material. The metal-metal communication in the coordination
2
polymer will also affect the magnetic characteristics of the complex,
potentially producing cooperative effects in the compound resulting in bulk
magnetic properties.
The results described in this dissertation represent a continuation of work
presented in my M.S. thesis “Cyano-Substituted Polypyrazolylborates”. The
earlier results will be summarized where appropriate.
3
1.2 Molecular Materials
As the core of the chemistry technology in the new century, materials science
is a multidisciplinary field focusing on functional materials, whether the
function served is structural, electronic, thermal, chemical, magnetic, optical,
or some combination of these. It uses those parts of chemistry and physics to
deal with the properties of materials, as well as scientific techniques that
probe materials structures. Traditional materials are atomic-based, usually
metals, alloys, semiconductors and ceramics. While possessing some desirable
electronic properties, they have quite a few deficiencies. These materials
require vast inputs of capital and energy to synthesize and process. Also they
are limited by their physical natures, as they are generally heavy and opaque.
Therefore a new generation of molecule-based materials is appearing.
Molecular materials are normally comprised of organic and/or organometallic
molecular fragments. Contrasted with atomic materials, molecular materials
have some distinct advantages which are crucial today. They are durable,
flexible and cheap to mass-produce. Made up primarily of lightweight atoms
such as carbon, hydrogen and nitrogen, molecular materials are much lighter
than the traditional materials. Also, the molecular components of these
materials can be altered individually, by standard chemical processes, to
potentially imbue these materials with desirable physical properties such as
solubility, transparency or flexibility. There are a wide range of potential
4
applications for these new materials. Research into the optical, electronic and
magnetic properties of organic and molecular materials is thriving, and has
led to a new generation of electronic devices and displays. It is little wonder
that many of the leading electronics companies are embracing this expanding
field of research. Product designers are dreaming up giant video screens that
can be rolled up and carried from room to room, mobile phones with
all-plastic circuitry that will not break when dropped and lightweight
luminous panels that could replace the bulky light fittings in aircraft and cars.
Conductivity and magnetism are the key properties of molecular materials.3-6
In fact, molecular magnets have attracted interest over decades.6 Traditional
magnetic materials share the generic attributes of being atom-based, having
d- or f-orbital spin sites, and possessing extended network magnetic
"bonding" in at least two dimensions. Molecule-based organic/polymeric
magnetic materials are prepared from organic, organometallic, and
coordination metal synthetic chemistry, such that either one type of spin site
is a molecular orbital made up of s and/or p atomic orbitals or the molecular
orbital is crucial in mediating the magnetic interaction. In single molecule
magnets (SMM’s) permanent magnetization is achieved as a purely
one-molecule phenomenon. The first SMM has been reported as a
dodecanuclear manganese complex.7 To date, a number of important
discoveries have been made such as the synthesis of room-temperature
5
molecular magnets8 and the synthesis of a molecule based magnetic
superconductor.9
From all these advantages and applications of molecular materials we can
conclude that they will play an increasingly important role in material science.
More and more of these materials are being discovered and their properties
are being studied. They are coming into our everyday life.
6
1.3 Conductive Polymers
Conductors are materials that allow the flow of electricity. The charge carriers
can be either electrons or holes. When an electric potential difference is
impressed across separate points on a conductor, the mobile charges within
the conductor are forced to move, and an electric current appears. Metals are
good conductors because they have unfilled space in the valence energy band.
When an electric field is applied, electrons gain a small amount of energy and
move freely in the metals to form electrical current. While most conductors
are metals, there are many non-metallic conductors as well, including all
plasmas.10
Conductive polymers are usually organic materials with extended delocalized
bonds. This delocalization can be accomplished by forming a conjugated
backbone of continuous overlapping orbitals. Continuous strings of orbitals
create degeneracy in the frontier molecular orbitals (HOMO and LUMO)
which leads to the filled and unfilled bands. Not until an electron is removed
from the valence band or added to the conduction band does a conducting
polymer become highly conductive. In fact almost all known conductive
polymers are semiconductors and their mobility, until very recently, was
dramatically lower than their inorganic counterparts. In the 1970’s,
McGinness, Corry, and Proctor reported that partially oxidized polyacetylene
exhibits conductivity which is significantly greater than that of the unoxidized
7
polymer.11 This discovery marked the start of the study of conductive polymers.
The chemistry Nobel Prize in 2000 was awarded to Shirakawa, MacDiarmid
and Heeger for the discovery and study of conducting polymers. To date there
are quite a few organic conductive polymers including polyacetylene,12
polyphenylene,13
polyaniline,14
polythiophene,15
polypyrrole,16
and
polyphthalocyanine.17 Partial oxidization or reduction of these materials will
provide unfilled bands to show considerable conductivity as high as 104 S cm-1,
which compares favorably with that of silver metal (106 S cm-1).3
Recently, research interests have started to focus on conductive coordination
polymers containing transition metals. Metal atoms in these coordination
polymers can have their partially filled d-orbitals overlapped with molecular
orbitals from the ligands, providing a pathway for the electrons to migrate.
The attractive feature of conductive coordination polymers is their potential
variability. Unlike the organic polymers, which are limited by their inherent
reduction potentials, potentials of coordination polymers can be varied by
changing either metal ions or ligand substituents on the polymer chain. Two
examples
of
conductive
coordination
polymers
are
TPT[FeIITPT]n
(PF6)2n(TPT= terpyridine-phenyl-terpyridine) and CTPCT[FeIICTPCT]n(PF6)2n
(CTPCT=chiral terpyridine-phenyl-chiral terpyridine).18
There are a number of applications for conductive polymers. The first obvious
8
advantage is their light weight, making them attractive alternatives to metals
in any application where conductivity is necessary and weight is an issue. For
example, it has been recently reported that a battery can be made using
electrodes comprised of fluorophenylthiophenes.19 Currently, conductive
polymers are found most commonly in anti-static applications and
lightweight/rechargeable battery technology.20 Future applications include
such things as electromagnetic interference shielding and chemical sensors.
9
1.4 Polypyrazolylborates
Polypyrazolylborates were first discovered by Trofimenko in 1966.21 They have
attracted a number of research interests since then in organometallic
chemistry, analytical chemistry, organic synthesis, catalysis, and materials
science.1 Polypyrazolylborate ligands generally have been used as molecular
vises to keep the metal ion in a firm multi-dentate grip, so that chemical
operations could be performed at the remaining coordination sites. A recent
book by Trofimenko describes the advances in polypyrazolylborate chemistry
over the past 30 years.1
Generally there are three kinds of polypyrazolylborates consisting of 2, 3 or 4
pyrazoles bound to the boron through one nitrogen atom of the pyrazole ring.
The remaining sites of the tetrasubstituted boron are occupied by hydrogen
atoms.
These
three
molecules
are
dihydrobispyrazolylborate
(Bp),
hydrotrispyrazolylborate (Tp), and tetrakispyrazolylborate (pzTp) (Figure
1.4.1). All polypyrazolylborates carry a single negative charge. There are some
other attractive features of polypyrazolylborates besides their multi-dentate
function and molecular rigidity. These ligands are stable and relatively easy to
synthesize. The 3, 4 and 5-positions of the pyrazole ring (Figure 1.1.1) can
carry a wide variety of substituents to modify the ligand-metal bonding
properties. For example, in hydrotrispyrazolylborate there are nine
substitutable positions on the Tp ligand, imparting a tremendous versatility.
10
H2
B
-
N
-
N
N
N
N
N
N
B
N
N
N
N
N
N
-
N
H
B
N
N
N
N
Figure 1.4.1 Dihydrobispyrazolylborate (Bp), Hydrotrispyrazolylborate (Tp), and
Tetrakispyrazolylborate (pzTp)
At this point, it is necessary to discuss the standard abbreviation system
devised by Trofimenko to represent different substituted polypyrazolylborates.
As mentioned before, Bp, Tp and pzTp are the three basic forms. TpR is used
to express a Tp ligand containing monosubstituted pyrazoles with the R group
in
the
3-position
of
the
pyrazole
ring.
For
example,
hydrotris(3-phenylpyrazolyl)borate would be abbreviated as TpPh (Ph=phenyl).
If there are identical substituents in the 3- and 5- positions then it will be
abbreviated as TpR2; hydrotris(3,5-dimethylpyrazolyl)borate is denoted as
TpMe2. In case the substituents are different on all the three positions, they can
be expressed separately as 3R1, 4R2 and 5R3, and the superscripts are
separated
by
commas.
Thus
hydrotris(4-cyano-3-methyl-5-phenylpyrazolyl)borate will be Tp3Me,4CN,5Ph.
Bispyrazolylborates are treated in exactly the same way; with the
unsubstituted bispyrazolylborate being abbreviated as Bp. Substituents in the
3-, 4-, and 5- positions follow the same rules as stated above. This convention
will be used in this dissertation.
11
Early work involving polypyrazolylborates included the synthesis of the
substituted ligands and transition metal complexes.22 The magnetic moments
and
different
spectra
of
Tp
complexes
were
determined.23,
24
Trispyrazolylborate metal complexes can have either 2:1 or 1:1 ligand-to-metal
ratio, so-called “sandwich” (Figure 1.4.2) and “half-sandwich” (Figure 1.4.3)
compounds. This nomenclature follows from an analogy between the Tp
ligands and cyclopentadienyl (Cp) ligands, both of which are monoanionic
face-capping ligands. Churchill reported the first structure of an octahedral
homoscorpionate complex, Tp2Co, by X-ray crystallography.25 Examples of
these sandwich type complexes are known for almost all first-row transition
metals, many others from the second and third rows, and some actinides and
lanthanides.26 Also, half-sandwich type complexes TpM(X)(Y)(Z) have been
prepared where M is metal atom and X, Y and Z are diverse other co-ligands.27,
28
In all polypyrazolylborate complexes, typical B-H stretching frequencies of
the
ligands
lie
in
the
region
2230-2460
cm-1
(absent
for
tetrakispyrazolylborate) and usually occur at higher energies when bonded
with a metal atom. The absence of other bands in this region makes it
particularly useful for monitoring the synthesis of Tp compounds.
12
R2 R2
H
B
N
N
R2
N
R
1
N
R
R1
M
R1
N
N
R1
M
N
X
R2
N
R1
R1
NN
B
H
R2
R2
N
N
R1
R1
N
N
H
B
N
N
N
1
R2 R2
N
Y
Z
2
R
Figure 1.4.3 "Half-Sandwich" Complex
Figure 1.4.2 "Sandwich" Complex
Because of the relative ease of adding substituents on the pyrazole ring,
research moved forward to the second generation Tp ligands – TpR, where R is
a bulky substituent such as tert-butyl or aryl groups.29,
30
With bulky
substituents these ligands can exert considerable steric effects over the
surroundings
of
the
coordinated
metal.
Examples
here
include
Tpt-BuBe(CH3),31 Tpt-Bu,MeCo(O2)32 and Tpt-BuCu(NO2).33 It has been shown that
the substitution of bulky groups in the 3-position on the pyrazole ring can
result in significant changes in the electronic properties of the coordinated
metal.34, 35 These effects have been attributed to the longer metal-nitrogen
bond distances which result in a weaker ligand field. The bulky groups form a
“pocket”, or cone-angle around the metal ion. Tp2Fe, (TpMe2)2Fe,23, 24, 36 and
(TpPh)2Fe35 are three examples carrying increasingly bulky substituents in the
3-position. The Fe-N bond length increases significantly from 1.975 Å in Tp2Fe
to 2.248 Å for (TpPh)2Fe. The increase of the metal-nitrogen bond length
results in the redox potential of the FeII/III couple of these complexes going up
13
from 0.47 V to 1.09 V, and a change from a spin-transition complex to a fully
high-spin compound was observed.
Since it has been shown that bulky substituents on the pyrazole ring can have
not only steric but also electronic effects on the metal complexes, scientists
have become more interested in employing electronically active substituents
to observe variation of electronic properties of the metal complexes. The
notable
works
involving
electronically
active
substituents
are
the
trifluoromethyl-substituted scorpionates utilized most widely by Dias37, 38 and
the cyano-substituted bispyrazolylborates reported by Eichhorn39 and
Trofimenko.40 The CF3 substituent, as a good electron-withdrawing group, has
been shown to have a large effect on the electronic properties of the
coordinated metal. For example, the CO stretching frequency of 2137 cm-1 in
Tp(CF3)2Cu(CO) represents a significant increase over those for TpCu(CO)
(2083
cm-1)
and
TpMe2Cu(CO)
(2066
cm-1).
Because
of
the
electron-withdrawing effect of the CF3 groups, back donation of electrons
from copper d-orbitals to the CO anti-bonding orbitals is reduced dramatically
so that the CO stretching frequency approaches that of free CO (2143 cm-1).38
The cyano group is another well known electron-withdrawing substituent.
Research involving the CN substituent on polypyrazolylborate metal
complexes is discussed below.
14
1.5 Cyano-substituted Scorpionates
It has been known for a long time that the cyano group carries
electron-withdrawing properties and can form coordination bonds in
transition metal complexes such as Prussian blue. There are also reported
results describing constitution of CN bridged multinuclear complexes.41, 42 In
materials comprised of charge-transfer salts of decamethylmetallocenium
cations (Cp*2M+) and the organic radical anions tetracyanoquinodimethanide
(TCNQ-)43
and
tetracyanoethylenide
(TCNE-),44
a
transition
to
a
ferromagnetically ordered phase at temperatures ranging from 3 to 8 K was
observed. The ferromagnetic ordering of these materials comes from the
intermolecular couplings. A similar type of mechanism is shown in the
Prussian blue systems, in which metal ions with different spins are bridged by
CN groups in a 3-dimensional network, again yielding a molecular
ferrimagnet.45
Trofimenko first published the Bp4CN ligand with no other substituents on the
pyrazole ring in 2000.40 Although the electron-withdrawing effect of the CN
substituent has not yet been fully explored, intractable polymer formation was
noticed, presumably due to coordination between CN and metal atoms. Prior
work in the Eichhorn group has focused on polypyrazolylborates with bulky
alkyl substituents in the 3-position and a CN group in the 4-position.
(BpPh,4CN)2Cu, (BpPh,4CN)2Co and (BpPh,4CN)2(H2O)Co have been successfully
15
synthesized and structurally characterized.39 The structures of these cobalt
and copper complexes are very similar to related complexes without CN
groups, showing only differences that can be attributed to the substituents in
the 3-position. This demonstrates that the CN substituent does not
significantly affect the structure of the metal complex. However, the
electron-withdrawing properties of CN group have not been fully studied yet.
Another result from the Eichhorn group involved the synthesis of a
cyanoscorpionate-containing
coordination
polymer.46
After
mixing
(BpPh,4CN)2Cu with Rh2(CF3COO)4 in CH2Cl2, a red precipitate formed which
had two CN stretches: 2258 and 2234 cm-1. The mass spectrum of this product
shows four major peaks: m/z = 761 corresponds to (BpPh,4CN)2Cu, while peaks
at m/z = 1418, 2075 and 2732 correspond to (BpPh,4CN)2Cu plus one, two and
three Rh2(CF3COO)4 units. This appears to indicate coordination of the CN
group to Rh ion and the formation of a polymer.
The
research
characterization
described
of
new
here
concentrates
cyano-substituted
on
the
synthesis
trispyrazolylborate
and
metal
complexes. There are three stages of this project. The first stage is synthesis
and characterization of new ligands with substituents at the 3 and 4-positions
of the pyrazole ring. Phenyl, tert-butyl and methyl groups are employed here
as the bulky 3-position substituents and there is also a cyano substituent at
the 4-position. After successful synthesis of the ligands, transition metal
16
complexes are made in the second stage with either sandwich (TpR,4CN)2M or
half-sandwich (TpR,4CN)M(XYZ) structures.
With these ligands we expect to observe steric effects initiated by bulky
substituents as well as inductive effects brought by the CN group on the
electronic properties of the metal. In addition, there is the potential for the
cyano substituents to coordinate or at least have some short contacts with
other metal centers from some small metal compounds, producing
multinuclear species as shown in Figure 1.5.1. These small metal compounds
(M’L) are “capping” the trispyrazolylborate ligands and give us the chance to
study magnetic interactions between the metal ions.
R2 R2
LM'
LM'
H
B
N
N C
N
N C
N
N
C N
N
R1
R2
M'L
N
R1
R1
M
Figure 1.5.1 Multinuclear Trispyrazolylborate Metal Complex
The third stage is the formation of coordination polymers by linking the
multinuclear species together as shown in Figure 1.5.2. Communication
between Tp-coordinated metals and cyano-ligated metals can provide a fully
conjugated pathway for electrons to migrate, so as to provide molecular
17
materials with desired magnetic and electronic properties.
N
C
H
B
N
N
N
C
H
B
N
N
C
N
NM
N
M'
N
N
C
N
N
C
N
conjug
ated pa
thway
N
MN
Figure 1.5.2 Cyano Bridged Coordination Polymer
18
N
C
N
Chapter 2 Polypyrazolylborates
2.1 Introduction
Second generation polypyrazolylborates carrying alkyl or aryl substituents
have been introduced for decades.29 They are capable of steric control over
metal complexes. The overwhelming majority of scorpionate ligands feature
substitution on the pyrazole rings by relatively electronically innocent alkyl or
aryl groups. Among the numerous substituents are phenyl, tert-butyl and
methyl groups.30 They belong to the very first group of substituents
introduced to polypyrazolylborates. Even with these ligands, substantial
effects on the electronic properties of the coordinated metal ion are realized
simply as a function of the steric requirements of the substituents, especially
that in the 3-position.23, 34, 35 Later the trifluoromethyl group and cyano group
have
been
introduced
as
electron-withdrawing
substituents
to
the
polypyrazolylborate metal complexes. The CF3 substituent has been shown to
affect metal complex electronic properties dramatically.37,
38
For the cyano
group, although its electronic activity has not been fully explored, it is noted to
have the potential to form coordination polymers.
Previous
research
work
in
the
Eichhorn
group
focused
on
dihydrobis(4-cyano-3-phenylpyrazolyl)borate and metal complexes of this
ligand. Siemer and Eichhorn reported a successful high yield synthesis of the
19
ligand and crystal structures of Co(II) and Cu(II) complexes.39 In order to
move forward with this research project, we first made trispyrazolylborate
ligands with a bulky substituent in the 3-position and a cyano group in the
4-position of the pyrazole ring. The bulky substituents here include phenyl,
tert-butyl, and methyl groups. They will allow us to explore a new series of
ligands which can exert both steric and electronic effects on metal complexes,
as well as some heteroscorpionate compounds.
A number of syntheses have been reported for pyrazoles with CN substituents
at the 4-position.39, 47, 48 However, these syntheses require the use of extreme
reaction conditions or highly toxic reagents such as cyanoform or dimethyl
sulfate. The cyano-substituted pyrazole syntheses described here use relatively
straightforward methods that avoid these extreme conditions and dangerous
materials.
20
2.2 Tris(4-cyano-3-phenylpyrazolyl)borate
2.2.1 Synthesis of TpPh,4CN
The synthesis of 4-cyano-3-phenylpyrazole was accomplished by Siemer using
a modification of a literature preparation by Tupper and Bray.48 This
preparation (Figure 2.2.1, R = Phenyl) involves attack of benzoyl chloride on
t-butylcyanoacetate,
followed
by
decarboxylation,
formation
of
the
2-benzoyl-3-dimethylamino-acrylonitrile, and reaction with hydrazine to form
the pyrazole.39
O
O
O
+
t
R
O Bu
Cl
O
NaH
Toluene
O
pTSA
Toluene
O Bu
t
R
R
DMF.DMA
Toluene
CN
CN
O
CN
NC
NH
R = phenyl, tBu, Me
N
R
H2NNH2
Methanol
R
N
CN
Figure 2.2.1 Synthesis Route of 4-cyano-3-R pyrazoles
The standard synthesis of scorpionates involves the heating of the pyrazole
with KBH4, either in a high boiling solution or in a solventless melt.
Formation of Bp or Tp is dependent on stoichiometry of the two reagents and
21
the reaction temperature. The synthesis of KBpPh,4CN and KTpPh,4CN are
accomplished in a melt at the temperatures indicated in Figure 2.2.2.
H2
B
N
N
- K+
N
NH 1/3 KBH4
210oC
1/2 KBH4
150oC
N
N
R
R
NC
R
H
B
N
N C
N
N C
N
N
N
R
-K+
C N
N
R
R
t
Figure 2.2.2 Synthesis of Bis and Tris(4-cyano-3-R-pyrazolyl)borate, R = Phenyl, Bu
The melting point of 4-cyano-3-phenylpyrazole is 138 oC. Reaction of this
pyrazole with KBH4 in a 2:1 ratio at 150 oC produces KBpPh,4CN as the major
product, while a 4:1 ratio of pyrazole to KBH4 at 230 oC yields KTpPh,4CN as the
major product, leaving a small amount of unreacted pyrazole and byproduct of
potassium tetrakis(4-cyano-3-phenylpyrazolyl)borate. The IR spectrum shows
a strong CN stretching absorption at 2230 cm-1 and a medium BH bond
absorption at 2456 cm-1. There are three major peaks in the ESI-mass
spectrum (Figure 2.2.3): m/z = 168, 516 and 1055, which correspond to
[pzPh,4CN]-, [TpPh,4CN]- and [TpPh,4CN2Na]- respectively. This 1055 peak is
interesting, as it may indicate TpPh,4CN bonding to a Na ion through the CN
group.
22
120
168.1 [pzPh,4CN]-
100
516.3 [TpPh,4CN]-
80
60
1055.0 [TpPh,4CN2Na]-
40
20
0
0
500
1000
1500
2000
2500
Figure 2.2.3 MS of TpPh,4CN
2.2.2 Synthesis and Structure of TlTpPh,4CN
Purification of scorpionates by preparation of the thallium salts is a relatively
common practice.49-51 These thallium salts have been used successfully in the
synthesis of transition metal complexes. TlTpPh,4CN was made by mixing
thallium nitrate with KTpPh,4CN in a methanol/water solution. Purification of
the product was accomplished by washing with water to yield TlTpPh,4CN as a
yellow powder. X-ray quality crystals of TlTpPh,4CN were grown by slow
diffusion of the two starting materials. An ORTEP drawing of TlTpPh,4CN is
shown in Figure 2.2.4. Selected bond distances and angles are shown in Table
2.2.1.
23
Figure 2.2.4 ORTEP Drawing of TlTpPh,4CN Shown at the 50% Probability
Level. H Atoms Have Been Omitted and Only N, B, Tl Atoms Are Labeled for
Clarity.
Table 2.2.1 Bond Distances (Å) and Angles (deg.) for TlTpPh,4CN
Tl - N
B-N
C≡N
2.804(5)
1.537(6)
1.134(8)
N - Tl - N
N-B-N
C-C≡N
72.7(2)
111.3(4)
178.5(8)
TlTpPh,4CN crystallizes in the trigonal space group P 3 , with both Tl and B
atoms situated on a crystallographic three-fold axis. The Tl ion is coordinated
by the three available N atoms of the Tp ligand. An area of electron density
situated ca. 4.372 Å off the phenyl ring could not be modeled and is assigned
to a region of disordered H2O, consistent with the elemental analysis which
was fit with four H2O molecules per TlTpPh,4CN. In addition the TlTpPh,4CN
structure shows short contacts between the Tl atom and N atoms (Tl…N 3.211
Å) from the CN substituents of three adjacent Tp ligands (Figure 2.2.5).
24
Figure 2.2.5 Raster 3D Diagram Showing the Close Contacts Between Tl and
Cyano Groups of Adjacent Pyrazoles in TlTpPh,4CN.
There is also a short contact between the Tl atom and the BH group of the Tp
ligand directly beneath it (Tl…B 3.071 Å). Aside from the intermolecular
interactions with TlTpPh,4CN, the structures of the thallium salts are very
similar to those reported for Tl salts of other Tp ligands,49-52 with a pyramidal
coordination geometry around the Tl atom. The Tl-N bonds, however, are
significantly longer than those in the Tl salts of the analogous non-cyano
ligands (Table 2.2.2), with a bond length of 2.804 Å in TlTpPh,4CN (compared
with 2.605 Å in TlTpPh).
51
A similar relationship is present in the t-butyl
system (discussed below) and between the structures of TlTpMe2
fluorinated
analog
TlTp(CF3)2,54
indicating
the
effect
53
and its
of
the
electron-withdrawing substituent on the Tl-N bond length. Interestingly, such
25
a relationship appears not to be present in transition metal complexes of
BpPh,4CN
40
or Bp(CF3)2
54
for which the M-N bond lengths are essentially
unchanged from the related non-cyano or non-fluorinated ligands.
Table 2.2.2 Tl-N Bond Distances (Å) in Scorpionate Complexes
TlTpPh,4CN
TlTpPh
TlTpt-Bu,4CN
TlTpt-Bu
TlTp(CF3)2
TlTpMe2
Tl - N
2.804
2.605
2.714
2.583
2.691
2.516
References
This Work
51
This Work
52
54
53
26
2.3 Tris(4-cyano-3-tert-butylpyrazolyl)borate
2.3.1 Synthesis and structure of Hpzt-Bu,4CN
With a goal of exploring new ligands with common bulky alkyl substituents,
we
tried
to
apply
4-cyano-3-phenylpyrazole
the
same
synthetic
procedure
used
to
make
4-cyano-3-tert-butylpyrazole
for
with
trimethylacetyl chloride as the starting material instead of benzolyl chloride
(Figure 2.2.1). A pale yellow solid is isolated in good yield, characterized by
1H-NMR.
X-ray quality crystals of this pyrazole were grown by slow
evaporation of a CH2Cl2 solution. An ORTEP drawing is shown in Figure 2.3.1
with selected bond distances and angles in Table 2.3.1.
Figure 2.3.1 ORTEP Drawing of Hpzt-Bu,4CN Showing 50% Thermal Ellipsoids,
H Atoms Have Been Omitted for Clarity.
Table 2.3.1 Bond Distances (Å) and Angles (deg.) for Hpzt-Bu,4CN
N(1) - N(2)
C(4) - N(3)
1.358(3)
1.143(4)
C(1) - N(2) - N(1)
N(2) - N(1) - C(3)
C(2) - C(4) - N(3)
27
104.9(2)
113.3(2)
179.2(3)
Hpzt-Bu,4CN crystallizes in the monoclinic space group C2/m with the pyrazole
ring and one methyl group (C6) coincident with a crystallographic mirror
plane. The nitrogen atom further away from the tert-butyl substituent is
protonated. As seen in crystal structures of other pyrazoles, two
symmetry-related pyrazole molecules form a hydrogen-bound dimer, with the
protonated pyrazole N atom on one pyrazole, N(2), interacting with the
unprotonated pyrazole N atom, N(1), on the other pyrazole (N…N 2.864 Å).
The length of this hydrogen bond (2.292 Å) is significantly longer than the
1.993 Å reported in the structure of Hpz3,5-t-Bu.55 This is, perhaps, a reflection
of the reduced ring electron-density due to the electron-withdrawing CN
group.
2.3.2 Synthesis of Tpt-Bu,4CN
Tpt-Bu is one of the classic examples of ligands with large steric hindrance,
characterized by predominant formation of tetrahedral Tpt-BuMX complexes,
and by the inability to form (Tpt-Bu)2M species.30, 56, 57 Tpt-Bu,4CN was made in a
similar
manner
to
that
used
for
TpPh,4CN
(Figure
2.2.2).
4-cyano-3-tert-butylpyrazole was melted in the presence of sodium or
potassium
borohydride
with
the
stoichiometry
of
4-cyano-3-tert-butylpyrazole has a lower melting point (~125
4:1.
As
oC)
than
4-cyano-3-phenylpyrazole, the temperature was increased to no more than
210 oC. After purification in boiling toluene, KTpt-Bu,4CN is collected as a light
28
yellow
powder.
There
is
some
unreacted
pyrazole,
Bpt-Bu,4CN
and
pzt-Bu,4CNTpt-Bu,4CN detected as byproducts. The IR spectrum shows a strong CN
stretch at 2231 cm-1 and medium BH bond absorption at 2460 cm-1. ESI-mass
spectroscopy shows the major peaks at m/z = 456.4, corresponding to
[Tpt-Bu,4CN]- and 148.3, corresponding to the deprotonated pyrazole (Figure
2.3.2). Minor peaks representing the bis- and tetrakispyrazolylborates are
evident, as well as those corresponding to addition of two scorpionate ions
and one sodium ion.
120
456.4 [Tpt-Bu,4CN]-
100
148.3 [pzt-Bu,4CN]-
80
603.5
[pzt-Bu,4CNTpt-Bu,4CN]-
60
40
934.9
[NaTp2t-Bu,4CN]-
788.1
[NaBpt-Bu,4CNTpt-Bu,4CN]-
20
309.5 [Bpt-Bu,4CN]-
0
0
200
400
600
800
1000
1200
Figure 2.3.2 MS of Tpt-Bu,4CN
2.3.3 Synthesis and Structure of TlTpt-Bu,4CN
Thallium hydrotris(3-tert-butyl-4-cyanopyrazolyl)borate was made by the
same procedure described above using Tl(NO3) and KTpt-Bu,4CN, in order to
29
purify the ligand and characterize the structure. Colorless X-ray quality
crystals were grown by layering a methanol solution of the ligand on top of the
methanol/water solution of thallium nitrate. ORTEP drawings of TlTpt-Bu,4CN
are shown in Figure 2.3.3, with selected bond distances and angles in Table
2.3.2. TlTpt-Bu,4CN crystallizes in the rhombohedral space group R3m. Both the
Tl and B atoms are situated on positions with 3m symmetry such that each
pyrazole ring is coplanar with a crystallographic mirror plane that also
contains the central C atom and one methyl group of the tert–butyl
substituent. As mentioned above, the Tl-N bond length is significantly longer
than that in TlTpt-Bu 52(Table 2.2.2).
Figure 2.3.3 ORTEP Drawing of TlTpt-Bu,4CN Shown at the 50% Probability
Level. H Atoms Have Been Omitted and Only B, N, Tl Atoms Are Labeled for
Clarity.
30
Table 2.3.2 Bond Distances (Å) and Angles (deg.) for TlTpt-Bu,4CN
Tl - N
B-N
C≡N
2.714(4)
1.544(5)
1.150(9)
N - Tl - N
N-B-N
C-C≡N
76.3(1)
112.2(3)
179.6(8)
Unlike the crystal structure of TlTpPh,4CN, there are no obvious intermolecular
interactions involving the Tl atom in TlTpt-Bu,4CN. Although the cyano N atoms
from neighboring Tp ligands are still situated between the pyrazole rings, the
distance between Tl and these N atoms is increased to 3.854 Å. As has been
seen before with the analogous non-cyano Tp ligands,30 the steric demands of
the tert-butyl substituent reduce the accessibility of the coordinated metal
with respect to the somewhat less bulky phenyl substituent.
31
2.4 Tris(4-cyano-3,5-dimethylpyrazolyl)borate
2.4.1 Synthesis of HpzMe2,4CN
Pyrazoles with methyl substituents are among the first substituted pyrazoles
that
have
been
synthesized
and
characterized.
The
synthesis
of
4-cyano-3,5-dimethylpyrazole has been reported,58 but we have developed a
new, more straightforward synthesis of this compound. Belot and co-workers
reported the synthesis of 3-cyano-2,4-pentanedione by the reaction of
2,4-pentanedione with chlorosulfonylisocyanate.59 Reaction of this compound
with
hydrazine
monohydrate
produces
the
desired
4-cyano-3,5-dimethylpyrazole in good yield (Figure 2.4.1).
O
2.0 eq.
O
O
+ 1.0 eq. ClSO2NCO
O
2.0 eq.DMF
CH2Cl2
H2NNH2
CH3OH
NH
NC
N
N C
N C
N
_
K+
H
B
N
N
N
N
1/3 KBH4
200oC
CN
C N
THF
Ethyl Ether
N
Figure 2.4.1 Synthesis of Tris(4-cyano-3,5-dimethylpyrazolyl)borate
Unlike the phenyl and t-butyl pyrazoles, 4-cyano-3,5-dimethylpyrazole
appears to be unstable upon exposure to air. Mass spectroscopy recorded
32
immediately after synthesis shows only one major peak at m/z = 120, which is
the anion of 4-cyano-3,5-dimethylpyrazole. After exposure to air for a couple
of days, a peak begins to grow in at m/z = 95, consistent with
3,5-dimethylpyrazole (i.e., loss of the CN group). Another major peak appears
at m/z = 125 with almost the same intensity as that at 120. The peak at 125 is
consistent
with
3-cyano-2,4-pentanedione.
This
indicates
that
4-cyano-3,5-dimethylpyrazole may be unstable in the air, and the pyrazole
ring decomposes with a mechanism that may include reaction with H2O in the
air. Samples stored under a nitrogen atmosphere do not exhibit this
decomposition.
2.4.2 Synthesis of TpMe2,4CN
Tris(4-cyano-3,5-dimethylpyrazolyl)borate was made by a similar procedure
as above by melting 4-cyano-3,5-dimethylpyrazole in the presence of sodium
or potassium borohydride with a 4:1 stoichiometry. Since this pyrazole has a
much lower melting point (~120 oC) than the phenyl or tert-butyl substituted
pyrazoles, the temperature was increased to under 200 oC. The product was
dissolved in THF and then crashed out with ethyl ether for purification. The
final yield of the yellow solid TpMe2,4CN is about 63%. The IR spectrum shows a
CN stretch at 2224 cm-1 and a BH peak at 2426 cm-1. ESI-mass spectroscopy
shows peaks for [pzMe2,4CN]- at m/z = 120.3, [pzMe2,4CN]2- at m/z = 241.2 and
[TpMe2,4CN]- at m/z = 372.5 (Figure 2.4.2).
33
120
120.3 [pzMe2,4CN]100
80
60
40
20
241.2 [pzMe2,4CN]2-
372.5 [TpMe2,4CN]-
0
50
100
150
200
250
300
350
400
450
500
Figure 2.4.2 MS of TpMe2,4CN
Tris(4-cyano-3,5-dimethylpyrazolyl)borate also seems to be unstable in the air.
This ligand was used to make some cobalt and copper complexes. The only
crystal isolated from the dichloromethane solution, instead of (TpMe2,4CN)2Cu,
is bis(3-cyano-2,4-pentanedionato)copper, which has already be reported.59
34
2.5 4-cyano-3-methylpyrazole
We
tried
to
employ
the
same
synthetic
procedure
to
make
4-cyano-3-methylpyrazole as for 4-cyano-3-phenylpyrazole and 4-cyano-3tert-butylpyrazole, using acetyl chloride as the starting material (Figure 2.2.1).
Unfortunately, we were only able to isolate 4-cyano-3-methyl pyrazole at a
very low yield (~5%). It appears the presence of the α-hydrogen makes the
reaction much less effective. A new synthetic route has to be found to make
this substituted pyrazole.
35
2.6 Heteroscorpionates
2.6.1 Heteroscorpionate Introduction
Heteroscorpionates are polypyrazolylborates carrying different pyrazole
groups and other alkyl or aryl groups bonded to the boron atom. The
attractive feature of heteroscorpionates lies in their greater variety. While
possessing the same options of containing different 3-, 4-, and 5-substituents
on the pyrazole ring, it has at least two groups on boron that can be varied. Yet
this sub-area of polypyrazolylborate ligands remains new and needs more
research attention.
c
R'Z
R
The first heteroscorpionate was
c'
B
N
reported in 1966 by Trofimenko,21
N
b'
b
N
a
and
N
the
known
heteroscorpionate
types
ligands
of
are
a'
mostly bispyrazolylborates which
Figure 2.6.1 Bis-heteroscorpionate
can be expressed as R(R’Z)B(pzxpzy) (Figure 2.6.1). R and R’ can be H, alkyl, or
aryl groups and Z is a heteroatom (O, S, NR’). The two pyrazole rings either
bond to boron through different nitrogen atoms or they carry different
substituents. Heteroscorpionate metal complexes have also been reported.60-62
When polypyrazolylborates bond with the metal atom, the 3- and 5-positions
of the pyrazole ring are not identical any more. If there are substituents on
36
these two positions, it is possible for rearrangement and the formation of
heteroscorpionates.
Examples
of
this
kind
of
complexes
include
HB[(pz3Me,5i-Pr)(pz5Me,3i-Pr)2]Mo(NO)I2,60 [HB(pz3Me,4Br)2(pz5Me,4Br)]Co(NCS),61
[{η3-HB(pz3Ph)2(pz5Ph)}2Al][AlCl4],62
[HB(pz3Ph)2(pz5Ph)]2Fe63
and
[HB(pz3Ph)2(pz5Ph)]2Co. 64
Heteroscorpionates can play an important role in this research project. The
goal is to make conductive coordination polymers by linking different
multinuclear metal complexes via the cyano substituents. Homoscorpionates
such as TpPh,4CN will potentially produce 2- or 3-dimensional polymer matrices,
which are hard to control and construct. Heteroscorpionates such as
pzR,4CNBpR and pzRBpR,4CN (Figure
H
B
2.6.2) carry only one or two cyano
substituents. They can be used to build
R
1-dimensional polymer chains. Also,
pzR,4CNBpR can act as a chain terminus,
N
N
N
N
CN
n
R
3-n
pzRBpR,4CN, n=1
pzR,4CNBpR, n=2
allowing for control over the length of Figure 2.6.2 Cyano Tris-heteroscorpionate
growing polymer chains.
37
2.6.2 Synthesis of pzPhBpPh,4CN
The
first
attempt
to
synthesize
pzPhBpPh,4CN
was
simply
to
mix
4-cyano-3-phenylpyrazole, 3-phenylpyrazole and KBH4 with a stoichiometry
of 2:2:1. The temperature was increased to 230 oC with an oil bath. After
purification the final product was a darker yellow color solid which is similar
to TpPh,4CN. Mass spectroscopy showed the desired product (m/z = 491) along
with many other byproducts (Figure 2.6.3).
120
516.4 [TpPh,4CN]-
100
633.4 [(pzPh)2(BpPh,4CN)]-
491.6 [pzPhBpPh,4CN]-
80
658.4 [pzPhTpPh,4CN]-
168.2 [pzPh,4CN]-
60
608.3 [pzPh,4CNTpPh]-
40
466.4 [pzPh,4CNBpPh]-
20
0
0
200
400
600
800
1000
Figure 2.6.3 MS of Heteroscorpionate 1
Given the stoichiometry and the temperature of the reaction, there could be
quite a few possibilities for the formation of not only trispyrazolylborates, but
also
tetrakispyrazolylborates
(pzTp),
including
both
homo
and
heteroscorpionates. Mass spectroscopy showed a wide range of products,
including the homotrispyrazolylborate TpPh,4CN, the heterotrispyrazolylborates
38
pzPhBpPh,4CN
and
pzPh,4CNBpPh,
and
the
heterotetrakispyrazolylborates
pzPh,4CNTpPh, pzPh TpPh,4CN and (pzPh)2BpPh,4CN. Although this method results in
the synthesis of the desired heteroscorpionate, it is too random to give a pure
product.
Since pzPhBpPh,4CN is the one of greatest interest, we thought that it would be
much better for the synthesis by making BpPh,4CN first and then let it react with
3-phenylpyrazole in the right ratio. The synthesis of BpPh,4CN has already been
reported.39 BpPh,4CN and 3-phenylpyrazole were melted together with a
stoichiometry of 1:1 in the oil bath at 230 oC. Unfortunately, the mass
spectroscopy still showed a significant amount of scrambling (Figure 2.6.4). It
seems to be necessary to find a new way by which the reaction could be better
controlled.
120
168.2 [pzPh,4CN]-
100
80
516.5 [TpPh,4CN]-
60
491.6 [pzPh,BpPh,4CN]-
40
633.3 [(pzPh,4CN)2(BpPh)]-
20
0
0
100
200
300
400
500
600
Figure 2.6.4 MS of Heteroscorpionate 2
39
700
800
2.7 Conclusion
The ability to synthesize pyrazoles with a variety of substituents creates
versatility of polypyrazolylborates.
Cyano-substituted scorpionate ligands
have been reported before. We extended the range to trispyrazolylborates
carrying the cyano substituent in the 4-position and bulky substituents such
as phenyl, tert-butyl and methyl groups in the 3-position. Successful syntheses
have been developed for all pyrazoles except HpzMe,4CN. The instability of the
4-cyano-3,5-dimethylpyrazole in air has been noticed, but the mechanism of
this decomposition still needs to be determined.
Thallium trispyrazolylborates were made in order to purify the ligands and
characterize the structures. X-ray crystal structures of thallium salts were
determined and the electron-withdrawing property of the CN substituent is
shown. Compared with reported data for the analogous non-cyano ligands, the
TlTpR,4CN structures show significantly longer Tl-N bonds. There are short
contacts between the Tl atom and CN substituents of adjacent Tp ligands in
TlTpPh,4CN, as well as between the Tl atom and the B-H group of the Tp ligand
directly beneath it. Theses short contacts are absent in TlTpt-Bu,4CN structure.
Because the tert-butyl substituent is more bulky than the phenyl group,
Tpt-Bu,4CN allows less access to the coordinated metal than does the
phenyl-substituted ligand, TpPh,4CN.
40
The synthesis of heteroscorpionates is another focus of the research on
polypyrazolylborates due to the greater versatility they provide. Two different
ways have been attempted for making pzPhBpPh,4CN. Clearly it is possible to
make heteroscorpionates containing cyano-substituted pyrazoles and their
non-cyano analogs, but further work is necessary on purification of the final
product and finding a better way to control the reaction.
41
2.8 Experimental
2.8.1 General Experimental
This section will serve as general information regarding laboratory procedures,
chemicals used, and techniques used for experimental procedures. Unless
otherwise stated, all solvents and reagents were used as received from TCI
(tert-butylcyanoacetate), Aldrich, Acros, and Fisher Scientific without further
purification. Dry solvents were distilled from sodium/benzophenone for
tetrahydrofuran, toluene and hexanes. Calcium hydride was used for
methylene chloride, acetonitrile and dimethylformamide. Degassed solvents
were dried first, and then purged with nitrogen. Air-sensitive compounds
were manipulated in a Vacuum Atmospheres Inc. Nexus One drybox,
equipped with a variable temperature freezer, or on a double manifold
Schlenk line using standard Schlenk techniques. NMR spectra were obtained
using either Varian Mercury 300MHz NMR or Varian Inova 400MHz NMR,
both equipped with Oxford magnets. IR spectra were obtained using a Nicolet
Avatar 360 FTIR. Electrospray Ionization Mass Spectroscopy was obtained by
Dr. Michael Van Stipdonk (Wichita State University) with a Finnigan LCQ
DECA. Elemental analyses were obtained from M-H-W Laboratories, Phoenix,
AZ. X-ray crystal structures were determined using an Enraf-Nonius CAD4
diffractometer (Mo Kα, λ=0.71069 Å) equipped with an Oxford Cryosystems
Cryostream 700 low-temperature apparatus. Suitable crystals were identified
42
using a polarizing microscope, affixed to a glass fiber using Paratone-N oil
(Exxon) and were immediately transferred to the cold stream of the
diffractometer. The unit cells were determined from the setting angles of 24
reflections with 20o<2θ<24o. The data were processed and the structures
solved and refined using the WinGX software package.65 The data were
corrected for Lorentz and polarization effects, secondary extinction, and an
empirical absorption correction based on azimuthal scans of three intense
reflections or using the DIFABS program66 was applied. The structures were
solved by direct methods67 and refined by full-matrix least-squares
techniques68 with values for ∆f' and ∆f" from Creagh and McAuley.69 All
non-hydrogen atoms were refined with anisotropic temperature factors.
Hydrogen atoms were included at idealized positions, but were not refined.
TlTpt-Bu,4CN
crystallographic
data
were
collected
by
Charlotte
Stern
(Northwestern University) with a Bruker SMART-1000 CCD diffractometer
equipped with a graphite-monochromated Mo Kαradiation source; the
structure was solved and refined as described above.
2.8.2 Synthesis of Potassium hydrotris(4-cyano-3-phenylpyrazolyl)borate
[KTpPh,4CN]
The synthesis of 4-cyano-3-phenylpyrazole has been reported before.39 To
0.700 g (4.14 mmol) of 4-cyano-3-phenylpyrazole was added 0.056 g (1.04
mmol) of KBH4. The two solids were ground together by means of a mortar
43
and pestle, and placed into a round bottom flask equipped with a water-cooled
condenser. The flask was placed in an oil bath, which was heated slowly to 230
oC.
As the pyrazole melted and reacted with KBH4, hydrogen bubbles were
released.
The reaction was continued for 2 hours. After cooling, the solid
product was washed with CH3CN and boiling toluene to yield KTpPh,4CN as a
pale yellow solid (0.479 g, 0.86 mmol, 82.7%). IR (cm-1, KBr pellet): 695(s),
773(s), 2230(νCN, s), 2456(νBH, m). 1H NMR (d6-DMSO, δ downfield of TMS):
7.45(m, 3H), 7.90(m, 2H), 8.30(s, 1H). ESI-MS (THF, negative detection):
(m/z) = 168.1 [pzPh,4CN]-, 516.3 [TpPh,4CN]-, 1055.0 [Na(TpPh,4CN)2]-.
2.8.3 Synthesis of Thallium(I) hydrotris(3-phenyl-4-cyanopyrazolyl)borate
[TlTpPh,4CN]
To a solution of KTpPh,4CN (1.740 g, 3.11 mmol) in 20 mL of methanol was
added a
solution of TlNO3 (0.830 g, 3.11 mmol) in 20 mL of 50/50
methanol/water. The mixture was stirred for an hour. Concentration of the
solution on a rotary evaporator resulted in a yellow precipitate of TlTpPh,4CN,
which was collected and washed with water to give 1.842 g (2.56 mmol, 82.6%)
of light yellow powder. IR (KBr, cm-1): 2226(νCN, s), 2448 (νBH, m). ESI-MS
(CH3OH, positive detection): m/z = 744.1 [TlTpt-Bu,4CN]Na+. Elemental
Analysis, Found (Calc’d for C30H19N9BTl·4H2O): C, 45.62 (45.45); H, 3.35
(3.43); N, 14.29 (15.90). X-ray quality crystals were grown by layering a
solution of KTpPh,4CN in methanol on top of a solution of TlNO3 in
44
water/methanol. After allowing the solutions to diffuse together for a week,
the top was removed and the solvent allowed to slowly evaporate, producing
light yellow crystals. X-ray data collection and structure solution parameters
are listed in Table A. Atomic positions, thermal parameters, and metrical
parameters are listed in Table B1-4.
2.8.4 Synthesis of 4-cyano-3-tert-butylpyrazole [Hpzt-Bu,4CN]
The compound was prepared by using a method similar to that used for
4-cyano-3-phenylpyrazole.39 A suspension of sodium hydride (60% dispersion
in mineral oil, 2.812 g, 70.30 mmol) in 150 mL dry toluene was put under
nitrogen and cooled by means of an ice/water bath. To this suspension a
solution of tert-butylcyanoacetate (10 mL, 70.3 mmol) in 10 mL of dry toluene
was added dropwise with bubbles appearing immediately. The mixture was
stirred for 18 hours. The solution became viscous, and to this solution was
added, dropwise, trimethylacetyl chloride (8.65 mL, 70.30 mmol) in 10 mL of
dry toluene. The solution immediately became less viscous and slightly yellow.
After stirring overnight, 100 mL of aqueous 0.2 M sodium hydroxide was
added and the aqueous layer was separated from the organic layer. The
organic layer was extracted with two more portions (100 mL each) of 0.2 M
sodium hydroxide. The yellow aqueous layers were combined and washed
once with ethyl ether. The aqueous solution was acidified with 100 mL of 2 M
HCl - an amount that neutralizes the NaOH used for extraction, and provides
45
two additional equivalents to fully protonate the product. A white precipitate
came out immediately with the addition of HCl. The acidified solution with
precipitate (pH ~ 1) was then extracted with three portions of ethyl ether (100
mL each), which were combined, and dried over magnesium sulfate. After
filtration, the solvent was removed under reduced pressure to yield 6.690 g
(29.72 mmol, 42.3%) of tert-butyl-2-cyano-3-oxo-4,4-dimethylpentanoate.
The product was then dissolved in dry toluene (150 mL), to which was added
p-toluenesulfonic acid (0.565 g, 2.97 mmol). This solution was heated at
reflux for 18 hours and then filtered to remove some insoluble material. The
solvent
was
removed
under
reduced
pressure
to
yield
3-oxo-4,4-dimethylpentanenitrile (4.702 g, 26.70 mmol, 90.0%), as a yellow
solid. This product was redissolved in 150 mL of dry toluene and 3.90 mL
(29.37 mmol) of DMF-dimethylacetal was added. The mixture was stirred for
18h under nitrogen. The solvent was removed under reduced pressure, and
the product was chromatographed using a silica gel column (100-200 mesh)
with CH2Cl2 as the mobile phase. The desired product had a very low retention
time, and almost all other products adsorbed onto the silica very strongly.
Eluent from the column was evaporated under reduced pressure, yielding
2-tert-butyl-3-dimethylaminoacrylonitrile as a yellow solid (4.175 g, 23.21
mmol, 86.8%).
This product was dissolved in 100 mL of methanol and was
treated with hydrazine monohydrate (2.25 mL, 46.44 mmol). This mixture
was stirred for 18 hours, resulting in slightly lighter color. The solvent was
46
removed under reduced pressure and the product was chromatographed using
a silica gel column (100-200 mesh) with 50/50 ethyl acetate/hexanes to give
4-cyano- 3-tert-butylpyrazole (very light yellow solution) as the first fraction.
The solvent was removed under reduced pressure, yielding 4-cyano3-tert-butylpyrazole as a pale yellow solid (1.954 g, 13.12 mmol, 56.4%). IR
(KBr, cm-1): 1366(m), 2226(νCN, vs). 1H NMR (CDCl3): 1.45(s, 9H), 7.82(s, 1H).
ESI-MS (THF, negative detection): m/z = 148.3 [pzt-Bu,4CN]-. Elemental
Analysis, Found (Calc’d for C8H11N3): C, 64.16 (64.40); H, 7.56 (7.43); N,
26.70 (28.16). X-ray quality crystals were grown by slow evaporation of a
toluene solution. X-ray data collection and structure solution parameters are
listed in Table A. Atomic positions, thermal parameters, and metrical
parameters are listed in Table C1-4.
2.8.5 Synthesis of Potassium hydrotris(4-cyano-3-tert-butylpyrazolyl)borate
[KTpt-Bu,4CN]
Potassium borohydride (0.064 g, 1.7 mmol) and 4-cyano-3-tert-butylpyrazole
(1.000 g, 6.7 mmol) were combined in a round-bottom flask fitted with a
reflux condenser and slowly heated to 210 oC for one hour. The reaction
mixture was allowed to cool, and the resulting powder was washed with
CH3CN and boiling toluene to yield KTpt-Bu,4CN as a pale yellow solid (0.593 g,
1.19 mmol, 70.0%). IR (KBr, cm-1): 2231(νCN, s), 2460 (νBH, m). ESI-MS (THF,
negative detection): m/z = 148.3 [pzt-Bu,4CN]-, 456.4 [Tpt-Bu,4CN]-, 309.5
47
[Bpt-Bu,4CN]-, 603.5 [pzt-Bu,4CNTpt-Bu,4CN]-, 788.1 [NaBpt-Bu,4CNTpt-Bu,4CN]-, 934.9
[NaTp2t-Bu,4CN]-.
2.8.6 Synthesis of Thallium(I) hydrotris(4-cyano-3-tert-butylpyrazolyl)borate
[TlTpt-Bu,4CN]
Same procedure as used to make TlTpPh,,4CN was applied here with 1.082 g
(2.18 mmol) KTpt-Bu,4CN and 0.583 g (2.18 mmol) TlNO3. Yield: (1.201 g, 1.82
mmol, 83.4%) TlTpt-Bu,4CN. IR (KBr, cm-1): 2221(νCN, s), 2452 (νBH, m). ESI-MS
(CH3OH,
positive
detection):
m/z
=
458.2
[H2Tpt-Bu,4CN]+,
662.0
[TlTpt-Bu,4CN]H+. Elemental Analysis, Found (Calc’d for C30H19N9BTl·3H2O): C,
40.48 (40.33); H, 4.22 (5.22); N, 15.85 (17.64). X-ray quality crystals were
grown as for TlTpPh,4CN. X-ray data collection and structure solution
parameters are listed in Table A. Atomic positions, thermal parameters, and
metrical parameters are listed in Table D1-4.
2.8.7 Synthesis of 4-cyano-3,5-dimethylpyrazole [HpzMe2,4CN]
Synthesis of 3-cyano-2,4-pentanedione has been reported before.59 To a
solution of 0.251 g (2 mmol) of 3-cyano-2,4-pentanedione in methanol was
added 0.100 g (2 mmol) hydrazine monohydrate, giving a lighter yellow color
after stirring overnight. After drying over Na2SO4, the solvent was removed
under reduced pressure yielding 4-cyano-3,5-dimethylpyrazole as a white
powder (0.212 g, 86.5%). IR (cm-1, KBr pellet): 631(s), 984(s), 1093(m),
48
1148(m), 1379(m), 1547(s), 1638(s), 2192(νCN, s). 1H NMR (CDCl3): 2.40(s).
ESI-MS (THF, negative detection): m/z = 120.3 [pzMe2,4CN]-.
2.8.8 Synthesis of Potassium hydrotris(4-cyano-3,5-dimethylpyrazolyl)borate
[KTpMe2,4CN]
Potassium
borohydride
(0.263
g,
6.82
mmol)
and
4-cyano-3,5-dimethylpyrazole (3.274 g, 27.00 mmol) were combined in a
round-bottom flask fitted with a reflux condenser and slowly heated to 200 oC.
The reaction was continued for one hour. After cooling, the solid product was
dissolved in THF, precipitated with ethyl ether, filtered, and washed with
boiling toluene to yield KTpMe2,4CN as a pale yellow solid (1.414 g, 3.41 mmol,
63.1%). IR (KBr, cm-1): 2224(νCN, s), 2426 (νBH, m). ESI-MS (THF, negative
detection): m/z = 120.3 [pzMe2,4CN]-, 241.2 [pzMe2,4CN]2-, 372.5 [TpMe2,4CN]-.
2.8.9 Synthesis of 4-cyano-3-methylpyrazole [HpzMe,4CN]
The same procedure was used as for 4-cyano-3-tert-butylpyrazole, except
acetyl chloride (5.02 ml, 70.3 mmol) replaced trimethylacetyl chloride as the
starting material. The final product was a yellow solid in only about 5% yield.
IR (cm-1, KBr pellet): 668(s), 951(m), 1098(s), 1520(s), 1651(m), 2236(νCN, vs).
1H
NMR (CDCl3): 2.48(s, 3H), 7.82(m, 1H), 10.70(N-H, broad).
49
2.8.10 Synthesis of pzPhBpPh,4CN
Attempt 1. 4-cyano-3-phenylpyrazole (1.022 g, 6.06 mmol), 3-phenylpyrazole
(0.873 g, 6.06 mmol) and KBH4 (0.160 g, 3.03 mmol) were mixed together
and placed into a round bottom flask equipped with a water-cooled condenser.
The flask was placed in an oil bath, which was heated slowly to 230 oC. As the
pyrazoles melted and reacted with KBH4, hydrogen bubbles were released.
The reaction was continued for 2 hours. The solid product was dissolved in 5
mL THF. After filtration, the product was precipitated using ethyl ether and
filtered. The solid was dried in vacuum to give the final product as a yellow
powder (1.171 g, 2.37 mmol, 78.3%). IR (cm-1, KBr pellet): 697(s), 832(m),
944(s), 1710(s), 2215(νCN, s), 2460(νBH, w). ESI-MS (THF, negative detection):
m/z
=
168.4
[pzPh,CN]-,
466.4
[HB(pzPh,4CN)(pzPh)2]-,
491.6
[HB(pzPh,4CN)2(pzPh)]-, 516.4 [TpPh,4CN]-, 633.4 [pzPh2BpPh,4CN]- and 658.4
[pzPhTpPh,4CN]-.
Attempt 2. KBpPh,4CN was synthesized as previously described.39 KBpPh,4CN
(0.590 g, 1.52 mmol) and 3-phenylpyrazole (0.211 g, 1.52 mmol) were heated
together to 230 oC in an oil bath for 2-3 hours. Then, as with TpPh,4CN, the
product was cooled down and washed with CH3CN and boiling toluene to yield
a yellow powder (0.474 g, 0.96 mmol, 63.2%). IR (cm-1, KBr pellet): 697(s),
832(m), 944(s), 1710(s), 2211(νCN, s), 2457(νBH, w). ESI-MS (THF, negative
detection): m/z = 168.4 [pzPh,CN]-, 491.6 [HB(pzPh,4CN)2(pzPh)]-, 516.5
[TpPh,4CN]- and 633.3 [pzPh2BpPh,4CN]-.
50
Chapter 3 Scorpionate Metal Complexes
3.1 Introduction
Trispyrazolylborate metal complexes with the 2:1 ligand-to-metal ratio,
so-called “sandwich” compounds, were among the first scorpionate
compounds isolated.21 The Tp ligands usually coordinate in tridentate fashion,
forming octahedral complexes Tp2M. This type of complex involves metals
from almost every group in the periodic table such as Tp2Cu23 and [NaTp2]-,70
and most of them have been studied by X-ray crystallography and
spectroscopy.
The second generation trispyrazolylborates carry substituents at the 3-, 4and/or 5-positions of the pyrazole ring, as well as on the boron atom. These
substituents have a wide range of selections from phenyl, tert-butyl and
methyl groups to bromo and trifluoromethyl groups. Research on metal
complexes of these ligands concentrates on the effects of substituents on the
metal ion as well as the whole molecule, including shifts of coordination bond
lengths and angles, changes in electronic and magnetic properties, ligand
rearrangements and metal-metal communication. Because of the steric
hindrance
introduced
by
the
bulky
substituents,
substituted
trispyrazolylborate metal complexes increasingly favor a “half-sandwich”
formula with a 1:1 ligand-to-metal ratio,30 such as seen in PhTpt-BuFe(CO)71
51
and Tp(CF3)2Cu(CO).38
Polypyrazolylborate metal complexes have a large variety of applications
especially in catalytic reactions and enzyme modeling. They are known to
display catalytic effect in polymerization,72 oligomerization,73 carbene and
nitrene transfer,74 oxidation75 and decarboxylation.76 Scorpionate ligands have
been used by many scientists in modeling studies for various bioinorganic
systems, in particular for enzymes in which the metal is coordinated by three
imidazolyl nitrogen atoms from three histidine ligands. Substituents at the
3-position of the pyrazole ring can provide a hydrophobic pocket and adjust
the geometry of the compounds. Important examples here include
[TpFe]2(µ-O)(µ-OOCR2)2 (R = H, Me and Ph) in modeling hemerythrin, an
oxo-bridged diiron enzyme77 and TpPh2Cu(NO), modeling a possible
intermediate in nitrite reduction by copper nitrite reductase.78 Furthermore,
heteroscorpionates combining both N and S donors have been used to mimic
the coordination by histidines and methionine or cysteines coordinated to the
biologically active metal ion.1
CF3 and CN groups are the only two strong electronically active substituents
known
so
far
for
polypyrazolylborate
metal
complexes.
The
electron-withdrawing CF3 substituent has been shown to reduce the electron
density on the coordinated metal and significantly alter its reactivity.38 For the
52
cyano substituent, the electronic activity has not yet been fully explored
although its potential to form coordination polymers has been noticed.40
Previous
work
in
the
Eichhorn
group
has
involved
bis(4-cyano-3-phenylpyrazolyl)borate-metal complexes such as (BpPh,4CN)2Cu,
(BpPh,4CN)2Co and (BpPh,4CN)2(H2O)Co, concentrating on synthesis and
structure characterization.39 Described below is a continuation of this effort
with the synthesis of related trispyrazolylborate complexes with transition
metals such as Mn, Fe, Co and Cu. Structural information and physical
properties observation are used to identify steric and electronic effects of the
substituents, as well as the potential of the CN group for constructing
coordination polymers.
53
3.2 TpR,4CN Complexes of Cobalt, Manganese and Iron
3.2.1 (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe
Cobalt trispyrazolylborate complexes were some of the earliest metal
scorpionate
complexes
(TpMe2)2Co.21-23,
28
reported,
For
including
Tp2Co,25
phenyl-substituted
(pzTp)2Co,
and
trispyrazolylborates,
TpPhCo(NCS)(THF) has been made and studied by X-ray crystallography by
Trofimenko.30 There are some unusual examples of cobalt complexes with
TpPh ligands: [(η3-TpPh)(η2-TpPh)Co]79, (TpPh)*2Co64 and (Tpi-Pr)*2Co.61 In the
first compound, one of the two TpPh ligands acts in a bidentate manner, giving
a compound similar to BpPhTpPhCo.80 In the last two, (TpPh)*2Co and
(TpiPr)*2Co, only two of the substituents on each ligand are in the 3-position of
the pyrazole, pointing “down” towards the other ligand. The third pyrazole
ring shifts such that the substituent is in the 5-position, pointing “up” and
away from the other ligand. These two molecules have inversion symmetry as
the “up” pyrazoles are trans to each other (Figure 3.2.1). In (TpiPr)*2Co, the
Co-N bond between cobalt and the “up” pyrazole is only 2.102 Å, a little
shorter than those between cobalt and two “down” pyrazoles (2.164 Å). This
ligand isomerization is probably due to the steric hindrance brought by the
bulky substituents on the pyrazole rings.
54
H
B
H
B
R
N
N
N
N
2
N
N
N
N
2
R
R
R
M
M
R
R
R
N
N
N
N
N 2
B
H
N
N 2
B
H
N
R
Figure 3.2.1 Ligand Isomerization in Scorpionate Metal Complexes
Manganese(II) and manganese(IV) complex of Tp ligands were both reported.
Tp2Mn,22 (TpPh)2Mn35 and [(TpMe2)2Mn][ClO4]281 have been structurally
characterized by X-ray crystallography. Dinuclear manganese Tp complexes
have also been synthesized as possible models for some manganese
enzymes.82
Octahedral complexes Tp2Fe, (TpMe2)2Fe34 and (TpPh)2Fe35 have been
structurally characterized. The bond lengthening in going from low-spin to
high-spin in (TpMe2)2Fe was found to be one of the largest known.34 It is also
interesting to notice the ligand isomerization of (TpPh)2Fe when treated with
m-chloroperoxybenzoic acid.63 The Fe-N bond between iron and the “up”
pyrazole in (TpPh)*2Fe is only 2.080 Å, similar to that in Tp2Fe and much
shorter than the other two Fe-N bonds which are similar to those found in
(TpPh)2Fe.
55
The mechanism of this isomerism is unclear although it is also reported in
Tpi-Pr complexes with NiII, FeII, CuII and ZnII 61 and Tp3i-Pr,5MeMo(NO)I2.60 It
has been suggested that it occurs via a “1,2-boratropic shift” (Figure 3.2.2).
The boron shifts from one of the pyrazole nitrogen atoms to the other,
resulting in an apparent interchanging of the 3- and 5-positions. This could be
facilitated by oxygen atom or solvent molecules such as methanol through
formation of transient coordination bond with the metal. In this intermediate
one of the pyrazoles is no longer bound to the metal and thus can undergo a
1,2-shift and recoordinate back to the metal, eliminating the oxygen or solvent
molecules.
R
R
N-N
N-N
M
R
X
BH
N-N
R
X = O or Solvent
M
BH
N-N
N-N
N-N
R
R
R
N-N
X
R
M
R
N-N
BH
N-N
R
M
N-N
N-N
R
R
Figure 3.2.2 1,2-Boratropic Shift
56
BH
N-N
Cobalt usually forms octahedral complexes with six coordination bonds. We
tried to make (TpPh,4CN)2Co by mixing two equivalents of KTpPh,4CN with one
equivalent of either Co(NO3)2·6H2O or Co(ClO4)2·6H2O. Products of the
reaction with Co(NO3)2·6H2O in THF solution were hard to purify. Mass
spectroscopy of the product did not show any evidence for (TpPh,4CN)2Co.
Instead, there are peaks at m/z = 805.3 and 972.1, which correspond to
(TpPh,4CN)Co(pzPh,4CN)(NO3) and (pzPh,4CNTpPh,4CN)Co(pzPh,4CN)(NO3). With
Co(ClO4)2·6H2O, on the other hand, the pink solution of the metal salt in
CH3OH/CH2Cl2 turned to purple right after the addition of KTpPh,4CN. The
reaction generated a minor precipitate which has not been identified. After
filtration and evaporation of solvent the product was extracted with CH2Cl2, in
which neither of the starting materials would dissolve, resulting in a purple
solid material. The IR spectrum shows CN and BH bonds absorption at 2233
cm-1 and 2480 cm-1, without any characteristic peaks of the ClO4 group.
Elemental analysis of this product is consistent with calculation of
(TpPh,4CN)2Co·CH3OH. X-ray quality crystals were grown by slow diffusion of
the solutions of two starting materials. The compound characterized by X-ray
crystallography turned out to be (TpPh,4CN)*2Co – a structure with an
isomerized ligand. An ORTEP drawing of this complex is given in Figure 3.2.3
with selected bond distances and angles in Table 3.2.1.
57
Figure 3.2.3 ORTEP Drawing of (TpPh,4CN)*2Co Showing 50% Thermal
Ellipsoids, H Atoms Are Omitted and Only B, N, Co Atoms Are Labeled for
Clarity.
Table 3.2.1 Bond Distances (Å) and Angles (deg.) for (TpPh,4CN)*2Co
Co - N(1a)
Co - N(1b)
Co - N(1c)
B(1) - N(2a)
B(1) - N(2b)
B(1) - N(2c)
C(3a) - N(3a)
C(3b) - N(3b)
C(3c) - N(3c)
2.229(3)
2.222(3)
2.042(4)
1.523(7)
1.546(5)
1.546(6)
1.145(5)
1.144(5)
1.133(4)
N(2a) - B(1) - N(2b)
N(2b) - B(1) - N(2c)
N(2c) - B(1) - N(2a)
N(1a) - Co - N(1b)
N(1b) - Co - N(1c)
N(1c) - Co- N(1a)
C(2a) - C(3a) - N(3a)
C(2b) - C(3b) - N(3b)
C(2c) - C(3c) - N(3c)
58
108.2(4)
110.1(3)
108.2(3)
79.5(1)
89.3(1)
89.7(1)
178.4(6)
178.4(6)
178.3(6)
The compound crystallizes on a general position in the monoclinic space
group P21/n. Among the six substituted pyrazoles number (c) and number (f)
have their phenyl substituents in the 5-position, pointed “up”, away from the
other ligand. Since the steric phenyl substituents are away from the metal ion,
the “up” position pyrazoles have much shorter Co–N bonds (2.042 Å) - even
less than that in unsubstituted Tp2Co (2.128 Å) (Table 3.2.2). The other two
Co-N bond lengths are 2.222 Å and 2.229 Å, close to those in (TpPh)*2Co
(2.224 Å). The symmetry around the cobalt atom is reduced from octahedral
to D4h. The lowering of the symmetry is further reflected in the angles around
cobalt. While the N-Co-N angle between the “up” pyrazole and each of the
“down” pyrazoles is about 90o, the angle between the two “down” pyrazoles is
only 80o. Cyano groups have no considerable steric effect on the structure.
Although there are intermolecular contacts between CN substituents and
protons of phenyl substituent and the pyrazole ring (N(3A)…C(1C) 3.286 Å,
N(3C)…C(9F) 3.231 Å), no further CN-Co contacts are noticed.
Table 3.2.2 Structural Data (Å and deg.) for “Sandwich” Metal Complexes
Tp2Co
(TpPh)*2Co
(TpPh,4CN)*2Co
Tp2Mn
(TpPh)2Mn
(TpPh,4CN)*2Mn
Tp2Fe
(TpPh)2Fe
(TpPh)*2Fe
(TpPh,4CN)*2Fe
Metal - N
2.128
2.224/2.056
2.226/2.042
2.242
2.316
2.309/2.160
1.975
2.248
2.257/2.080
2.256/2.043
N-M-N
85.4
89.7/80.1
89.5/79.5
83.1
86.9
87.4/78.0
88.2
89.1
89.4/80.9
89.6/80.1
59
References
25
64
This Work
22
35
This Work
34
35
63
This Work
(TpPh,4CN)2Mn was made under an inert atmosphere using KTpPh,4CN and
Mn(CF3SO3)2·2CH3CN in a 2:1 ratio in THF solution. The product was purified
by redissolving in CH2Cl2. Evaporation of the solvent yielded a white powder,
which is stable in the air. The IR spectrum shows CN and BH bond
absorptions at 2234 cm-1 and 2520 cm-1, without any characteristic peaks of
the triflate group, indicating formation of the (TpPh,4CN)2Mn complex.
Elemental analysis matches with this formula. X-ray quality crystals were
grown by slow diffusion of CH3OH/CH2Cl2 solutions of the ligand and
Mn(OTf)2·2CH3CN, producing pale yellow crystals. Ligand isomerization is
also revealed in this crystal structure similar to (TpPh,4CN)*2Co. An ORTEP
drawing of this complex is given in Figure 3.2.4 with selected bond distances
and angles in Table 3.2.3.
Table 3.2.3 Bond Distances (Å) and Angles (deg.) for (TpPh,4CN)*2Mn
Mn - N(1a)
Mn - N(1b)
Mn - N(1c)
B(1) - N(2a)
B(1) - N(2b)
B(1) - N(2c)
C(3a) - N(3a)
C(3b) - N(3b)
C(3c) - N(3c)
2.311(5)
2.306(5)
2.160(6)
1.525(10)
1.562(8)
1.555(8)
1.145(8
1.147(8)
1.148(10)
N(2a) - B(1) - N(2b)
N(2b) - B(1) - N(2c)
N(2c) - B(1) - N(2a)
N(1a) - Mn - N(1b)
N(1b) - Mn - N(1c)
N(1c) - Mn- N(1a)
C(2a) - C(3a) - N(3a)
C(2b) - C(3b) - N(3b)
C(2c) - C(3c) - N(3c)
60
109.1(6)
110.0(5)
109.8(5)
78.0(2)
86.9(2)
87.9(2)
179.1(9)
178.6(8)
177.5(10)
Figure 3.2.4 ORTEP Drawing of (TpPh,4CN)*2Mn Showing 50% Thermal
Ellipsoids, H Atoms Are Omitted and Only B, N, Mn Atoms Are Labeled for
Clarity.
The compound crystallizes on a general position in the monoclinic space
group P21/n. Among the six coordinated pyrazoles, “up-down-down” ligand
isomerization reduces the Mn-N bonds lengths from around 2.310 Å to 2.160
Å in number (c) and (f) pyrazoles. Also, similar to what has been seen in the
(TpPh,4CN)*2Co structure, the N-Mn-N angle between the two “down” pyrazoles
is only 78.00. Compared with the structure of (TpPh)2Mn which does not
involve ligand rearrangement, the two “down” pyrazoles in (TpPh,4CN)*2Mn
61
have similar Mn-N bond length and N-Mn-N angle which implies that the CN
substituents have no considerable steric effect on the molecular structure
(Table 3.2.2). The CN substituents in this structure also have contacts with
protons of the phenyl substituent and the pyrazole ring ((N(3A)…C(1C) 3.352 Å,
N(3C)…C(9F) 3.187 Å).
We were trying to make (TpPh,4CN)2Fe in the inert atmosphere by using
KTpPh,4CN and Fe(CF3SO3)2·2CH3CN in a 2:1 stoichiometry. The light yellow
solution of Fe(CF3SO3)2·2CH3CN in THF turned to green upon addition of the
ligand. After the solvent was removed the product was redissolved in CH2Cl2
to remove any precipitate. The final product is a light green powder which is
stable in the air. The IR spectrum shows CN and BH bond absorptions at 2235
cm-1 and 2517 cm-1, without any characteristic peaks of the triflate group.
X-ray quality crystals were grown by slow diffusion of CH3OH/CH2Cl2
solutions of the ligand and Fe(CF3SO3)2·2CH3CN, producing light yellow
crystals. The crystal structure revealed a complex of the isomerized ligand
again, (TpPh,4CN)*2Fe. An ORTEP drawing of this complex is given in Figure
3.2.5 with selected bond distances and angles in Table 3.2.4.
62
Figure 3.2.5 ORTEP Drawing of (TpPh,4CN)*2Fe Showing 50% Thermal
Ellipsoids, H Atoms Are Omitted and Only B, N, Fe Atoms Are Labeled for
Clarity.
Table 3.2.4 Bond Distances (Å) and Angles (deg.) for (TpPh,4CN)*2Fe
Fe - N(1a)
Fe - N(1b)
Fe - N(1c)
B(1) - N(2a)
B(1) - N(2b)
B(1) - N(2c)
C(3a) - N(3a)
C(3b) - N(3b)
C(3c) - N(3c)
2.259(6)
2.252(6)
2.043(7)
1.511(10)
1.555(9)
1.559(10)
1.134(8)
1.152(8)
1.153(10)
N(2a) - B(1) - N(2b)
N(2b) - B(1) - N(2c)
N(2c) - B(1) - N(2a)
N(1a) - Fe - N(1b)
N(1b) - Fe - N(1c)
N(1c) - Fe - N(1a)
C(2a) - C(3a) - N(3a)
C(2b) - C(3b) - N(3b)
C(2c) - C(3c) - N(3c)
63
108.6(8)
108.3(6)
110.1(7)
80.1(2)
88.6(3)
90.6(3)
176.7(10)
178.9(10)
176.8(10)
The compound crystallizes on a general position in the monoclinic space
group P21/n. Among the six substituted pyrazoles number (c) and number (f)
have their phenyl substituents in the 5-position. In fact, (TpPh,4CN)*2Fe has a
quite similar structure to (TpPh)*2Fe.63 Since the bulky phenyl substituents are
away from the metal ion, the “up” position pyrazoles have much shorter Fe–N
bonds (2.043 Å) which is close to that in unsubstituted Tp2Fe (1.975 Å) (Table
3.2.2). The other two Fe-N bonds lengths are 2.252 Å and 2.259 Å, similar to
those in (TpPh)2Fe and (TpPh)*2Fe. The D4h symmetry around the iron atom
reduces the angle between the two “down” pyrazoles to around 80o. Cyano
substituents here are shown to have no considerable effect on the structure.
However, it is interesting that the isomerization is apparently more facile in
the cyano substituted complex. Although there are intermolecular contacts
between CN and protons of phenyl substituent and the pyrazole ring
(N(3A)…C(1C) 3.306 Å, N(3B)…C(1A) 3.284 Å, N(3C)…C(9A) 3.545 Å,
N(3C)…C(7C) 3.375 Å), no further CN-Fe contacts are noticed.
(TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe are isostructural. They have
the same ligand isomerization, similar decrease of the metal-N bond length as
well as the lowering symmetry. Although (TpPh)2Co, (TpPh)2Mn and (TpPh)2Fe
have all been isolated and structurally characterized, initial ligand
isomerization was only revealed in the cobalt complex. The iron complex
showed isomerization only after treatment with m-chloroperoxybenzoic acid.
64
It is apparent that the TpPh,4CN ligand can isomerize more easily, possibly due
to electronic activity of the CN substituents.
3.2.2 Tpt-Bu,4CN Metal Complexes
It is known that the tert-butyl group is a more bulky substituent with larger
steric hindrance than the phenyl group, as shown in the structures of, e.g.,
TlTpR,4CN (section 2.3.3) and TpRCo(SCN) (R = Ph, t-Bu).30 In the latter
examples, the phenyl-substituted ligand resulted in a five-coordinate complex
with a coordinated THF, while the tert-butyl-substituted ligand resulted in a
four-coordinate complex. Ligands with tert-butyl substituents are normally
able to form tetrahedral Tpt-BuMX complexes instead of (Tpt-Bu)2M species.30
Initial attempts to make Tpt-Bu,4CNCoX complexes such as Tpt-Bu,4CNCoCl,
Tpt-Bu,4CNCo(NO3) and Tpt-Bu,4CNCo(ClO4) resulted in a product which shows a
peak in the mass spectrum at m/z = 972.5, corresponding unexpectly to
[(Tpt-Bu,4CN)2Co]H+. This result may suggest that, in the case of Tpt-Bu,4CN, the
CN substituent effects different types of complexes, allowing for the formation
of (Tpt-Bu,4CN)2M, which is unknown for Tpt-Bu. Purification and crystal growth
of Tpt-Bu,4CN cobalt complexes has, to date, been unsuccessful.
As with the cobalt complexes, we were trying to make (Tpt-Bu,4CN)2Mn by
mixing the ligand with Mn(CF3SO3)2·2CH3CN in a 2:1 ratio under inert
atmosphere. The synthesis resulted in isolation of a white powder which is
65
soluble in CH2Cl2 and shows IR stretches consistent with BH and CN groups.
Since none of the starting materials have good solubility in CH2Cl2, this
product appears likely to have the “sandwich” type of formula such as
(TpMe2)2Mn,83
which
is
known
to
be
soluble
in
dichloromethane.
Crystallization of (Tpt-Bu,4CN)2Mn has, to date, been unsuccessful.
Synthesis of (Tpt-Bu,4CN)2Fe was attempted by reacting the ligand with
Fe(CF3SO3)2·2CH3CN in THF under inert atmosphere. After evaporation of
the solvent and purification by CH2Cl2 the product is a green solid. The IR
spectrum shows CN and BH bond absorptions at 2252 cm-1 and 2508 cm-1 and
no characteristic peaks of triflate group, indicating the formation of the
desired complex. However, crystallization of this compound was problematic.
After exposure to the air for a few days, the BH stretch disappeared in the IR
spectrum. It seems that the ligand decomposed again as we have seen before
for other Tpt-Bu,4CN metal complexes.
3.2.3 TpMe2,4CN Metal Complexes
(TpMe2)2Co is known to exist.28 Attempts to reproduce this chemistry with
TpMe2,4CN were made by adding the ligand to THF solutions of cobalt(II)
nitrate. An immediate color change was observed. Purification and crystal
growth of this metal complex has been problematic, presumably due to the
instability of the ligand. The only positive result regarding the formation of a
66
TpMe2,4CN cobalt complex comes from mass spectroscopy, showing a peak at
m/z = 637.2, corresponding to [(TpMe2,4CN)Co(HpzMe2,4CN)(NO3)]Na+.
67
3.3 TpR,4CN Copper Complexes
3.3.1 [TpPh,4CNCu]n and TpPh,4CNCuX
Some of the first homoscorpionate complexes of copper were Tp2Cu,
(pzTp)2Cu, and (TpMe2)2Cu, which were studied by spectroscopy.23 Reaction of
the TpPh,4CN ligand with Cu(ClO4)2·6H2O or Cu(CF3SO3)2 in air produces both
a yellow Cu(I) product and a green Cu(II) product. The Cu(II) products show
IR peaks characteristic of ClO4- or CF3SO3- and are most likely to be
tetrahedral complexes of the form TpPh,4CNCuX (X = ClO4 or CF3SO3).
Elemental analysis matches with this formula. The Cu(I) product was
crystallographically characterized to be a 1-dimensional coordination polymer
[TpPh,4CNCu]n. An ORTEP drawing of the asymmetric unit is shown in Figure
3.3.1, with selected bond distances and angles in Table 3.3.1.
Figure 3.3.1 ORTEP Drawing of One Asymmetric Unit of [CuTpPh,4CN]n
Showing 50% Ellipsoids. H Atoms Have Been Omitted and only B, N and Cu
Atoms Are Labeled for Clarity.
68
Table 3.3.1 Bond Distances (Å) and Angles (deg.) for [TpPh,4CNCu]n
Cu - N(2)
Cu - N(5)
Cu - N(8)
B - N(1)
B - N(4)
B - N(7)
C(4) - N(3)
C(14) - N(6)
C(30) - N(9)
Cu - N(9’)
Cu…Cu’
2.044(7)
2.100(7)
2.079(7)
1.556(1)
1.527(1)
1.556(1)
1.137(10)
1.132(9)
1.148(9)
1.864(7)
8.575(6)
N(2) - Cu - N(5)
N(2) - Cu - N(8)
N(5) - Cu - N(8)
N(2) - Cu - N(9’)
N(5) - Cu - N(9’)
N(8) - Cu - N(9’)
Cu - N(9’) - C(30)
N(1) - B - N(4)
N(1) - B - N(7)
N(4) - B - N(7)
C(2) - C(4) - N(3)
C(12) - C(14) - N(6)
C(22) - C(30) - N(9)
91.86(3)
86.21(3)
96.08(3)
120.76(3)
125.50(3)
125.76(3)
169.50(7)
109.46(7)
108.97(8)
108.36(7)
176.02(8)
178.18(8)
177.78(7)
This complex crystallizes in the monoclinic space group P21/n. The tetrahedral
coordination environment of the Cu(I) ion includes the three pyrazole N
atoms of a TpPh,4CN ligand and is completed by a cyano N atom of another
TpPh,4CN ligand. A one-dimensional polymer is thus formed, as shown in Figure
3.3.2, in which only one cyano group from a given ligand is coordinated to a
neighboring Cu. While the formation of this type of polymer has been
mentioned by Trofimenko and coworkers with Bp4CN and by us with BpPh,4CN,
[TpPh,4CNCu]n represents the first crystallographically characterized example.
The polymer displays a zigzag motif, with approximately 90o corners defined
by the angle between the coordinated CN group and its symmetry-related
partner within the asymmetric unit. Cu-N bond distances are well within the
range found for other Cu(I)-Tp complexes.84-86
69
Figure 3.3.2 Raster 3D Diagram Showing the Extended Structure of
[CuTpPh,4CN]n.
This Cu(I) complex can also be synthesized directly by using CuCl or
[Cu(CF3SO3)]2·benzene as starting materials under an inert atmosphere.
Crystals were grown and showed the same unit cell parameters by X-ray
crystallography.
3.3.2 [Tpt-Bu,4CNCu]n and Tpt-Bu,4CNCuX
Reaction of the Tpt-Bu,4CN ligand with CuCl2·2H2O or Cu(CF3SO3)2 in air also
produces both yellow Cu(I) and green Cu(II) products as for TpPh,4CN. The
Cu(II) products are most likely to be tetrahedral complexes of the form
Tpt-Bu,4CNCuX (X = Cl or CF3SO3) with IR and elemental analysis evidence. The
Cu(I) product has been structurally characterized to be [Tpt-Bu,4CNCu]n. An
ORTEP drawing of the asymmetric unit is shown in Figure 3.3.3, with selected
bond distances and angles in Table 3.3.2
70
Figure 3.3.3 ORTEP Drawing of One Asymmetric Unit of [Tpt-Bu,4CNCu]n
Showing 50% Thermal Ellipsoids, H Atoms Have Been Omitted and Only B, N,
and Cu Atoms Are Labeled for Clarity.
Table 3.3.2 Bond Distances (Å) and Angles (deg.) for [Tpt-Bu,4CNCu]n
Cu - N(2)
Cu - N(4)
Cu - N(6)
B - N(1)
B - N(3)
B - N(5)
C(4) - N(7)
C(14) - N(8)
C(24) - N(9)
Cu - N(9’)
Cu … Cu’
2.054(10)
2.025(8)
2.017(2)
1.540(2)
1.524(1)
1.541(1)
1.176(2)
1.136(1)
1.134(1)
2.016(2)
9.806(2)
N(2) - Cu - N(4)
N(2) - Cu - N(6)
N(4) - Cu - N(6)
N(2) - Cu - N(9’)
N(4) - Cu - N(9’)
N(6) - Cu - N(9’)
Cu - N(9’) - C(24)
N(1) - B - N(3)
N(1) - B - N(5)
N(3) - B - N(5)
C(2) - C(4) - N(7)
C(12) - C(14) - N(8)
C(22) - C(24) - N(9)
92.9(8)
99.9(9)
97.6 (8)
116.6(9)
124.1(9)
119.8(9)
169.5(7)
110.9(8)
107.6(8)
111.3(9)
177.8(9)
175.1(8)
176.8(9)
The compound crystallizes in the monoclinic space group I2/c with a CH3CN
molecule of solvation. The Cu(I) ion has a tetrahedral coordination
71
environment from three pyrazole N atoms of a Tpt-Bu,4CN ligand and a cyano N
atom of another ligand to form the 1-dimensional polymer. This coordination
polymer has a similar structure to [TpPh,4CNCu]n. Compared with [TpPh,4CNCu]n,
there are obvious increases of bond length between Cu and the CN substituent
and N-Cu-N angle, as well as the copper-copper distance, indicating the
tert-butyl group as a more space-hindered substituent than the phenyl group.
Other than that, these two structures are close to each other (Table 3.3.3).
[Tpt-Bu,4CNCu]n
can
also
be
made
from
Cu(I)
salts
CuCl
or
[Cu(CF3SO3)]2·benzene.
Table 3.3.3 Structural Data (Å and deg.) for TpR,4CN Copper(I) Complexes
[TpPh,4CNCu]n
[Tpt-Bu,4CNCu]n
Cu - N
2.074
2.032
Cu - CN
1.864
2.016
Cu … Cu’
8.575
9.806
N - Cu - N
91.4
96.8
3.3.3 TpPh,4CNCu(CO) and TpPhCu(CO)
Tp(CF3)2Cu(CO) was synthesized by Dias and co-workers in order to observe
the effect of the electron-withdrawing CF3 substituent on the coordinated
metal.38 It showed that the CF3 groups reduce the electron density of the
copper significantly as evidenced by the shift in the CO stretching frequency
compared to that in TpMe2Cu(CO). To compare the electronic activity of the
CN substituent, attempt was made to produce TpPh,4CNCu(CO) and
TpPhCu(CO). Carbon monoxide gas was bubbled into a THF solution of
[TpPh,4CNCu]n to make TpPh,4CNCu(CO). After filtration of some minor
72
precipitate, the solvent was removed and a yellow-green solid was obtained.
TpPhCu(CO) was made by mixing THF solutions of the ligand with
[Cu(CF3SO3)]2·benzene under a carbon monoxide atmosphere. After stirring
overnight, a yellow precipitate came out of the green solution. This yellow
solid was washed by CH3CN to give the final product. A comparison of the CO
stretching frequencies from different Tp copper(I) complexes is shown in
Table 3.3.4. The IR spectrum of TpPhCu(CO) shows the CO stretch at 2078
cm-1, indicating the phenyl substituents do not have much influence on the
molecular electron density. The IR spectrum of TpPh,4CNCu(CO) shows a CO
stretch at 2096 cm-1, a 20 cm-1 shift from the non-cyano compound. Compared
with the CO peaks from Tp(CF3)2Cu(CO)38 (2137 cm-1), TpCu(CO)87 (2083 cm-1)
and TpMe2Cu(CO)88 (2066 cm-1), it shows the electron-withdrawing property
of the CN substituent. Although not as effective as the CF3 group, the CN
substituents also reduce the electron density on the copper atom significantly,
causing electron donation from copper d-orbitals to the CO anti-bonding
orbitals to decrease. The CO bond vibration thus occurs at a higher frequency.
Table 3.3.4 Carbonyl Stretching Frequency in Tp Copper(I) Complexes
Free CO
Tp(CF3)2Cu(CO)
TpPh,4CNCu(CO)
TpCu(CO)
TpPhCu(CO)
TpMe2Cu(CO)
νCO (cm-1)
2143
2137
2096
2083
2078
2066
References
38
38
This Work
87
This Work
88
73
3.3.4 (TpMe2,4CN)2Cu
Attempts to produce (TpMe2,4CN)2Cu were made by adding the ligand to THF
solutions of copper(II) nitrate. An immediate color change was observed.
Purification of the metal complexes has been problematic. Mass spectroscopy
shows
a
peak
at
m/z
=
618.2
which
corresponds
to
TpMe2,4CNCu(HpzMe2,4CN)(NO3). The only X-ray quality crystals isolated from a
CH2Cl2 solution of the (TpMe2,4CN)2Cu reaction unfortunately turned out to be
bis(3-cyano-2,4-pentanedione)copper, which has previously been reported by
Belot and coworkers.59 The isolation of this crystal is further confirmation that
4-cyano-3,5-dimethylpyrazole decomposes in air.
3.3.5 TpPhCu(NO3)
In order to compare structures and electronic properties, analogous
non-cyano substituted trispyrazolylborate copper complexes were synthesized.
The TpPh ligand has been reported before.30, 35 Reaction of this ligand with
Cu(NO3)2.2.5H2O in THF resulted in TpPhCu(NO3) which was structurally
characterized. This blue plate crystal was grown by slow evaporation of a
CH2Cl2 solution. An ORTEP drawing of the structure is shown in Figure 3.3.4,
with selected bond distances and angles in Table 3.3.5.
74
Figure 3.3.4 ORTEP Drawing of TpPhCu(NO3) Showing 50% Thermal
Ellipsoids, H Atoms Are Omitted and Only B, N, O, Cu Atoms Are Labeled for
Clarity.
Table 3.3.5 Bond Distances (Å) and Angles (deg.) for TpPhCu(NO3)
N(2) - Cu
N(4) - Cu
N(6) - Cu
O(1) - Cu
O(2) - Cu
B - N(1)
B - N(3)
B - N(5)
N(2) - Cu
N(4) - Cu
1.982(7)
1.897(8)
2.181(8)
1.968(7)
2.023(7)
1.53(1)
1.55(1)
1.54(1)
N(2) - Cu - N(4)
N(2) - Cu - N(6)
N(4) - Cu -N(6)
N(2) - Cu - O(1)
N(4) - Cu - O(1)
N(6) - Cu - O(1)
N(2) - Cu - O(2)
N(4) - Cu - O(2)
N(6) - Cu - O(2)
O(1) - Cu - O(2)
90.3(3)
96.2(3)
89.7(3)
98.4(3)
169.0(3)
96.0(3)
145.9(3)
104.6(3)
113.9(3)
64.5(3)
TpPhCu(NO3) crystallized in the P21/n space group. The copper atom is in the
center with three pyrazoles bonding to it as a triangle from above and the
75
bidentate nitrate group on the other side. The geometry of the structure is a
distorted square-pyramid with two nitrogen atoms from the Tp and two
oxygen atoms from the nitrate group in the basal plane and the third Tp
nitrogen in the apical position. The Cu-O and Cu-N bonds in the basal plane
are all around 2 Å. The Cu-N(6) bond (2.181 Å) is longer; as expected due to
the Jahn-Teller distortion. The small NO3 bite angles of 64.5o leads to the
significant deviations from the ideal 90o N-Cu-N angles in the basal plane.
Our group has previously reported the crystallographic characterization of
TpPh complexes of copper with the monodentate anions SCN- and Cl-.80 Both
of these complexes complete a five-coordinate geometry with the addition of a
neutral pyrazole. The bidentate NO3- is less bulky than the combination of
HpzPh and a monodentate anion, thus the Cu-N distances in TpPhCu(NO3) are
smaller than in TpPhCu(HpzPh)(SCN) (2.071 Å) and TpPhCu(HpzPh)Cl (2.082
Å). Also because the latter two structures have two ligands besides the TpPh
including the bulky HpzPh group, N-Cu-N angles are relatively larger (104.0o
and 104.1o).
76
3.4 Metal Pyrazole Complexes
3.4.1 HpzPh,4CN Copper Complex
Crystallization attempts with TpPh,4CNCu(ClO4) resulted instead in the
isolation of crystals which were found by X-ray crystallography to be
{[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n. It likely comes from decomposition of
the TpPh,4CN ligand as seen above for Tpt-Bu,4CN. This compound has a
coordination polymer structure bridged by the cyano-pyrazole. An ORTEP
drawing of {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n is shown in Figure 3.4.1, with
selected bond distances and angles in Table 3.4.1.
Figure 3.4.1 ORTEP Drawing of the Cationic Repeat Unit of
{[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n Showing 50% Ellipsoids. H Atoms Have
Been Omitted for Clarity.
77
Table
3.4.1
Bond
Distances
(Å)
and
Angles
(deg.)
{[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n
Cu - N(1)
1.983(2)
N(1) - Cu - N(3’)
88.9(9)
Cu - N(3’)
2.347(8)
N(1) - Cu - CH3CN
89.9(8)
2.019(3)
N(3’) - Cu - CH3CN
89.6(7)
Cu - CH3CN
C(4) - N(3)
1.134(6)
C(2) - C(4) - N(3)
177.1(4)
…
8.897(5)
Cu - N(4’) - C(4’)
156.3(2)
Cu Cu’
for
The compound crystallizes on an inversion center in the monoclinic space
group P21/a, along with a disordered solvent water molecule. The octahedral
coordination of the copper atom comes from two symmetry related pyrazole N
atoms, two N atoms from CN substituents of neighboring pyrazoles and two
solvent N atoms (CH3CN). The N atom of the pyrazole ring and the CN
substituent thus coordinate to different copper atoms to form the
coordination polymer (Figure 3.4.2). Although the Cu-NC bond distance is a
bit longer (2.347 Å) than a regular Cu-N coordination bond, there is clearly
contact between them. It is also indicated by the C(2)–C(4)–N(3) angle. Due
to the coordination of the CN group to another metal, it bends to 177 degrees
instead of being rigorously linear. Structural data of some copper pyrazole
complexes (discussed below) are shown in Table 3.4.2.
Table 3.4.2 Structural Data (Å and deg.) for Copper Pyrazole Complexes
Cu - N
Cu - CN
N – Cu - N
1.983
1.993
2.008
2.006
2.007
2.347
2.808
N/A
N/A
N/A
89.5
179.3
90.0
89.2
105.9
{[(HpzPh,4CN)2Cu(CH3
CN)2][ClO4]2}n
(Hpzt-Bu,4CN)2CuCl2
(Hpzt-Bu)4CuCl2
(Hpzt-Bu)4CuBr2
(HpzMe2)2CuCl2
78
References
This Work
This Work
92
93
This Work
Figure 3.4.2 Raster 3D Diagram Showing the Extended Structure of the
Cationic Part of {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n.
3.4.2 Hpzt-Bu,4CN Metal Complexes
Pyrazole complexes with 2:1 or 4:1 ligand-to-metal ratios have been reported
with substituents at the 3- or 5-position of the pyrazole ring.89 The only crystal
isolated from a (Tpt-Bu,4CN)2Co solution of toluene/hexane turned out to be
(Hpzt-Bu,4CN)4CoCl2. This compound was suggested to come from the
decomposition of the Tpt-Bu,4CN ligand. Similar decomposition has been
noticed before as in TpPhCu(HpzPh)Cl and TpPhCu(HpzPh)(SCN).80 The
complex can also be made directly from 4-cyano-3-tert-butyl pyrazole and
Co(ClO4)2·6H2O. An ORTEP drawing of (Hpzt-Bu,4CN)4CoCl2 is given in Figure
3.4.3, with selected bond distances and angles in Table 3.4.3.
79
Figure 3.4.3 ORTEP Drawing of (Hpzt-Bu,4CN)4CoCl2 Showing 50% Thermal
Ellipsoids, H Atoms Have Been Omitted for Clarity.
Table 3.4.3 Bond Distances (Å) and Angles (deg.) for (Hpzt-Bu,4CN)4CoCl2
Co - N(1)
Co - N(3)
Co - Cl
N(1) - N(2)
N(3) - N(4)
C(4) - N(5)
C(14) - N(6)
2.131(3)
2.130(5)
2.450(6)
1.351(4)
1.345(9)
1.141(6)
1.139(4)
N(1) - Co - N(3)
N(1) - Co - Cl
N(3) - Co - Cl
C(2) - C(4) - N(5)
C(12) - C(14) - N(6)
87.67(9)
88.18(8)
90.37(8)
176.51(7)
179.03(5)
The compound crystallizes on an inversion center in the monoclinic space
group P21/n. Four pyrazoles are bound to the metal through the nitrogen atom
with less steric hindrance. The Co atom and the four nitrogen atoms are in the
80
same plane with two chlorides in the apical positions. There is a disordered
toluene molecule in the crystal structure, which agrees with the results of
elemental analysis. Compared with structures of two other cobalt complexes
(HpzR,R’)2CoCl2 (R = CH3, R’ = CH3 or C6H5),90, 91 (Hpzt-Bu,4CN)4CoCl2 has much
larger Co-N bonds lengths (2.131 Å as opposed to 2.002~2.031 Å); while the
Co-Cl bonds (2.450 Å) are also longer than those in the other two complexes.
(Table 3.4.4) The increase in Co-N bond length is likely due to the steric
effects of the tert-butyl substituent as well as the electron-withdrawing effects
of the CN group. While the tert-butyl group is a more bulky substituent than
the methyl or phenyl groups, the CN group reduces the electron density of the
pyrazole ring, resulting in a weaker ligand field and longer coordination bonds.
Although CN substituents have short contacts with either a tert-butyl proton
(2.652 Å) or the carbon proton from another pyrazole ring (2.555 Å), no
metal-CN interactions are noticed here.
Table 3.4.4 Structural Data (Å and deg.) for Cobalt Pyrazole Complexes
(HpzMe2)2CoCl2
(Hpz3Ph,5Me)2CoCl2
(Hpzt-Bu,4CN)4CoCl2
Co - N
2.005
2.020
2.131
Co - Cl
2.235
2.237
2.450
N - Co - N
105.6
103.3
87.67
References
88
89
This Work
There are only a few structures published for manganese pyrazole complexes
including
(Hpz)4Mn·2H2O92
and
(Hpz)4MnCl2.93
(Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O crystallized out as a byproduct when the
81
crystal sample of (Tpt-Bu,4CN)2Mn was exposed to the air, possibly due to the
reaction and dissociation of the ligand with the moisture in the air. The
complex can also be made directly from 4-cyano-3-tert-butyl pyrazole and
Mn(CF3SO3)2·2CH3CN.
An
ORTEP
drawing
of
(Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O is given in Figure 3.4.4 with selected bond
distances and angles in Table 3.4.5.
Figure 3.4.4 ORTEP Drawing of (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O Showing
50% Thermal Ellipsoids, H Atoms Have Been Omitted for Clarity.
Table
3.4.5
Bond
Distances
(Å)
and
t-Bu,4CN
(Hpz
)2Mn(CF3SO3)2·2H2O
Mn - N(1)
2.272(2)
N(1) - Mn - O(3)
Mn - O(3)
2.167(2)
N(1) - Mn - O(4)
Mn - O(4)
2.149(2)
C(2) - C(4) - N(3)
N(1) - N(2)
1.364(3)
C(4) - N(3)
1.145(3)
82
Angles
84.5(7)
86.0 (7)
177.7 (3)
(deg.)
for
The compound crystallizes on an inversion center in the triclinic space group
P 1 with the manganese atom binding to two pyrazole nitrogen atoms, two
triflate oxygen atoms and two water oxygen atoms. There are only two
pyrazoles coordinated to the metal instead of four as seen in other manganese
pyrazole complexes. This difference may be due to the CN substitution on the
pyrazole ring or it may be due to the size of the triflate ligand making
coordination of two more pyrazole rings sterically unfavorable. Compared
with (Hpz)4Mn·2H2O and (Hpz)4MnCl2, (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O has
much longer Mn-N bond lengths and smaller N-Mn-O angles as shown in
Table 3.4.6, while the Mn-O bonds lengths stay in the same region. A
hydrogen bonding network is built up consisting of interactions between the
CN group and one of the water protons (N...O 2.946 Å) and between a triflate
O atom and the other water proton (O...O 2.745 Å) as shown in Figure 3.4.5.
Table 3.4.6 Structural Data (Å and deg.) for Manganese Pyrazole Complexes
(Hpz)4Mn·2H2O
(Hpz)4MnCl2
(Hpzt-Bu,4CN)2Mn(CF3SO3)2
·2H2O
Mn - N
2.254
2.242
2.272
Mn - O*
2.148
2.579
2.158
* Cl takes the place of O in (Hpz)4MnCl2
83
N - Mn - O*
90.0
90.0
85.3
References
90
91
This Work
Figure 3.4.5 Mercury Diagram Showing the Hydrogen Bonding Network of
(Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O.
Crystallization attempts with Tpt-Bu,4CNCuCl resulted in isolation of crystals of
(Hpzt-Bu,4CN)2CuCl2, possibly due to the decomposition of the ligand as seen
before. The complex can also be made using 4-cyano-3-tert-butylpyrazole and
anhydrous CuCl2. This compound crystallizes in the triclinic space group P 1
as shown in Figure 3.4.6 with selected bond distances and angles shown in
Table 3.4.7.
Table 3.4.7 Bond Distances (Å) and Angles (deg.) for (Hpzt-Bu,4CN)2CuCl2
Cu - N(1)
Cu - N(3)
Cu - Cl(1)
Cu - Cl(2)
N(1) - N(2)
N(3) - N(4)
C(4) - N(5)
C(14) - N(6)
N(6) - Cu’
1.990(2)
1.997(2)
2.254(1)
2.259(1)
1.354(3)
1.358(3)
1.143(3)
1.143(3)
2.808(7)
N(1) - Cu - N(3)
Cl(1) - Cu - Cl(2)
N(1) - Cu - Cl(1)
N(1) - Cu - Cl(2)
N(3) - Cu - Cl(1)
N(3) - Cu - Cl(2)
C(2) - C(4) - N(5)
C(12) - C(14) - N(6)
84
179.3(8)
166.1(3)
89.9(7)
90.0(7)
89.5(7)
90.5(7)
179.5(3)
176.4(3)
Figure 3.4.6 ORTEP Drawing of Two Inversion Related Molecules of
(Hpzt-Bu,4CN)2CuCl2 Showing 50% Thermal Ellipsoids, H Atoms Are Omitted
and Only N, Cl, Cu Atoms Are Labeled for Clarity.
The structure of the molecule is slightly distorted square-planar, with an
almost linear N(1)-Cu-N(3) angle (179.3 0), but a Cl(1)-Cu-Cl(2) angle of 166.1o.
This distortion is caused by a short contact between Cu and a N atom (N(6))
from one of the cyano groups on an inversion-related Cu complex (Cu…N
2.812 Å). This creates a pseudodimer with each Cu atom displaying
square-pyramidal coordination geometry when the CN…Cu interaction is
included. The infrared spectrum of this complex shows the expected splitting
of the CN stretching frequency, with bands at 2229 and 2238 cm-1
representing the non-coordinated and coordinated CN groups. Cu-N and
Cu-Cl bond lengths are similar to those seen in other Cu(II)-pyrazole
complexes, including (Hpzt-Bu)4CuCl294 and (Hpzt-Bu)4CuBr295 as shown in
85
Table 3.4.2.
3.4.3 HpzMe2 Copper Complex
The compound (TpMe2)2Cu has already been reported by Trofimenko.23 We
also tried to make this non-cyano analog of (TpMe2,4CN)2Cu for comparison.
Reaction of TpMe2 in a THF solution with CuCl2·2H2O showed an immediate
color change. Attempts to grow crystals of (TpMe2)2Cu by the slow evaporation
of a CH2Cl2 solution resulted instead in the isolation of X-ray quality crystals
of (HpzMe2)2CuCl2. An ORTEP drawing of the structure is shown in Figure
3.4.7, with selected bond distances and angles in Table 3.4.8. The complex
crystallizes in the monoclinic C2/c space group. The tetrahedral copper atom
is in the center bonded to two dimethyl pyrazoles with two chlorides
occupying the other two coordination sites. Cu-N bond lengths are similar to
those seen in other Cu(II)-pyrazole complexes as shown in Table 3.4.8.
Table 3.4.8 Bond Distances (Å) and Angles (deg.) for (HpzMe2)2CuCl2
N(2) - Cu(1)
N(4) - Cu(1)
Cl(1) - Cu(1)
Cl(2) - Cu(1)
2.009(6)
2.006 (6)
2.230(2)
2.239(2)
N(2) - Cu(1) - N(4)
N(2) - Cu(1) - Cl(1)
N(2) - Cu(1) - Cl(2)
N(4) - Cu(1) - Cl(1)
N(4) - Cu(1) - Cl(2)
Cl(1) - Cu(1) - Cl(2)
86
105.9(3)
115.6(2)
101.2(2)
100.8(2)
115.4(2)
117.91(9)
Figure 3.4.7 ORTEP Drawing of (HpzMe2)2CuCl2 Showing 50% Thermal
Ellipsoids, H Atoms Are Omitted for Clarity.
87
3.5 Conclusion
Metal complexes of three new cyano-substituted trispyrazolylborates TpPh,4CN, Tpt-Bu,4CN and TpMe2,4CN - were synthesized. Molecular structures of
some of these complexes were studied by X-ray crystallography. In spite of the
bulky substituents, both TpPh,4CN and Tpt-Bu,4CN are able to form “sandwich”
type complexes with cobalt, manganese and iron. For copper both Cu(I) and
Cu(II) species have been isolated. Purification of TpMe2,4CN metal complexes
turned to be problematic, possibly due to the instability of the ligand.
The bulky substituents at the 3-postion of the pyrazole ring showed steric
effects in these complexes. Tert-butyl substituents brought more space
hindrance than phenyl groups so as to reduce the accessibility to the metal
atom for other ligands. Metal-nitrogen coordination bonds were lengthened in
these
complexes
compared
with
their
non-substituted
analogs.
Electron-withdrawing effects of CN substituents were also detected. They
reduced the electron density of the metal ion significantly. In some of these
complexes it is shown that the metal can be bound not only by the pyrazole N
atoms, but also the cyano substituents N atoms from an adjacent Tp ligand to
form coordination polymers. It reaffirmed the ability of this class of ligands to
be used in the synthesis of coordination polymers through secondary
coordination of the cyano substituents.
88
Ligand isomerization was observed in (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and
(TpPh,4CN)*2Fe. In these complexes the “up” pyrazole has much shorter metal-N
bond than its counterparts. Surprisingly, these isomerized species are isolated,
in contrast to results with TpPh ligand, with which non-isomerized “sandwich”
complexes of Fe and Mn are isolated and only subsequent treatment with
m-chloroperoxybenzoic acid results in isomerization of the (TpPh)*2Fe
compound. The symmetry around the metal ion is also reduced from
octahedral to D4h. Ligand decomposition is also noticed in some
trispyrazolylborate metal compounds. Similar decomposition has been
reported before in other trispyrazolylborate complexes and suggested to
involve the reaction with solvent molecules or the moisture in the air. While
scorpionate ligands are generally stable, attention should be paid later with
synthesis and research of trispyrazolylborate complexes.
Physical properties of these trispyrazolylborate metal compounds have not
been fully explored. Since the CN substituent has shown the potential to form
coordination polymers, we are interested in studying the electrical
communication between metals from different coordination environments as
well as the molecular magnetism. This will be the focus of this research project
in the future.
89
3.6 Experimental
3.6.1 General Experimental
For
general
experimental
details
see
section
2.8.1.
(TpPh,4CN)*2Co,
(TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe crystallographic data were collected by
Charles Campana and Cary Bauer at Bruker AXS Inc. The first two were
collected at 100 K on a Bruker PROTEUM R / Pt135 CCD area detector system
equipped with Montel optics and a Cu Kα rotating anode (λ = 1.5418 Å)
operated at 2.7 kW power (45 kV, 60 mA). The detector was placed at a
distance of 5.033 cm from the crystals. The last one was collected at 100 K on
a Bruker SMART APEX II CCD area detector system equipped with a graphite
monochromator and a Cu Kα fine-focus sealed tube (λ = 1.5418 Å) operated at
1.5 kW power (50 kV, 30 mA). The detector was placed at a distance of 5.043
cm from the crystal. All structures were solved and refined as described in
section 2.8.1.
3.6.2
Synthesis
of
Bis(hydrobis(4-cyano-3-phenylpyrazolyl)
(4-cyano-5-phenylpyrazolyl)borato)cobalt(II) [(TpPh,4CN)*2Co]
To a 50 mL solution of Co(ClO4)2.6H2O (0.185 g, 0.50 mmol) in 50/50
CH3OH/CH2Cl2 was added KTpPh,4CN (0.561 g, 1.01 mmol). The pink solution
turned purple immediately. The mixture was stirred for an hour until all the
ligand had dissolved. The solvent was removed under reduced pressure to give
90
a deep purple solid, which was redissolved in about 50 mL CH2Cl2. The
solution was filtered to remove any precipitate left, and the solvent was
removed under reduced pressure. The final product was a purple solid (0.342
g, 0.31 mmol, 62.3%). IR (cm-1, KBr pellet): 696(s), 774(s), 2233(νCN, s),
2480(νBH, w). Elemental Analysis, Found (Calc’d for C60H38N18B2Co·CH3OH):
C, 65.63 (66.02); H, 3.51 (3.43); N, 22.92(23.10). X-ray quality crystals were
grown by layering a solution of KTpPh,4CN in methanol on top of a solution of
Co(ClO4)2.6H2O in methanol/dichloromethane. After allowing the solutions to
diffuse together for a week, the top was removed and the solvent allowed to
slowly evaporate, producing light purple crystals. X-ray data collection and
structure solution parameters are listed in Table A. Atomic positions, thermal
parameters, and metrical parameters are listed in Table E1-4.
3.6.3
Synthesis
of
Bis(hydrobis(4-cyano-3-phenylpyrazolyl)
(4-cyano-5-phenylpyrazolyl)borato)manganese(II) [(TpPh,4CN)*2Mn]
Mn(CF3SO3)2.2CH3CN (0.187 g, 0.43 mmol) was dissolved in 10 mL dry THF
under N2, and KTpPh,4CN (0.483 g, 0.86 mmol) was added in. The colorless
solution turned light yellow immediately. The mixture was stirred for an hour.
The solvent was removed under reduced pressure to give a colorless solid,
which was redissolved in 50 mL CH2Cl2. The solution was filtered to remove
any precipitate, and the solvent was removed under vacuum to give pale
yellow solid (0.351 g, 0.32 mmol, 75.6%). IR (cm-1, KBr pellet): 696(s), 774(s),
91
2234(νCN, s), 2520(νBH, w). Elemental Analysis, Found (Calc’d for
C60H38N18B2Mn·2CH2Cl2): C, 59.35 (59.22); H, 4.50 (3.37); N, 18.79 (20.05).
X-ray quality crystals were grown by layering a solution of KTpPh,4CN in
methanol
on
top
of
a
solution
of
Mn(CF3SO3)2.2CH3CN
in
methanol/dichloromethane. After allowing the solutions to diffuse together
for a week, the top was removed and the solvent allowed to slowly evaporate,
producing pale yellow crystals. X-ray data collection and structure solution
parameters are listed in Table A. Atomic positions, thermal parameters, and
metrical parameters are listed in Table F1-4.
3.6.4
Synthesis
of
Bis(hydrobis(4-cyano-3-phenylpyrazolyl)
(4-cyano-5-phenylpyrazolyl)borato)iron(II) [(TpPh,4CN)*2Fe]
To a solution of Fe(CF3SO3)2.2CH3CN (0.583 g, 1.33 mmol) in 20 mL dry
methanol was added KTpPh,4CN (1.483 g, 2.67 mmol) under N2. The light
yellow solution turned green immediately. The mixture was stirred for an hour
and the solvent was removed under reduced pressure to give a green solid,
which was redissolved in about 20 mL CH2Cl2. The solution was filtered to
remove any precipitate, and the solvent was removed under reduced pressure.
The final product was a light green solid (1.194 g, 1.09 mmol, 82.3%). IR (cm-1,
KBr pellet): 696(s), 774(s), 2235(νCN, s), 2517(νBH, w). Elemental Analysis,
Found (Calc’d for C60H38N18B2Fe·CH3OH): C, 65.76 (65.38); H, 4.67 (3.78); N,
22.59 (22.50). X-ray quality crystals were grown by layering a solution of
92
KTpPh,4CN in methanol on top of a solution of Fe(CF3SO3)2.2CH3CN in
methanol/dichloromethane. After allowing the solutions to diffuse together
for a week, the top was removed and the solvent allowed to slowly evaporate,
producing light yellow crystals. X-ray data collection and structure solution
parameters are listed in Table A. Atomic positions, thermal parameters, and
metrical parameters are listed in Table G1-4.
3.6.5
Synthesis
of
Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato)
cobalt(II) [(Tpt-Bu,4CN)2Co]
Same procedure as for (TpPh,4CN)*2Co was followed, using 0.300 g KTpt-Bu,4CN
(0.61 mmol) and 0.112 g Co(ClO4)2.6H2O (0.30 mmol). The initial pink
solution turned brown upon addition of the ligand. Final product is a brown
solid (0.164 g, 0.17 mmol, 56.2%). IR (cm-1, KBr pellet): 534(s), 819(s), 1135(s),
1527(m), 2230(νCN, vs), 2463(νBH, w). ESI-MS (THF, positive detection): m/z
= 515.5 [Tpt-Bu,4CNCo]+, 664.7 [Tpt-Bu,4CNCopzt-Bu,4CN]+, 972.5 [Tpt-Bu,4CN2Co]H+.
3.6.6
Synthesis
of
Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato)
manganese(II) [(Tpt-Bu,4CN)2Mn]
Same procedure as for (TpPh,4CN)*2Mn was followed, using 0.500 g KTpt-Bu,4CN
(1.01 mmol) and 0.282 g Mn(CF3SO3)2.2CH3CN (0.50 mmol), The initial
colorless solution turned light yellow upon addition of the ligand. Final
product is a colorless solid (0.323 g, 0.33 mmol, 66.2%). IR (cm-1, KBr pellet):
93
536(s), 821(s), 1137(s), 2235(νCN, vs), 2488(νBH, w).
3.6.7 Synthesis of Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato)iron(II)
[(Tpt-Bu,4CN)2Fe]
Same procedure as for (TpPh,4CN)*2Fe was followed, using 0.300 g KTpt-Bu,4CN
(0.61 mmol) and 0.171 g Fe(CF3SO3)2.2CH3CN (0.30 mmol), The initial light
yellow solution turned green upon addition of the ligand. Final product is a
light green solid (0.223 g, 0.23 mmol, 76.2%). IR (cm-1, KBr pellet): 534(s),
825(s), 1135(s), 2252(νCN, vs), 2508(νBH, w).
3.6.8
Synthesis
of
Bis(hydrotris(4-cyano-3,5-dimethylpyrazolyl)
borato)cobalt(II) [(TpMe2,CN)2Co]
Co(NO3)2.6H2O (0.182 g, 0.63 mmol) was dissolved in 20 mL THF, and
KTpMe2,4CN (0.512 g, 1.25 mmol) was added. The pink solution turned purple
immediately. The mixture was stirred for an hour. The solvent was removed
under reduced pressure to give a deep brown oily solid, which was redissolved
in 50 mL CH2Cl2. The solution was filtered to remove some white precipitate,
and the solvent was removed under vacuum to give a purple solid. IR (cm-1,
KBr pellet): 799(m), 1023(m), 1384(s), 1626(s), 2198(νCN, s), 2227(νCN, s),
2426(νBH, w), 2462(νBH, w). ESI-MS (THF, positive detection): m/z = 637.2
[TpMe2,4CNCo(HpzMe2,4CN)(NO3)]Na+.
94
3.6.9
Synthesis
of
Hydrotris(4-cyano-3-phenylpyrazolyl)boratocopper(I)
{[TpPh,4CNCu]n} and Hydrotris(4-cyano-3-phenylpyrazolyl)boratocopper(II)
perchlorate [TpPh,4CNCu(ClO4)]
To a solution of KTpPh,4CN (0.500 g, 0.91 mmol) in 5 mL of
methanol was
added a solution of Cu(ClO4)2.6H2O (0.330 g, 0.91 mmol) in 50 mL of 50/50
CH3OH/CH2Cl2. The mixture was stirred for half an hour and [TpPh,4CNCu]n
was filtered off as a yellow precipitate from a green solution of
TpPh,4CNCu(ClO4). [TpPh,4CNCu]n was purified by washing thoroughly with
methanol and water to give 0.198 g (0.34 mmol, 37.8%) of yellow powder. IR
(KBr, cm-1): 2226(νCN, s), 2472(νBH, m). Elemental Analysis, Found (Calc’d for
C30H19N9BCu·4H2O): C, 55.74 (55.27); H, 3.25 (4.17); N, 17.23 (19.34). X-ray
quality crystals were grown by layering a solution of KTpPh,4CN in methanol on
top of a solution of Cu(ClO4)2.6H2O in methanol/dichloromethane. X-ray data
collection and structure solution parameters are listed in Table A. Atomic
positions, thermal parameters, and metrical parameters are listed in Table
H1-4. The green TpPh,4CNCu(ClO4) solution was concentrated on rotary
evaporator resulting in precipitation of a green powder. Further purification
was accomplished by washing with water, THF/methanol to remove
unreacted starting materials. The final product is a green solid (0.341 g, 0.50
mmol, 55.6%). IR (KBr, cm-1): 2230(νCN, s), 2486(νBH, m), 1080(νClO4, s),
2017(νClO4, m). Elemental Analysis, Found (Calc’d for C30H19N9BCuClO4·THF):
C, 55.26 (54.34); H, 3.62 (4.47); N, 16.14 (16.78). X-ray data collection and
95
structure solution parameters of {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n are
listed in Table A. Atomic positions, thermal parameters, and metrical
parameters are listed in Table K1-4.
3.6.10 Synthesis of Hydrotris(4-cyano-3-tert-butylpyrazolyl)boratocopper(I)
{[Tpt-Bu,CNCu]n} and Hydrotris(4-cyano-3-tert-butylpyrazolyl)boratocopper(II)
trifluoromethylsulfonate [Tpt-Bu,CNCu(CF3SO3)]
KTpt-Bu,4CN (0.400 g, 0.82 mmol) was dissolved in 5 mL of methanol and to
this solution was added 50 mL CH3OH/CH2Cl2 (50/50) solution of
Cu(CF3SO3)2 (0.292 g, 0.82 mmol). The mixture was stirred for half an hour.
[Tpt-Bu,4CNCu]n was collected as a yellow precipitate by filtration and washed
with methanol and water (0.151 g, 0.29 mmol, 36.3%). IR (KBr, cm-1):
2230(νCN, s), 2466(νBH, m). Elemental Analysis, Found (Calc’d for
C24H31N9BCu·H2O): C, 54.28 (53.59); H, 6.07 (6.18); N, 22.71 (23.43). X-ray
quality crystals were grown by layering a solution of KTpt-Bu,4CN in methanol
on top of a solution of Cu(CF3SO3)2 in methanol/dichloromethane. X-ray data
collection and structure solution parameters are listed in Table A. Atomic
positions, thermal parameters, and metrical parameters are listed in Table
I1-4. Tpt-Bu,4CNCu(CF3SO3) remained in the reaction solution and was
condensed and washed by water and THF/methanol to yield a green solid
(0.297 g, 0.44 mmol, 55.0%). IR (KBr, cm-1): 2229(νCN, s), 2447(νBH, m),
639(νCF3SO3, m), 1032(νCF3SO3, s). Elemental Analysis, Found (Calc’d for
96
C24H31N9BCuCF3SO3·2H2O): C, 42.57 (42.59); H, 4.63 (5.00); N, 18.25
(17.88).
3.6.11
Synthesis
of
Hydrotris(4-cyano-3-phenylpyrazolyl)boratocopper(I)
carbonyl [TpPh,4CNCu(CO)]
70.00 mg of [TpPh,4CNCu]n (0.12 mmol) was dissolved in dry THF under
carbon monoxide atmosphere. The solution was stirred for 12 hours with CO
gas bubbled in. After filtration of some green precipitate the solvent was
removed on rotary evaporator resulting in dark yellow solid TpPh,4CNCu(CO)
(45.622 mg, 0.075 mmol, 62.5%). IR (KBr, cm-1): 695(s), 775(s), 2096(νCO, m),
2230(νCN, s), 2471(νBH, m).
3.6.12 Synthesis of Hydrotris(3-phenylpyrazolyl)boratocopper(I) carbonyl
[TpPhCu(CO)]
0.250 g of KTpPh (0.52 mmol) was dissolved in dry THF and bubbled with
carbon monoxide for an hour. The solution turned dark yellow when
[Cu(CF3SO3)]2.benzene (0.125 g, 0.25 mmol) was added in. The mixture was
stirred under carbon monoxide atmosphere for 12 hours. A yellow precipitate
was filtered out from the solution and purified by washing with CH3CN. The
final product is a yellow solid (0.181 g, 0.34 mmol, 65.4%). IR (cm-1, KBr
pellet): 694(s), 751(s), 2078(νCO, m), 2432(νBH, w).
97
3.6.13
Synthesis
of
Bis(hydrotris(4-cyano-3,5-dimethylpyrazolyl)borato)
copper(II) [(TpMe2,4CN)2Cu]
Cu(NO3)2.2.5H2O (0.199 g. 0.85 mmol) was dissolved in 20 mL THF, and
KTpMe2,4CN (0.700 g, 1.72 mmol) was added in. The mixture was stirred for an
hour. The solvent was removed under reduced pressure to give a deep green
oily solid, which was redissolved in 50 mL CH2Cl2. The solution was filtered
and the solvent was removed under vacuum to give a green solid. IR (cm-1,
KBr pellet): 801(s), 1026(m), 2228(νCN, s), 2480(νBH, w). ESI-MS (THF,
negative
detection):
m/z
=
372.2
[TpMe2,4CN]-,
618.2
[TpMe2,4CNCu(HpzMe2,4CN)(NO3)]-.
3.6.14 Synthesis of Hydrotris(3-phenylpyrazolyl)boratocopper(II) nitrate
[TpPhCu(NO3)]
To a THF solution of Cu(NO3)2.2.5H2O (0.156 g, 0.67 mmol) was added
KTpPh,4CN (0.370 g, 0.67 mmol). The blue solution turned green immediately.
The mixture was stirred for an hour until all the ligand had dissolved. The
solvent was removed under reduced pressure to give a deep green oily solid,
which was redissolved in about 50 mL CH2Cl2. The solution was filtered to
remove some precipitate, and the solvent was removed under reduced
pressure. Final product was a purple solid. IR (cm-1, KBr pellet): 696(s), 774(s),
2485(νBH, w). X-ray quality crystals were grown from slow evaporation of
CH2Cl2 solution. X-ray data collection and structure solution parameters are
98
listed in Table A. Atomic positions, thermal parameters, and metrical
parameters are listed in Table J1-4.
3.6.15 Synthesis of Dichlorotetrakis(4-cyano-3-tert-butylpyrazole)cobalt(II)
[(Hpzt-Bu,4CN)4CoCl2]
Anhydrous CoCl2 (0.800 g, 6.15 mmol) and Hpzt-Bu,4CN (3.670 g, 24.60 mmol)
were mixed together in 20 mL dry THF solution and stirred for an hour. The
solvent was evaporated and the product was redissolved in toluene. The
solution was filtered and (Hpzt-Bu,4CN)4CoCl2 was collected as pink solid after
solvent was removed (3.332 g, 4.59 mmol, 74.6%). IR (KBr, cm-1): 2235(νCN, s).
Elemental Analysis, Found (Calc’d for C32H44N12CoCl2·H2O·toluene): C, 55.42
(55.98); H, 5.88 (6.50); N, 20.99 (20.09). X-ray quality crystals were grown
by slow evaporation from the toluene solution. X-ray data collection and
structure solution parameters are listed in Table A. Atomic positions, thermal
parameters, and metrical parameters are listed in Table L1-4.
3.6.16
Synthesis
of
Diaquabis(4-cyano-3-tert-butylpyrazole)bis
(trifluoromethylsulfonato)manganese(II) [(Hpzt-Bu,4CN)2Mn(CF3SO3)2(H2O)2]
Under N2 protection to a solution of Mn(CF3SO3)2.2CH3CN (0.200 g, 0.46
mmol) in 10 mL dry THF was added 10 mL dry THF solution of Hpzt-Bu,4CN
(0.141 g, 0.92 mmol). The mixture was stirred for an hour. The solvent was
evaporated and the resulting solid was redissolved in toluene. The solution
99
was filtered and (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O was collected as white solid
after toluene was removed (0.233 g, 0.33 mmol, 72.1%). IR (KBr, cm-1):
2233(νCN,
s).
Elemental
Analysis,
Found
(Calc’d
for
C18H26N6O8F6S2Mn·toluene): C, 37.94 (38.51); H, 4.93 (4.40); N, 12.61 (10.78).
X-ray quality crystals were grown by slow evaporation from the toluene
solution. X-ray data collection and structure solution parameters are listed in
Table A. Atomic positions, thermal parameters, and metrical parameters are
listed in Table M1-4.
3.6.17
Synthesis
of
Dichlorobis(4-cyano-3-tert-butylpyrazole)copper(II)
[(Hpzt-Bu,CN)2CuCl2]
To a solution of anhydrous CuCl2 (0.900 g, 6.69 mmol) in 10 mL dry THF was
added 10 mL dry THF solution of Hpzt-Bu,4CN (1.990 g, 13.42 mmol). The
mixture was stirred for an hour. The solvent was evaporated and the resulting
solid
was
redissolved
in
toluene.
The
solution
was
filtered
and
(Hpzt-Bu,4CN)2CuCl2 was collected as a blue solid after toluene was removed
(2.003 g, 4.62 mmol, 69.1%). IR (KBr, cm-1): 2229(νCN, s), 2238(νCN, s).
Elemental Analysis, Found (Calc’d for C16H22N6Cl2Cu): C, 44.55 (44.40); H,
5.29 (5.12); N, 19.35 (19.42).
X-ray quality crystals were grown by slow
evaporation from the toluene solution. X-ray data collection and structure
solution parameters are listed in Table A. Atomic positions, thermal
parameters, and metrical parameters are listed in Table N1-4.
100
Chapter 4 Coordination Polymers
4.1 Introduction
Coordination polymers are a new class of organic-inorganic hybrid material.
They represent a new and expanding research area that combines the fields of
coordination chemistry, polymer synthesis and solid state chemistry. In 1987,
Lehn first pointed out the concept of supramolecular architecture, which is
often constructed from small molecular and ionic subunits by coordinate
covalent bonds, hydrogen bonds and π-π interactions.96, 97 Recently, there has
been increasing research interest in coordination polymers as a route to
materials that possess attractive properties, such as zeolite-like characteristics,
catalytic activity, magnetism and non-linear optical behavior.98, 99 To this end,
a wide variety of coordination solids that form 1-, 2-, and 3-dimensional
networks have been prepared and studied.100-102 Attempts to control the
dimensionality and topology of coordination polymers have focused on the
selection of multidentate ligands with metal ions of the appropriate
coordination geometry. Typically the structures consist of rigid, symmetric
ligands bound to metal centers or metal clusters.103-105 Suitable choices of
metals and ligands based on their coordination habits and geometric
preferences will produce novel materials with interesting and specific
properties. A useful and popular approach for this purpose consists of
assembling two building blocks that frequently are transition metal complexes,
101
one with terminal ligands capable of acting as bridges and another with empty
or available coordination sites.
Trispyrazolylborate ligands have a rigid C3V symmetry and usually keep the
coordinated metal in a firm tridentate grip. One of the reasons we introduced
CN substituents on this ligand is to construct coordination polymers by using
pyrazole N atoms and CN groups to coordinate to different metal atoms. A
fully conjugated pathway between metal centers, consisting of the pyrazole
ring and the CN group, will be established. If significant metal-metal
communication can be realized along this pathway molecular bulk magnetism
may be obtained; we can thus produce new electronic and magnetic molecular
materials. This potential of cyano-substituted polypyrazolylborates to form
coordination polymers has been shown before, although no crystal structures
have been characterized.40 Early work in the Eichhorn group involving
bis(4-cyano-3-phenylpyrazolyl)borates found another indication of the
formation of coordination polymer.46 A red material coming from reaction of
(BpPh,4CN)2Cu with Rh2(CF3COO)4 showed two CN stretches: 2258 cm-1 and
2234 cm-1. The mass spectrum of this product has four major peaks: m/z = 761,
1418, 2075 and 2732. The first one is (BpPh,4CN)2Cu, while the last three
correspond to (BpPh,4CN)2Cu plus one, two and three Rh2(CF3COO)4 units. It
appears that the CN substituents are coordinating to the rhodium centers and
a coordination polymer chain may form as below (Figure 4.1.1).
102
CF3
CF3
O
O
H2
B
O
N
O
Rh
O
O
N
N C
Rh
N
C
O O
Ph
Ph
N
N
Cu
N
O
C
O
N
Ph Ph
CF3 F3C
N
N
B
H2
O
O
Rh
Rh
C N
N
CF3
CF3
O
O
CF3
O
O
CF3
n
Ph,4CN
Figure 4.1.1 Proposed Structure of (Bp
)2Cu-Rh2(CF3COO)2 Coordination Polymer
Cyano-substituted trispyrazolylborate complexes should also be capable of
forming coordination polymers with similar structures. Actually among those
trispyrazolylborate complexes which have been discussed in chapter 2 and
chapter 3, some have already shown coordination polymer structures such as
[TpPh,4CNCu]n and [Tpt-Bu,4CNCu]n, others indicate short contacts between the
metal ion and the CN substituents from other adjacent ligands, such as
TlTpPh,4CN and (Hpzt-Bu,4CN)2CuCl2. Here we tried to rationally construct the
coordination polymers by reacting different trispyrazolylborate metal
complexes directly with other small metal compounds such as Rh2(CF3COO)4
and Ni(cyclam)(ClO4)2 (cyclam = 1,4,8,11-tetraazacyclotetradecane). These
small compounds have available coordination sites and accessibility on the
metal center, which can be bound to the cyano substituent to form 1-, 2-, or
3-dimensional coordination polymers.
103
4.2 TpPhCu(NO3)-(HpzPh,4CN)2M(NO3)2
TpPh,4CN metal complexes have rigid structures and at least three CN
substituents capable of binding to other metal atoms to form coordination
polymers. This could cause difficulty to control the polymer dimensions and
structures. To simplify the problem, initially we used (HpzPh,4CN)2Co(NO3)2 or
(HpzPh,4CN)2Cu(NO3)2 instead of TpPh,4CN complexes to react with TpPhCu(NO3),
and we want to see if any coordinate bonds will form between CN substituents
and the copper atom in TpPhCu(NO3). In addition, such complexes could be
used to study interactions mediated by the cyano-pyrazole moiety. Metal
pyrazole complexes are already known to exist and easy to synthesize. Without
binding to the boron atom, substituted pyrazoles are less space limited and
easy to orientate to facilitate the CN coordination. On the other hand,
TpPhCu(NO3) has been synthesized and purified. While carrying no CN
substituents to bind other metal atoms, it has similar structure to its
cyano-substituted analogs with a free valence at the metal center. All of these
properties make TpPhCu(NO3) a perfect example to simplify the reaction and
start with.
Reaction of (HpzPh,4CN)2Cu(NO3)2 with TpPhCu(NO3) was in THF by stirring
overnight. The solvent was evaporated and the product was washed with
dichloromethane and toluene to remove any unreacted starting materials.
(HpzPh,4CN)2Cu(NO3)2 shows a CN stretching frequency at 2235 cm-1 in the IR
104
spectrum. After reaction the CN peak of the green solid product shifted to
2229 cm-1, possibly due to the coordination to a metal ion. The mass spectrum
also shows a positive result for this reaction (Figure 4.2.1).
120
650.3
[(HpzPh,4CN)2Cu(NO3)2-Cu(NO3)]+
361.5
100
[(HpzPh,4CN)2Na]+
80
526.1
[(HpzPh,4CN)2Cu(NO3)2]H+
60
40
1097.1
20
[TpPhCu(NO3)- (HpzPh,4CN)2Cu(NO3)2]Li+
0
0
200
400
600
800 1000 1200 1400 1600 1800 2000
Figure 4.2.1 MS of TpPhCu(NO3)-(HpzPh,4CN)2Cu(NO3)2
There are four major peaks at 361.5, 526.1, 650.3 and 1097.1. The first three
peaks
correspond
to
[(HpzPh,4CN)2]Na+,
[(HpzPh,4CN)2Cu(NO3)2]H+
and
[(HpzPh,4CN)2Cu(NO3)2-Cu(NO3)]+ while the last one, which is the most
interesting, fits into the formula weight of the desired product with a lithium
ion: [TpPhCu(NO3)-(HpzPh,4CN)2Cu(NO3)2]Li+. Magnification of this peak
shows six isotope peaks whose intensities match with the isotopic abundance
coupling of one 10,11B atom with two 63,65Cu atoms (Figure 4.2.2).
105
100
90
80
70
60
50
40
30
20
10
0
1090
1092
1094
1096
1098
1100
1102
1104
Figure 4.2.2 Magnification of Peak m/z = 1097 from Figure 4.2.1
We have, therefore, shown the formation of a dinuclear copper species by
spectroscopy, suggesting the CN substituent binds to the other copper center
in TpPhCu(NO3). We tried to crystallize this dinuclear species. Unfortunately,
the only crystals isolated from both TpPhCu(NO3)-(HpzPh,4CN)2Co(NO3)2 and
TpPhCu(NO3)-(HpzPh,4CN)2Cu(NO3)2
samples
proved
to
be
TpPhCo(HpzPh,4CN)(NO3) and TpPhCu(HpzPh,4CN)(NO3). ORTEP drawings of
these two crystal structures are shown in Figure 4.2.3 and Figure 4.2.4 with
selected bond distances and angles in Table 4.2.1 and Table 4.2.2.
106
Figure 4.2.3 ORTEP Drawing of TpPhCo(HpzPh,4CN)(NO3) Showing 50%
Thermal Ellipsoids, H Atoms Are Omitted and Only B, N, O, Co Atoms Are
Labeled for Clarity.
Table 4.2.1 Bond Distances (Å) and Angles (deg.) for TpPhCo(HpzPh,4CN)(NO3)
B - N(1)
B - N(3)
B - N(5)
Co - N(2)
Co - N(4)
Co - N(6)
Co - N(7)
Co - O(1)
C(34) - N(9)
1.522(2)
1.527(3)
1.536(3)
2.061(2)
2.066(3)
2.166(4)
2.063(3)
2.016(2)
1.170(2)
N(2) - Co - N(4)
N(2) - Co - N(6)
N(6) - Co - N(4)
N(2) - Co - O(1)
N(4) - Co - O(1)
N(6) - Co - O(1)
N(7) - Co - O(1)
N(2) - Co - N(7)
N(4) - Co - N(7)
N(6) - Co - N(7)
C(32) - C(34) - N(9)
107
84.6(4)
90.8(5)
90.8(7)
87.7(4)
168.8(5)
97.4(5)
94.8(5)
176.3(3)
92.4(2)
91.3(2)
179.1(6)
Figure 4.2.4 ORTEP Drawing of TpPhCu(HpzPh,4CN)(NO3) Showing 50%
Thermal Ellipsoids, H Atoms Are Omitted and Only N, O, B, Cu Atoms Are
Labeled for Clarity.
Table 4.2.2 Bond Distances (Å) and Angles (deg.) for TpPhCu(HpzPh,4CN)(NO3)
B - N(1)
B - N(3)
B - N(5)
Cu - N(2)
Cu - N(4)
Cu - N(6)
Cu - N(7)
Cu - O(1)
C(34) - N(9)
1.540(2)
1.540(4)
1.528(3)
2.003(2)
2.267(4)
2.021(3)
2.023(3)
1.966(3)
1.140(2)
N(2) - Cu - N(4)
N(2) - Cu - N(6)
N(6) - Cu - N(4)
N(2) - Cu - O(1)
N(4) - Cu - O(1)
N(6) - Cu - O(1)
N(7) - Cu - O(1)
N(2) – Cu - N(7)
N(4) - Cu - N(7)
N(6) – Cu - N(7)
C(32) - C(34) - N(9)
108
90.6(3)
86.1(4)
91.1(4)
87.7(2)
97.3(3)
169.5(4)
92.8(2)
178.8(3)
90.3(3)
93.1(4)
177.6(2)
TpPhCo(HpzPh,4CN)(NO3) and TpPhCu(HpzPh,4CN)(NO3) are isostructural and
crystallize in the monoclinic P21/n space group. The metal atoms have
square-pyramidal coordination environments with the basal plane consisting
of two N atoms from the TpPh ligand, one N atom from HpzPh,4CN and one O
atom from a monodentate NO3-. The third TpPh N atom occupies the apical
position. The neutral substituted pyrazole essentially takes the place of one
oxygen atom in TpPhCu(NO3) while keeping relatively small N-Cu-N angles
compared with other TpPhCu(HpzPh)X complexes80 as shown in Table 4.2.3.
Table 4.2.3 Structural Data (Å and deg.) for TpPh Metal Complexes
Complexes
TpPhCo(HpzPh,4CN)(NO3)
TpPhCu(HpzPh,4CN)(NO3)
TpPhCu(NO3)
TpPhCu(HpzPh)(SCN)
TpPhCu(HpzPh)Cl
M-N
2.089
2.079
2.020
2.072
2.081
N-M-N
88.7
89.3
92.1
104.0
104.1
109
N-B-N
109.1
108.7
108.8
109.7
109.3
References
This Work
This Work
This Work
80
80
4.3 TlTpR,4CN-Rh2(CF3COO)4
There are quite a few coordination polymer structures reported involving
Rh2(CF3COO)4 and the cyano group.106-108 Rh2(CF3COO)4 is a good
electrophile that can be easily bonded to a CN unit. It is already shown that
this rhodium dimer can form a coordination polymer with (BpPh,4CN)2Cu46
although a crystal structure has not been determined yet. We have synthesized
and purified new TpR,4CN ligands. Thus we would like to explore the possibility
of forming a coordination polymer from TlTpR,4CN and Rh2(CF3COO)4. Initial
attempt was made by mixing the two materials in CH2Cl2. In both cases for
TlTpPh,4CN and TlTpt-Bu,4CN, red materials precipitated out and were isolated.
The IR spectra of these red products show only cyano stretches without
considerable shift from the ligands. Crystals of these red products were grown
from
the
TlTpt-Bu,4CN-Rh2(CF3COO)2
sample
and
studied
by
X-ray
crystallography. Instead of the coordination polymer structure we designed,
the crystal turned to be (Hpzt-Bu,4CN)2-Rh2(CF3COO)4, whose formation was
due to decomposition of the ligand. An ORTEP drawing of this crystal
structure is shown in Figure 4.3.1 with selected bond distances and angles in
Table 4.3.1.
110
Figure 4.3.1 ORTEP Drawing of (Hpzt-Bu,4CN)2-Rh2(CF3COO)4 Showing 50%
Thermal Ellipsoids, H Atoms Omitted for Clarity.
Table
4.3.1
Bond
Distances
(Å)
and
Angles
(deg.)
t-Bu,4CN
)2-Rh2(CF3COO)4
(Hpz
Rh - Rh
2.417(2)
Rh - Rh - N(1)
179.3(3)
Rh - N(1)
2.211(3)
O(1) - Rh - O(2)
90.1(2)
Rh - O(1)
2.040(1)
O(3) - Rh - O(4)
92.1(4)
Rh - O(2)
2.035(3)
N(1) - Rh - O(1)
91.6(3)
Rh - O(3)
2.035(2)
N(1) - Rh - O(2)
91.4(2)
Rh - O(4)
2.035(2)
N(1) - Rh - O(3)
92.5(1)
C(4) - N(3)
1.148(3)
N(1) - Rh - O(4)
92.8(3)
C(2) - C(4) - N(3)
176.5(2)
for
(Hpzt-Bu,4CN)2-Rh2(CF3COO)4 crystallizes in the triclinic P 1 space group. Each
rhodium has an almost perfect octahedral coordination geometry with four
oxygen atoms in the same plane; pyrazole N atom and Rh-Rh bond at the
apical positions. Because of the dissociation of the Tp ligand, the pyrazoles
coordinate to the metal ion via the ring nitrogen instead of the CN
111
substituents, consistent with the lack of a shift of the CN stretch. Although a
coordination polymer is not isolated here, this structure shows the rigid
molecular configuration for Rh2(CF3COO)4 to be working as one construction
block for coordination polymers, as well as the potential to form new Rh-N
bonds at the apical positions.
112
4.4 TlTpPh,4CN-[Ni(cyclam)][ClO4]2
Ni(cyclam)(ClO4)2 (cyclam = 1,4,8,11-tetraazacyclotetradecane) is another
common material used to build coordination polymers.109-111 In this molecule
the Ni atom and four coordinated N atoms are in the same plane, leaving two
apical positions as the free coordination sites on the nickel atom. The first
reaction of TlTpPh,4CN with Ni(cyclam)(ClO4)2 was done in acetone solution. A
yellow product was obtained after washing by CH2Cl2. This yellow solid was
studied
by
X-ray
crystallography
and
turned
out
to
be
only
[Ni(cyclam)][ClO4]2. However, reactions in aqueous solution resulted in pink
crystals and some unreacted starting materials. The IR spectrum of this pink
crystal shows only the cyano stretch. X-ray crystallography revealed the
crystal to be (pzPh,4CN)2Ni(cyclam), which probably resulted from the
decomposition of the ligand. An ORTEP drawing of this crystal structure is
shown in Figure 4.4.1 with selected bond distances and angles in Table 4.4.1.
Table 4.4.1 Bond Distances (Å) and Angles (deg.) for (pzPh,4CN)2Ni(cyclam)
Ni - N(1)
Ni - N(2)
Ni - N(3)
N(3) - N(4)
C(15) - N(5)
2.073(1)
2.079(1)
2.200(1)
1.380(2)
1.154(2)
N(1) - Ni - N(2)
N(1) - Ni - N(3)
N(2) - Ni - N(3)
C(7) - C(15) - N(5)
113
85.3(6)
87.5(6)
85.1(6)
179.8(2)
Figure 4.4.1 ORTEP Drawing of (pzPh,4CN)2Ni(cyclam) Showing 50% Thermal
Ellipsoids, H Atoms Omitted for Clarity.
(pzPh,4CN)2Ni(cyclam) crystallizes on an inversion center in the orthorhombic
space group Pbca. The octahedral coordination environment of the Ni ion
consists of four N atoms from the cyclam ring in the same plane, and two
other N atoms from two anionic pyrazole moieties, occupying the apical
positions. Similar to the structure of (Hpzt-Bu,4CN)2-Rh2(CF3COO)4, two
substituted pyrazoles coordinate to the metal ion via the ring nitrogen instead
of the CN substituents, consistent with the lack of a BH stretch in the IR
spectrum. There are interactions between the CN group and two protons of
two neighboring cyclam rings (N(5)…C(2) 3.413 Å, N(5)…C(5) 3.687 Å) and a
third proton from the phenyl group (N(5)…C(12) 3.462 Å). Although no
coordination polymer has been constructed here, this structure shows the
possibility of Ni(cyclam) to function as one construction block for
114
coordination polymers, as well as the potential to form new Ni-N bonds at the
apical positions.
115
4.5 Conclusion
Attempts were made here to construct coordination polymers by using
cyano-substituted polypyrazolylborate complexes with metal complexes
containing
empty
coordination
sites,
such
as
Rh2(CF3COO)4
and
Ni(cyclam)(ClO4)2. Mass spectra show formation of a dinuclear copper species,
although crystallization of these compounds results in TpPhM(HpzPh,4CN)(NO3).
TlTpR,4CN was used as one building block in construction of coordination
polymers. We expected to see the cyano substituent coordinate to rhodium or
nickel centers, however, (Hpzt-Bu,4CN)2-Rh2(CF3COO)4 and (pzPh,4CN)2Ni(cyclam)
were isolated with coordination of the pyrazole ring N atoms, possibly due to
the decomposition of the ligand. Although no coordination polymers have
been constructed so far, it does show the potential of these molecules to work
as one building block.
116
4.6 Experimental
4.6.1 General Experimental
For general experimental details see section 2.8.1. Synthesis of TpPhCu(NO3)
was described in 3.6.14. (HpzPh,4CN)2M(NO3)2 (M = Co, Cu) were synthesized
by the same procedure as for (Hpzt-Bu,4CN)2CuCl2 (section 3.6.17), by using
M(II) nitrate and HpzPh,4CN with 1:2 ratio. Ni(cyclam)(ClO4)2 was prepared by
the
literature
method.112
TpPhCo(HpzPh,4CN)(NO3),
(Hpzt-Bu,4CN)2-Rh2(CF3COO)4 and (pzPh,4CN)2Ni(cyclam) crystal data were
collected by Charles Campana and Cary Bauer from Bruker AXS Inc. The first
two were collected at 100 K on a Bruker Kappa APEX II CCD area detector
system equipped with a graphite monochromator and a Mo Kα fine-focus
sealed tube (λ = 0.7107 Å) operated at 1.5 kW power (50 kV, 30 mA). The
detector was placed at a distance of 3.985 cm and 4.980 cm from the crystals
respectively. The last one was collected at 100 K on a Bruker Proteum R /Pt135
CCD area detector system equipped with Montel optics and a Cu Kα rotating
anode (λ = 1.5418 Å) operated at 2.7 kW power (45 kV, 60 mA). The detector
was placed at a distance of 5.030 cm from the crystal. All structures were
solved and refined as described in section 2.8.1.
4.6.2 TpPhCu(NO3)-(HpzPh,4CN)2Co(NO3)2
To a solution of TpPhCu(NO3) (0.500 g, 0.88 mmol) in 20 mL dry THF was
117
added (HpzPh,4CN)2Co(NO3)2 (0.461 g, 0.88 mmol). The green solution turned
brown immediately and was stirred for 12 hours. The solvent was evaporated
under reduced pressure resulting in a brown solid. This brown product was
washed with toluene to remove any unreacted starting materials. Final
product is a brown solid (0.702 g, 0.64 mmol, 79.5%). IR (KBr, cm-1):
2233(νCN, s), 2496(νBH, w). X-ray quality crystals of TpPhCo(HpzPh,4CN)(NO3)
were grown by slow evaporation from the THF solution. X-ray data collection
and structure solution parameters are listed in Table A. Atomic positions,
thermal parameters, and metrical parameters are listed in Table P1-4.
4.6.3 TpPhCu(NO3)-(HpzPh,4CN)2Cu(NO3)2
Same procedure as above was followed, using 0.500 g TpPhCu(NO3) (0.88
mmol) and 0.461 g (HpzPh,4CN)2Cu(NO3)2 (0.88 mmol). Final product is a
green solid (0.829 g, 0.76 mmol, 86.2%). IR (cm-1, KBr pellet): 2234(νCN, vs),
2496(νBH,
w).
[(HpzPh,4CN)2Na]+,
ESI-MS
(THF,
526.1
positive
detection):
m/z
=
[(HpzPh,4CN)2Cu(NO3)2]H+,
[(HpzPh,4CN)2Cu(NO3)2-Cu(NO3)]+,
1097.1
361.5
650.3
[TpPhCu(NO3)-
(HpzPh,4CN)2Cu(NO3)2]Li+. X-ray quality crystals of TpPhCu(HpzPh,4CN)(NO3)
were grown by slow evaporation from the THF solution. X-ray data collection
and structure solution parameters are listed in Table A. Atomic positions,
thermal parameters, and metrical parameters are listed in Table Q1-4.
118
4.6.4 TlTpPh,4CN-Rh2(CF3COO)4
Rh2(CF3COO)4 (0.0122 g, 0.019 mmol) was dissolved in 20 mL CH2Cl2, and
TlTpPh,4CN (0.0140 g, 0.019 mmol) was added in directly. The mixture was
stirred for one hour and a reddish precipitate came out of the solution. This
precipitate was filtered and washed by toluene. The final product is a red solid
(0.016 g, 0.012 mmol, 63.2%). IR (cm-1, KBr pellet): 738(m), 785(m), 858(m),
1191(s), 2243(νCN, s).
4.6.5 TlTpt-Bu,4CN-Rh2(CF3COO)4
Same procedure as above was followed, using 0.01o g TlTpt-Bu,4CN (0.015 mmol)
and 0.010 g Rh2(CF3COO)4 (0.015 mmol). The final product is a red solid
(0.o16 g, 0.012 mmol, 81.7%). IR (cm-1, KBr pellet): 2236(νCN, vs), 2489(νBH,
w). X-ray quality crystals of (Hpzt-Bu,4CN)2-Rh2(CF3COO)4 were grown by
layering a solution of TlTpt-Bu,4CN in methanol on top of a solution of
Rh2(CF3COO)4 in methanol/dichloromethane. After allowing the solutions to
diffuse together for a week, the top was removed and the solvent allowed to
slowly evaporate, producing red crystals of. IR (cm-1, KBr pellet): 2235(νCN, vs).
X-ray data collection and structure solution parameters are listed in Table A.
Atomic positions, thermal parameters, and metrical parameters are listed in
Table R1-4.
119
4.6.6 TlTpPh,4CN-Ni(cyclam)(ClO4)2
TlTpPh,4CN (0.100 g, 0.14 mmol) was added to 20 mL aqueous solution of
Ni(cyclam)(ClO4)2 (0.062 g, 0.13 mmol). The mixture was stirred and heated
at reflux for 12 hours. A yellow precipitate came out of the solution and was
filtered. The remaining aqueous solution was slowly evaporated to generate
pink crystals of (pzPh,4CN)2Ni(cyclam) (0.049 g, 0.06 mmol, 49.2%). IR (cm-1,
KBr pellet): 870(s), 958(s), 1384(s), 1626(s), 2207(νCN, s). X-ray data
collection and structure solution parameters are listed in Table A. Atomic
positions, thermal parameters, and metrical parameters are listed in Table
S1-4.
120
Chapter 5 Conclusions
Research work started with the synthesis and purification of new
cyano-substituted trispyrazolylborates. We have successfully made three new
ligands: TpPh,4CN, Tpt-Bu,4CN and TpMe2,4CN through relatively easy and safe
synthetic procedures. Thallium salts of the first two ligands were made and
studied by X-ray crystallography for ligand purification and structure
characterization. Steric effects of the bulky substituents are detected as well as
the short contacts between cyano substituents and metal centers.
Transition metals such as Mn, Fe, Co and Cu can easily form “sandwich” or
“half-sandwich” type complexes with these new trispyrazolylborates.
Synthesis and structural characterization of metal complexes involving these
substituted Tp ligands are discussed here. It was shown that both sterically
and electronically active substituents have important roles in molecular
structure construction. It was also noticed that these substituents have
significant effects on the electronic properties of the metal ion as well as the
molecular reactivity. Ligand isomerization was revealed in (TpPh,4CN)*2Co,
(TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe complexes. The isomerized metal-N bonds
are much shorter than regular length with lower symmetry. Ligand
decomposition was also observed to produce some metal pyrazole complexes,
showing the metal-CN contacts. For copper, both copper(I) and copper(II)
121
complexes were produced. [TpPh,4CNCu]n and [Tpt-Bu,4CNCu]n represent the first
crystallographically characterized examples of cyano bridged scorpionate
polymers.
The potential of the cyano substituent in forming coordination polymers was
explored. Some of the metal complexes we made have already shown 1- or
2-dimensional polymer structures. Mass spectra revealed the existence of a
dinuclear copper species. While attempting construction of coordination
polymers from Tp complexes and other electrophilic metal compounds such
as Rh2(CF3COO)4 and Ni(cyclam)(ClO4)2, ligand dissociation was observed
again, leading to the formation of metal pyrazole complexes with the ring N
atom coordination.
The goal of this research project is to produce new molecular materials
involving polypyrazolylborate metal complexes. By employing different
substituents and metal ions, these materials are designed to have desired
electronic and magnetic properties. Research work discussed in this
dissertation paves the way leading to the goal and shows a promising future.
122
LIST OF REFERENCES
123
LIST OF REFERENCES
1. Trofimenko, S., Scorpionates: The Coordination Chemistry of
Polypyrazolylborates Ligands. Imperial College Press: London, 1999.
2. Kitajima, N.; Tolman, W., Progress Inorg. Chem. 1995, 43, 419.
3. Kaner, R. B.; MacDiarmid, A. G., Sci. Am. 1998, 258, 106.
4. Kanatzidis, M. G., Chem. Eng. News 1990, 68, 36.
5. Buchachenko, A. L., Russ. Chem. Rev. 1990, 59, 307.
6. Miller, J. S.; Epstein, A. J., Angew. Chem. Int. Ed. Engl. 1994, 33, 358.
7. Aubin, S.; Sun, Z.; Pardi, L.; Krzystek, J.; Folting, K.; Brunel, L.; Rheingold,
A.; Christou, G.; Hendrickson, D., Inorg. Chem. 1999, 38, 5329.
8. Manriquez, J. M.; Yee, G. T.; McLean, R.S.; Epstein, A. J.; Miller, J. S.,
Science 1991, 252, 1415.
9. Day, P.; Coronado, E. 2005; p 105.
10. Bittencourt, J. A. Plasma conductivity and diffusion; 1979; p 58.
11. McGinness, J.; Corry, P.; Proctor, P., Science 1974, 183, 853.
12. Shirakawa, H., "Synthesis of Polyacetylene" Handbook of Conducting
Polymers. Marcell Dekker: New York, 1998.
13. Schlüter-Dieter, A., “Synthesis of Poly(para-phenylene)s” Handbook of
Conducting Polymers. Marcell Dekker: New York, 1998.
14. Gregory, R.V., “Solution Processing of Conductive Polymers: Fibers and
Gels from Emeraldine Base Polyaniline” Handbook of Conducting
Polymers. Marcell Dekker: New York, 1998.
15. R.D. McCullough, P.C Ewbank, Regioregular, Head-to-Tail Coupled
Poly(3-alkylthiophene) and Its Derivatives” Handbook of Conducting
Polymers. Marcell Dekker: New York, 1998.
16. Kanazawa, K. K.; Diaz, A. F.; Gill, W. D.; Grant, P. M.; Street, G. B.;
Gardini, G. P.; Kwak, J. F., Synth. Met. 1979/80, 1, 329.
17. Hanack, M.; Hees, M.; Stihler, P.; Winter, G.; Subramanian, L. R.,
“Synthesis and Properties of Conducting Bridged Macrocyclic Metal
Complexes” Handbook of Conducting Polymers. Marcell Dekker: New
York, 1998.
18. Bernhard, S.; Goldsmith, J. I.; Takada, K.; Abruña, H. D., Inorg. Chem.
2004, 42, 4389.
19. Gofer, Y.; Sarker, H.; Killian, J. G.; Poehler, T. O.; Searson, P. C., Appl.
Phys. Lett. 1997, 71, 1582.
20. Alper, J., Science 1989, 246, 4927.
21. Trofimenko, S., J. Am. Chem. Soc. 1966, 88, 1842.
22. Trofimenko, S., J. Am. Chem. Soc. 1967, 89, 3170.
23. Jesson, J.; Trofimenko, S.; Eaton; D., J. Am. Chem. Soc. 1967, 89, 3148.
24. Jesson, J.; Weiher, J.; Trofimenko, S., J. Chem. Phys. 1968, 48, 2058.
25. Churchill, M.; Gold, K.; Maw, C., Inorg. Chem. 1970, 9, 1597.
26. Trofimenko, S., Acc. Chem. Research 1971, 4, 17.
124
27. Trofimenko, S., J. Am. Chem. Soc. 1969, 91, 588.
28. Trofimenko, S., J. Am. Chem. Soc. 1967, 89, 3904.
29. Calabrese, J.; Trofimenko, S.; Thompson, J., J. Chem. Soc., Chem.
Commun. 1986, 1122.
30. Trofimenko, S.; Calabrese, J.; Thompson, J., Inorg. Chem. 1987, 26, 1507.
31. Han, R.; Parkin, G., Inorg. Chem. 1993, 32, 4968.
32. Egan, J. W.; Haggerty, B. S.; Rheingold, A. L.; Sendlinger, S. C.; Theopold,
K. H., J. Am. Chem. Soc. 1990, 112, 2445.
33. Tolman, W. B., Inorg. Chem. 1991, 30, 4877.
34. Oliver, J.; Hutchinson, B.; Milligan, W., Inorg. Chem. 1980, 19, 165.
35. Eichhorn, D.; Armstrong, W., Inorg. Chem. 1990, 29, 3607.
36. Long, G. J.; Hutchinson, B. B., Inorg. Chem. 1987, 26, 608.
37. Dias, H.; Lu, H.; Ratcliff, R.; Simon, G., Inorg. Chem. 1995, 34, 1975.
38. Dias, H.; Lu, H., Inorg. Chem. 1995, 34, 5380.
39. Siemer, C.; Goswami, N.; Kahol, P.; Van Stipdonk, M.; Eichhhorn, D.,
Inorg. Chem. 2001, 40, 4081.
40. Rheingold, A.; Incarvito, C.; Trofimenko, S., Inorg. Chem. 2000, 39,
5569.
41. Berseth, P. A.; Sokol, J. J.; Shores, M. P.; Heinrich, J. L.; Long, J. R., J. Am.
Chem. Soc. 2000, 122, 9655.
42. Beltran, L.; Long, J. R., Acc. Chem. Res. 2005, 38, 325.
43. Broderick, W. E.; Thompson, J. A.; Day, E. P.; Hoffman, B. M., Science
1990, 249, 401.
44. Miller, J. S.; Calabrese, J. C.; Rommelmann, H.; Chittipeddi, S. R.; Zhang,
J. H.; Reiff, W. M.; Epstein, A. J., J. Am. Chem. Soc. 1987, 109, 769.
45. Entley, W. R.; Girolami, G. S., Inorg. Chem. 1994, 33, 5165.
46. Siemer, C.; Van Stipdonk, M.; Kahol, P.; Eichhorn, D., Polyhedron 2004,
23, 235.
47. McFadden, H.; Huppatz, J., Aust. J. Chem. 1991, 44, 1263.
48. Tupper, D.; Bray, M., Synthesis 1997, 337.
49. Craven, E.; Mutlu, E.; Lundberg, D.; Temizdemir, S.; Dechert, S.;
Brombacher, H.; Janiak, C., Polyhedron 2002, 21, 553.
50. Janiak, C.; Temizdemir, S.; Scharmann, T., Zeitschrift für anorganische
und allgemeine Chemie 1998, 624, 755.
51. Ciunik, Z.; Ruman, T.; Lukasiewicz, M.; Wolowiec, S., J. Mol. Struct. 2004,
690, 175.
52. Cowley, A. H.; Geerts, R. L.; Nunn, C. M.; Trofimenko, S., J. Organomet.
Chem. 1989, 365, 19.
53. Janiak, C.; Braun, L.; Girgsdies, F., Dalton Transactions 1999, 17, 3136.
54. Renn, O.; Venanzi, L.; Marteletti, A.; Gramlich, V., Helvetica Chimica Acta
1995, 78, 993.
55. Frencisco, A.; Hans-Heinrich, L.; Concepcion, F.; Hernandez, C.; Nadine,
J.; Jose, E., J. Org. Chem. 1995, 60, 1965.
56. Trofimenko, S.; Calabrese, J. C.; Kochi, J. K.; Wolowiec, S.; Hulsbergen, F.
125
B.; Reedijk, J., Inorg. Chem. 1992, 31, 3943.
57. Lopez, C.; Sanz, D.; Claramunt, R. M.; Trofimenko, S.; Elgueroand J., J.
Organomet. Chem. 1995, 503, 265.
58. Alberola, A.; Antolin, L.; Gonzalez, A.; Laguna, M.; Pulido, F., J.
Heterocyclic Chem. 1986, 23, 1035.
59. Silvernail, C.; Yap, G.; Sommer, R.; Rheingold, A.; Day, V.; Belot, J.,
Polyhedron 2001, 20, 3113.
60. Jones, C. J.; McCleverty, J. A.; Trofimenko, S., Polyhedron 1990, 9, 619.
61. Trofimenko, S.; Calabrese, J. C.; Domaille, P. J.; Thompson, J. S., Inorg.
Chem. 1989, 28, 1091.
62. Darensbourg, D. J.; Maynard, E. L.; Holtcamp, M. W.; Klausmeyer, K. K.;
Reibenspies, J. H., Inorg. Chem. 1996, 35, 2682.
63. Eichhorn, D. M. Ph.D. Dissertation. University of California, Berkeley,
1992.
64. Siemer, C. J.; Eichhorn, D. M., Unpublished Results.
65. Farrugia, L., J. Appl. Crystallogr. 1999, 32, 837.
66. Walker, N.; Stuart, D., Acta. Crystallogr., Sect. A 1983, 39, 158.
67. Altornare, A.; Gascarano, G.; Giacovazzo, C.; Guagliardi, A., J. Appl. Cryst.
1993, 26, 343.
68. Sheldrick, G., SHELX97- Programs for Crystal Structure Analysis
(Release 97-2). Institut für Anorganische Chemie der Universität:
Germany, 1998.
69. Creagh, D.; McAuley, W., International Tables for Crystallography.
Kluwer Academic Publishers: Dordrecht, 1992.
70. Reglinski, J.; Spicer, M.; Garner, M.; Kennedy, A., J. Am. Chem. Soc. 1999,
121, 2317.
71. Kisko, J.; Hascall, T.; Parkin, G., J. Am. Chem. Soc. 1998, 120, 10561.
72. Bolsch, L. L.; Gamble, A. S.; Boncella, J. M., J. Mol. Catal. 1992, 76, 229.
73. Darensbourg, D. J.; Holtcamp, M. W.; Khandelwal, B.; Klausmeyer, K. K.;
Reibenspies, J. H., J. Am. Chem. Soc. 1995, 117, 538.
74. Perez, P. J.; Brookhart, M.; Templeton, J. L., Organometallics 1993, 12,
261.
75. Kitajima, N.; Fukui, H.; Moro-oka, Y., J. Chem. Soc., Chem. Commun.
1988, 485.
76. Hambley, T.; Lynch, M.; Zvargulis, E., J. Chem. Soc., Dalton Trans. 1996,
4283.
77. Armstrong, W.; Spool, A.; Papaephthymiou, G.; Frankel, R.; Lippard, S., J.
Am. Chem. Soc. 1984, 106, 3653.
78. Ruggiero, C.; Carrier, S.; Antholine, W.; Whittaker, J.; Cramer, C.; Tolman,
W., J. Am. Chem. Soc. 1993, 115, 11285.
79. Kremer-Aach, A.; Kläui, W.; Bell, R.; Strearath, A.; Wunderlich, H.; Mootz,
D., Inorg. Chem. 1997, 36, 1552.
80.Siemer, C. J.; Meece, F. A.; Armstrong, W. H.; Eichhorn, D. M.,
Polyhedron 2001, 20, 2637.
126
81. Armstrong, W.; Chan, M., Inorg. Chem. 1989, 28, 3777.
82. Sheats, J.; Czernuszewicz, R.; Dismukes, G.; Rheingold, A.; Petrouleas, V.;
Stubbe, J.; Armstrong, W.; Beer, R.; Lippard, S., J. Am. Chem. Soc. 1987,
109, 1435.
83. Xing, Y.; Aoki, K.; Bai, F., Syn. Reac. Inorg. Metal-Org. Chem. 2004, 34,
1149.
84. Chia, L.; Radojevic, S.; Scowen, I.; Mcpartlin, M.; Halcrow, M., J. Chem.
Soc., Dalton Trans. 2000, 133.
85. Hammes, B.; Carrano, M.; Carrano, C., J. Chem. Soc., Dalton Trans. 2001,
1448.
86. Dhar, S.; Reddy, P.; Nethaji, M.; Mahadevan, S.; Saha, M.; Chakravarty, A.,
Inorg. Chem. 2002, 41, 3469.
87. Bruce, M. I.; Ostazewski, A. P. P., J. Chem. Soc., Dalton Trans. 1973,
2433.
88. Mealli, C.; Arcus, C. S.; Wilkinson, J. L.; Marks, T. J.; Ibers, J. A., J. Am.
Chem. Soc. 1976, 98, 711.
89. Trofimenko, S., Chemical Reviews 1972, 72, 497.
90. Verweij, P. D.; Rietmeijer, F. J.; De Graaff, R. A. G.; Erdonmez, A.; Reedijk,
J., Inorganica Chimica Acta 1989, 163, 223.
91. Safronova, L. A.; Komyagin, N. T.; Yanovskii, A. I.; Struchkov, Yu. T.;
Shebaldova, A. D, Koordinatsionnaya Khimiya 1987, 13, 1407.
92. Lumme, P.; Lindell, E.; Mutikainen, I., Acta Crystallographica, Section C:
Crystal Structure Communications 1988, C44, 1564.
93. Lumme, P. O.; Lindell, E.; Mutikainen, I., Acta Crystallographica, Section
C: Crystal Structure Communications 1988, C44, 967.
94. Sun, Y.; Cheng, P.; Yan, S.; Liao, D.; Jiang, Z.; Shen, P., Journal of
Molecular Structure 2001, 597, 191.
95. Liu, X.; Kilner, C.; Thornton-Pett, M.; Halcrow, M., Acta Crys. Section C
2001, C57, 1253.
96. Desiraju, G., Angew. Chem., Int. Ed. Engl. 1995, 34, 2311.
97. Batten, S.; Robson, R., Angew. Chem., Int. Ed. Engl. 1998, 37, 1469.
98. Cheetham, A.; Ferey, G.; Loiseau, T., Agnew. Chem. Int. Ed. 1999, 38,
3268.
99. Yaghi, O.; O'Keefe, M., J. Solid State Chem. 2000, 152, 1.
100. Eddaoudi, M.; Moler, D.; Li, H.; Chem, B.; Reineke, T.; O'Keeffe, M.;
Yaghi, O., Acc. Chem. Res. 2001, 34, 319.
101. Moulton, B.; Zaworotko, M., Chem. Rev. 2001, 101, 1629.
102. Evans, O.; Lin, W., Acc. Chem. Res. 2002, 35, 511.
103. Hamilton, B.; Kelly, K.; Malasi, W.; Ziegler, C., Inorg. Chem. 2003, 42,
3067.
104. Nather, C.; Greve, J.; Jeb, I., Chem. Mater. 2002, 14, 4536.
105. Shin, D.; Lee, I.; Chung, Y.; Lah, M., Inorg. Chem. 2003, 42, 5459.
106. Contakes, S. M.; Klausmeyer, K. K.; Rauchfuss, T. B., Inorg. Chem.
2000, 39, 2069.
127
107. Miyasaka, H.; Campos-Fernandez, C. S.; Galan-Mascaros, J. R.; Dunbar,
K. R., Inorg. Chem. 2000, 39, 5870.
108. Cotton, F. A.; Dikarev, E. V.; Petrukhina, M. A.; Stiriba, S., Polyhedron
2000, 19, 1829.
109. Colacio, E.; Ghazi, M.; Stoeckli-Evans, H.; Lloret, F.; Moreno, J. M.;
Perez, C., Inorg. Chem. 2001, 40, 4876.
110. Shen, Z.; Zuo, J.; Shi, F.; Xu, Y.; Song, Y.; You, X.; Raj, S. S.; Fun, H.;
Zhou, Z.; Che, C., Transition Metal Chemistry 2001, 26, 345.
111. Ferlay, S.; Mallah, T.; Vaissermann, J.; Bartolome, F.; Veillet, P.;
Verdaguer, M., Chemical Communications (Cambridge) 1996, 21, 2481.
112. Bosnich, B.; Tobe, M. L.; Webb, G. A., Inorg. Chem. 1965, 4, 1109.
113. Zhao, Ningfeng. M.S. Thesis. Wichita State University, 2003.
128
APPENDIX
129
APPENDIX A
COMPLETE CRYSTALLOGRAPHIC DATA
Table A Crystallographic Data
Compound
TlTpPh,4CN
Hpzt-Bu,4CN
Molecular Formula
C30H19N9BTl
C8H11N3
Formula Weight
720.7
149.2
Diffractometer
Nonius CAD4
Nonius CAD4
Radiation
Mo, Kα (λ = 0.7107 Å)
Mo, Kα (λ = 0.7107 Å)
Temperature (K)
150
150
Color, Habit
Yellow, Prism
Colorless, Prism
Crystal System
Trigonal
Monoclinic
Space Group
C2/m
Crystal Dimension (mm)
P3
0.25 x 0.18 x 0.10
a (Å)
15.077(6)
11.552(2)
b (Å)
15.077(6)
6.693(3)
c (Å)
8.056(2)
11.590(2)
α (deg.)
90.0(2)
90
0.32 x 0.21 x 0.24
β (deg.)
90.0(2)
108.8(1)
γ (deg.)
119.9(3)
90
Volume (Å3)
1587.5(9)
848.5(4)
Z
2
4
Density (calc’d) (g/cm3)
1.51
1.17
Octants Collected
h, ±k, ±l
h, k, ±l
Max. h, k, l
18, 18, 9
14, 8, 13
1.6 - 26
3.6 - 26
5.120
0.074
6445
936
θ Range (deg.)
Abs. Coefficient (µ,
mm-1)
Measured Reflections
Unique Reflections (Rint)
2083 (0.085)
900 (0.022)
Obs. Reflections [I>2σ(I)]
1457
702
Parameters
125
64
Final R indices (Robs, Rall)
0.035, 0.091
0.052, 0.077
Goodness of Fit
1.102
1.026
Max./min. Transmission (Tmax,
0.629, 0.361
0.987, 0.925
1.714, -1.047
0.722, -0.654
Tmin)
Max./Min. Peak
in Final Diffraction Map (ρmax,
ρmin, eÅ-3)
130
Table A Crystallographic Data (cont.)
Compound
TlTpt-Bu,4CN
(TpPh,4CN)*2Co
Molecular Formula
C24H31N9BTl
C60H38N18B2Co
Formula Weight
660.8
1091.6
Diffractometer
Bruker SMART-1000
Bruker
Pt135
PROTEUM
CCD
Radiation
Mo, Kα (λ = 0.7107 Å)
Cu, Kα (λ = 1.5418 Å)
Temperature (K)
153
100
Color, Habit
Colorless, Prism
Pink, Prism
Crystal System
Trigonal
Monoclinic
Space Group
R3m
P21/n
Crystal Dimension (mm)
0.63 x 0.18 x 0.16
0.23 x 0.04 x 0.04
a (Å)
16.864(10)
10.557(4)
b (Å)
16.864(10)
19.558(7)
c (Å)
8.158(10)
27.953(10)
α (deg.)
90
90
β (deg.)
90
99.8(3)
120
90
γ (deg.)
Volume
(Å3)
2009.4(3)
5687.2(4)
Z
3
4
Density (calc’d) (g/cm3)
1.62
1.27
Octants Collected
±h, ±k, ±l
±h, ±k, ±l
Max. h, k, l
22, 21, 10
12, 21, 32
2.4 – 28.9
1.4 – 31.8
6.057
2.814
Measured Reflections
7073
35966
Unique Reflections (Rint)
2167 (0.066)
8891 (0.046)
Obs. Reflections [I>2σ(I)]
2136
6181
Parameters
109
738
Final R indices (Robs, Rall)
0.026, 0.055
0.070, 0.106
Goodness of Fit
1.019
1.020
Max./min. Transmission (Tmax,
0.423, 0.153
0.895, 0.564
0.821, -2.352
0.781, -0.322
θ Range (deg.)
Abs. Coefficient (µ,
mm-1)
Tmin)
Max./Min. Peak
in Final Diffraction Map (ρmax,
ρmin, eÅ-3)
131
R/
Table A Crystallographic Data (cont.)
Compound
(TpPh,4CN)*2Mn
(TpPh,4CN)*2Fe
Molecular Formula
C60H38N18B2Mn
C60H38N18B2Fe
Formula Weight
1087.6
Diffractometer
1088.6
Bruker PROTEUM R/
Pt135
Bruker SMART APEX II
CCD
CCD
Radiation
Cu, Kα (λ = 1.5418 Å)
Cu, Kα (λ = 1.5418 Å)
Temperature (K)
100
100
Color, Habit
Pale Yellow, Prism
Light Yellow, Prism
Crystal System
Monoclinic
Monoclinic
Space Group
P21/n
P21/n
Crystal Dimension (mm)
0.23 x 0.06 x 0.06
0.23 x 0.06 x 0.06
a (Å)
10.552(5)
10.552(3)
b (Å)
19.682(9)
19.622(8)
c (Å)
28.311(10)
28.089(10)
α (deg.)
90
90
β (deg.)
99.4(3)
99.5(3)
90
90
γ (deg.)
Volume
(Å3)
5801.3(5)
5742.1(4)
Z
4
4
Density (calc’d) (g/cm3)
1.25
1.26
Octants Collected
±h, ±k, ±l
±h, ±k, ±l
Max. h, k, l
11, 21, 31
11, 21, 31
1.4 – 31.4
1.4 – 29.6
2.290
2.551
Measured Reflections
50224
28292
Unique Reflections (Rint)
8630 (0.060)
8150 (0.151)
Obs. Reflections [I>2σ(I)]
6778
3451
Parameters
738
739
Final R indices (Robs, Rall)
0.105, 0.126
0.091, 0.215
Goodness of Fit
1.137
1.024
Max./min. Transmission (Tmax,
0.896, 0.564
0.926, 0.807
1.168, -0.876
0.529, -0.326
θ Range (deg.)
Abs. Coefficient (µ,
mm-1)
Tmin)
Max./Min. Peak
in Final Diffraction Map (ρmax,
ρmin, eÅ-3)
132
Table A Crystallographic Data (cont.)
Compound
[TpPh,4CNCu]n
[Tpt-Bu,4CNCu]n
Molecular Formula
C30H19N9BCu
C26H34N10BCu·CH3CN
Formula Weight
579.9
561.0
Diffractometer
Nonius CAD4
Nonius CAD4
Radiation
Mo, Kα (λ = 0.7107 Å)
Mo, Kα (λ = 0.7107 Å)
Temperature (K)
150
150
Color, Habit
Yellow, Prism
Yellow, Prism
Crystal System
Monoclinic
Monoclinic
Space Group
P21/n
I2/c
Crystal Dimension (mm)
0.12 x 0.10 x 0.08
0.18 x 0.12 x 0.10
a (Å)
9.557(3)
16.987(4)
b (Å)
24.311(8)
14.636(7)
c (Å)
14.440(3)
24.406(6)
α (deg.)
90
90
β (deg.)
92.6(2)
100.7(3)
90
90
2655.3(3)
5961.6(3)
Z
4
8
Density (calc’d) (g/cm3)
1.45
1.25
Octants Collected
h, k, ±l
h, k, ±l
Max. h, k, l
11, 29, 14
20, 18, 30
1.7 – 26.0
1.6 – 26.0
0.862
0.765
Measured Reflections
5490
3141
Unique Reflections (Rint)
5179 (0.253)
3049 (0.185)
Obs. Reflections [I>2σ(I)]
1691
1266
Parameters
368
321
γ (deg.)
Volume
(Å3)
θ Range (deg.)
Abs. Coefficient (µ,
mm-1)
Final R indices (Robs, Rall)
0.077, 0.382
0.068, 0.297
Goodness of Fit
0.873
0.978
Max./min. Transmission (Tmax,
0.807, 0.425
0.927, 0.871
0.587, -1.232
0.420, -0.822
Tmin)
Max./Min. Peak
in Final Diffraction Map (ρmax,
ρmin, eÅ-3)
133
Table A Crystallographic Data (cont.)
Compound
TpPhCu(NO3)113
{[(HpzPh,4CN)2Cu
(CH3CN)2][ClO4]2}n
Molecular Formula
C27H22N7O3BCu
C24H22N8O9Cl2Cu·H2O
Formula Weight
566.9
700.8
Diffractometer
Nonius CAD4
Nonius CAD4
Radiation
Mo, Kα (λ = 0.7107 Å)
Mo, Kα (λ = 0.7107 Å)
Temperature (K)
298
150
Color, Habit
Blue, Prism
Green, Prism
Crystal System
Monoclinic
Monoclinic
Space Group
P21/n
P21/a
Crystal Dimension (mm)
0.55 x 0.50 x 0.10
0.16 x 0.16 x 0.21
a (Å)
9.318(7)
10.559(4)
b (Å)
15.376(8)
14.323(8)
c (Å)
18.784(9)
10.650(2)
α (deg.)
90
90
β (deg.)
102.5(6)
110.2(3)
90
90
γ (deg.)
Volume
(Å3)
2628.1(3)
1511.7(2)
Z
4
4
Density (calc’d) (g/cm3)
1.43
1.58
Octants Collected
h, k, ±l
h, k, ±l
Max. h, k, l
11, 18, 22
12, 17, 13
1.7 – 25.0
2.0 – 26.0
0.874
0.967
Measured Reflections
4970
3115
Unique Reflections (Rint)
4620 (0.057)
2958 (0.046)
Obs. Reflections [I>2σ(I)]
2101
2270
Parameters
356
214
Final R indices (Robs, Rall)
0.059, 0.215
0.036, 0.066
Goodness of Fit
0.970
1.061
Max./min. Transmission (Tmax,
0.896, 0.401
0.684, 0.633
0.336, -0.542
0.789, -0.490
θ Range (deg.)
Abs. Coefficient (µ,
mm-1)
Tmin)
Max./Min. Peak
in Final Diffraction Map (ρmax,
ρmin, eÅ-3)
134
Table A Crystallographic Data (cont.)
Compound
(Hpzt-Bu,4CN)4CoCl2
(Hpzt-Bu,4CN)2Mn
(CF3SO3)2·2H2O
Molecular Formula
C32H44N12CoCl2·toluene
C18H26N6O8F6S2Mn
Formula Weight
818.8
687.6
Diffractometer
Nonius CAD4
Nonius CAD4
Radiation
Mo, Kα (λ = 0.7107 Å)
Mo, Kα (λ = 0.7107 Å)
Temperature (K)
150
150
Color, Habit
Pink, Prism
White, Prism
Crystal System
Monoclinic
Triclinic
Space Group
P21/n
P1
Crystal Dimension (mm)
0.23 x 0.34 x 0.26
0.14 x 0.14 x 0.26
a (Å)
10.321(2)
7.916(2)
b (Å)
11.773(8)
9.193(2)
c (Å)
19.820(10)
10.406(3)
α (deg.)
90
71.6(2)
β (deg.)
98.6(1)
77.2(2)
90
82.1(2)
γ (deg.)
Volume
(Å3)
2395.5(6)
698.6(5)
Z
4
2
Density (calc’d) (g/cm3)
1.25
1.63
Octants Collected
h, k, ±l
h, ±k, ±l
Max. h, k, l
12, 14, 23
9, 11, 12
2.0 – 25.1
2.1 – 26.0
0.517
0.715
Measured Reflections
4454
2739
Unique Reflections (Rint)
4216 (0.080)
2739 (0.000)
Obs. Reflections [I>2σ(I)]
2737
2269
Parameters
300
195
Final R indices (Robs, Rall)
0.073, 0.138
0.038, 0.056
Goodness of Fit
1.025
1.025
Max./min. Transmission (Tmax,
0.498, 0.062
0.929, 0.712
0.826, -0.734
0.550, -0.946
θ Range (deg.)
Abs. Coefficient (µ,
mm-1)
Tmin)
Max./Min. Peak
in Final Diffraction Map (ρmax,
ρmin, eÅ-3)
135
Table A Crystallographic Data (cont.)
Compound
(Hpzt-Bu,CN)2CuCl2
(HpzMe2)2CuCl2113
Molecular Formula
C16H22N6Cl2Cu
C10H16N4Cl2Cu
Formula Weight
432.8
326.7
Diffractometer
Nonius CAD4
Nonius CAD4
Radiation
Mo, Kα (λ = 0.7107 Å)
Mo, Kα (λ = 0.7107 Å)
Temperature (K)
150
298
Color, Habit
Blue, Prism
Blue, Prism
Crystal System
Triclinic
Monoclinic
Space Group
P1
C2/c
Crystal Dimension (mm)
0.15 x 0.22 x 0.20
0.65 x 0.45 x 0.25
a (Å)
10.086(3)
15.023(6)
b (Å)
10.360(4)
8.270(7)
c (Å)
10.729(4)
24.038(7)
α (deg.)
73.9(3)
90
β (deg.)
68.2(3)
96.0(3)
71.2(3)
90
969.2(1)
2970.0(9)
γ (deg.)
Volume
(Å3)
Z
2
8
Density (calc’d) (g/cm3)
1.48
1.46
Octants Collected
h, ±k, ±l
h, k, ±l
Max. h, k, l
12, 12, 13
20, 18, 30
2.1 – 26.0
1.7 – 25.0
1.414
1.815
Measured Reflections
3812
2697
Unique Reflections (Rint)
3812 (0.000)
2607 (0.076)
Obs. Reflections [I>2σ(I)]
3108
1907
Parameters
227
154
θ Range (deg.)
Abs. Coefficient (µ,
mm-1)
Final R indices (Robs, Rall)
0.030, 0.053
0.068, 0.104
Goodness of Fit
1.024
1.050
Max./min. Transmission (Tmax,
0.725, 0.277
0.626, 0.404
0.381, -0.316
0.910, -1.110
Tmin)
Max./Min. Peak
in Final Diffraction Map (ρmax,
ρmin, eÅ-3)
136
Table A Crystallographic Data (cont.)
Compound
TpPhCo(HpzPh,4CN)(NO3)
TpPhCu(HpzPh,4CN)(NO3)
Molecular Formula
C37H29N10O3BCo
C37H29N10O3BCu
Formula Weight
731.4
736.0
Diffractometer
Nonius CAD4
Bruker Kappa APEX II CCD
Radiation
Mo, Kα (λ = 0.7107 Å)
Mo, Kα (λ = 0.7107 Å)
Temperature (K)
150
100
Color, Habit
Yellow, Prism
Blue, Prism
Crystal System
Monoclinic
Monoclinic
Space Group
P21/n
P21/n
Crystal Dimension (mm)
0.27 x 0.22 x 0.15
0.26 x 0.13 x 0.10
a (Å)
15.716(8)
15.791(8)
b (Å)
13.582(6)
13.509(7)
c (Å)
15.902(9)
15.816(7)
α (deg.)
90
90
β (deg.)
95.9(4)
96.1(3)
90
90
3376.9(2)
3354.9(3)
Z
4
4
Density (calc’d) (g/cm3)
1.44
1.46
Octants Collected
h, k, ±l
±h, ±k, ±l
Max. h, k, l
19, 16, 19
21, 17, 21
1.7 – 26.0
2.6 – 28.3
0.563
0.706
Measured Reflections
6873
38704
Unique Reflections (Rint)
6635 (0.229)
8289 (0.050)
Obs. Reflections [I>2σ(I)]
2437
6369
Parameters
469
469
γ (deg.)
Volume
(Å3)
θ Range (deg.)
Abs. Coefficient (µ,
mm-1)
Final R indices (Robs, Rall)
0.070, 0.324
0.037, 0.572
Goodness of Fit
0.945
1.024
Max./min.
0.770, 0.352
0.933, 0.840
0.459, -0.974
0.412, -0.444
Transmission
(Tmax, Tmin)
Max./Min. Peak
in Final Diffraction Map
(ρmax, ρmin, eÅ-3)
137
Table A Crystallographic Data (cont.)
Compound
(Hpzt-Bu,4CN)2-Rh2(CF3COO)4
(pzPh,4CN)2Ni(cyclam)
Molecular Formula
C24H22N6O8F12Rh2
C30H32N10Ni
Formula Weight
956.3
591.4
Diffractometer
Bruker Kappa APEX II CCD
Bruker
Pt135
PROTEUM
CCD
Radiation
M0, Kα (λ = 0.7107 Å)
Cu, Kα (λ = 1.5418 Å)
Temperature (K)
100
100
Color, Habit
Red, Prism
Pink, Prism
Crystal System
Triclinic
Orthorhombic
Space Group
P1
Pbca
Crystal Dimension (mm)
0.17 x 0.15 x 0.13
0.28 x 0.05 x 0.04
a (Å)
7.596(10)
11.357(5)
b (Å)
10.145(10)
12.253(5)
c (Å)
11.548(10)
20.633(9)
α (deg.)
109.7(10)
90
β (deg.)
106.2(10)
90
90.1(10)
90
γ (deg.)
Volume
(Å3)
800.0(2)
2871.2(2)
Z
1
4
Density (calc’d) (g/cm3)
1.99
1.37
Octants Collected
±h, ±k, ±l
±h, ±k, ±l
Max. h, k, l
11, 15, 17
13, 13, 23
2.8 – 32.5
2.1 – 31.8
1.158
1.283
Measured Reflections
16201
23217
Unique Reflections (Rint)
5672 (0.019)
2330 (0.025)
Obs. Reflections [I>2σ(I)]
5418
2163
Parameters
249
187
Final R indices (Robs, Rall)
0.018, 0.019
0.033, 0.035
Goodness of Fit
1.044
1.082
Max./min.
0.869, 0.829
0.951, 0.715
0.603, -0.936
0.754, -0.362
θ Range (deg.)
Abs. Coefficient (µ,
mm-1)
Transmission
(Tmax, Tmin)
Max./Min. Peak
in Final Diffraction Map
(ρmax, ρmin, eÅ-3)
138
R/
Table B.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for TlTpPh,4CN. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Tl
3333
6667
1858(1)
43(1)
N(2)
4639(4)
6731(4)
-677(5)
38(1)
N(1)
4199(4)
6480(4)
-2207(6)
39(1)
C(2)
5368(5)
6021(5)
-2201(7)
42(2)
C(1)
4619(5)
6058(5)
-3121(7)
44(2)
C(3)
5360(5)
6458(5)
-659(7)
38(1)
C(5)
6017(5)
6659(5)
799(7)
41(2)
B
3333
6667
-2777(13)
42(3)
N(3)
6364(5)
5169(5)
-3195(7)
59(2)
C(4)
5930(6)
5559(6)
-2755(8)
49(2)
C(10)
6642(6)
6252(5)
980(8)
57(2)
C(6)
6003(6)
7257(6)
2085(9)
56(2)
C(9)
7261(7)
6462(7)
2335(9)
71(2)
C(7)
6595(6)
7451(6)
3469(10)
68(2)
C(8)
7219(7)
7051(6)
3605(10)
71(2)
___________________________________________________________________________
Table B.2 Anisotropic displacement parameters (Å2 x 103) for TlTpPh,4CN. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Tl
54(1)
54(1)
23(1)
0
0
27(1)
N(2)
45(3)
49(3)
22(2)
-3(2)
-1(2)
24(3)
N(1)
45(3)
45(3)
27(2)
-3(2)
2(2)
22(3)
C(2)
48(4)
47(4)
31(3)
-4(3)
3(3)
24(3)
C(1)
52(4)
50(4)
30(3)
-7(3)
0(3)
26(3)
C(3)
39(4)
41(4)
30(3)
4(3)
6(3)
16(3)
C(5)
47(4)
39(4)
36(3)
-2(3)
-1(3)
21(3)
B
51(5)
51(5)
24(6)
0
0
26(2)
N(3)
67(4)
80(5)
44(3)
-15(3)
-8(3)
48(4)
C(4)
53(4)
62(5)
36(3)
-5(3)
-5(3)
31(4)
C(10)
80(5)
63(5)
41(4)
-15(3)
-12(4)
46(4)
C(6)
62(5)
64(5)
52(4)
-12(4)
-16(4)
38(4)
C(9)
97(6)
87(6)
53(4)
-17(4)
-24(4)
65(5)
C(7)
86(6)
76(5)
53(4)
-28(4)
-21(4)
49(5)
C(8)
87(6)
81(6)
55(5)
-14(4)
-25(4)
48(5)
___________________________________________________________________________
Table B.3 Bond lengths [Å] for TlTpPh,4CN.
__________________________________
Tl-N(2)#1
2.804(5)
Tl-N(2)
2.804(5)
Tl-N(2)#2
2.806(5)
N(2)-C(3)
1.341(8)
N(2)-N(1)
1.361(6)
N(1)-C(1)
1.323(7)
N(1)-B
1.536(6)
C(2)-C(1)
1.374(9)
C(2)-C(3)
1.409(8)
139
C(2)-C(4)
1.412(10)
C(3)-C(5)
1.468(8)
C(5)-C(10)
1.365(9)
C(5)-C(6)
1.380(9)
B-N(1)#1
1.536(6)
B-N(1)#2
1.538(6)
N(3)-C(4)
1.132(8)
C(10)-C(9)
1.367(10)
C(6)-C(7)
1.366(9)
C(9)-C(8)
1.377(10)
C(7)-C(8)
1.351(11)
__________________________________
Table B.4 Bond angles [°] for TlTpPh,4CN.
__________________________________
N(2)#1-Tl-N(2)
72.77(15)
N(2)#1-Tl-N(2)#2
72.86(15)
N(2)-Tl-N(2)#2
72.87(15)
C(3)-N(2)-N(1)
106.4(5)
C(3)-N(2)-Tl
130.1(4)
N(1)-N(2)-Tl
114.4(3)
C(1)-N(1)-N(2)
110.7(5)
C(1)-N(1)-B
125.2(6)
N(2)-N(1)-B
124.1(5)
C(1)-C(2)-C(3)
105.0(6)
C(1)-C(2)-C(4)
123.9(6)
C(3)-C(2)-C(4)
131.0(6)
N(1)-C(1)-C(2)
108.6(5)
N(2)-C(3)-C(2)
109.3(5)
N(2)-C(3)-C(5)
120.8(5)
C(2)-C(3)-C(5)
129.8(6)
C(10)-C(5)-C(6)
116.9(6)
C(10)-C(5)-C(3)
122.6(6)
C(6)-C(5)-C(3)
120.5(6)
N(1)-B-N(1)#1
111.4(4)
N(1)-B-N(1)#2
111.5(4)
N(1)#1-B-N(1)#2
111.5(4)
N(3)-C(4)-C(2)
178.6(8)
C(5)-C(10)-C(9)
121.7(7)
C(7)-C(6)-C(5)
122.1(7)
C(10)-C(9)-C(8)
119.8(7)
C(8)-C(7)-C(6)
119.7(7)
C(7)-C(8)-C(9)
119.6(7)
_________________________________
Symmetry transformations used to generate equivalent atoms:
#1 -y+1,x-y+1,z
#2 -x+y,-x+1,z
140
Table C.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for Hpzt-Bu,4CN. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
N(1)
6309(2)
0
902(2)
25(1)
N(2)
6293(2)
0
-274(2)
27(1)
N(3)
10563(2)
0
1800(3)
41(1)
C(3)
7440(2)
0
1709(2)
23(1)
C(5)
7696(2)
0
3069(2)
27(1)
C(1)
7448(2)
0
-209(3)
25(1)
C(4)
9517(2)
0
1437(3)
29(1)
C(2)
8213(2)
0
1000(2)
24(1)
C(6)
6500(3)
0
3365(3)
37(1)
C(7)
8425(2)
1878(4)
3607(2)
45(1)
___________________________________________________________________________
Table C.2 Anisotropic displacement parameters (Å2 x 103) for Hpzt-Bu,4CN. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
N(1)
21(1)
28(1)
24(1)
0
6(1)
0
N(2)
22(1)
31(1)
26(1)
0
5(1)
0
N(3)
22(1)
55(2)
46(2)
0
11(1)
0
C(3)
19(1)
19(1)
29(1)
0
6(1)
0
C(5)
24(1)
29(2)
25(1)
0
6(1)
0
C(1)
26(1)
24(1)
28(1)
0
11(1)
0
C(4)
24(1)
29(2)
34(2)
0
10(1)
0
C(2)
21(1)
20(1)
32(2)
0
9(1)
0
C(6)
33(2)
50(2)
31(2)
0
14(1)
0
C(7)
49(1)
47(2)
37(1)
-13(1)
13(1)
-16(1)
___________________________________________________________________________
Table C.3 Bond lengths [Å] for Hpzt-Bu,4CN.
_________________________________
N(1)-C(3)
1.338(3)
N(1)-N(2)
1.358(3)
N(2)-C(1)
1.311(3)
N(3)-C(4)
1.143(4)
C(3)-C(2)
1.396(4)
C(3)-C(5)
1.508(4)
C(5)-C(6)
1.527(4)
C(5)-C(7)
1.529(3)
C(5)-C(7)#1
1.529(3)
C(1)-C(2)
1.395(4)
C(4)-C(2)
1.426(4)
_________________________________
Table C.4 Bond angles [°] for Hpzt-Bu,4CN.
_________________________________
C(3)-N(1)-N(2)
113.3(2)
C(1)-N(2)-N(1)
105.0(2)
N(1)-C(3)-C(2)
104.7(2)
141
N(1)-C(3)-C(5)
123.3(2)
C(2)-C(3)-C(5)
132.0(2)
C(3)-C(5)-C(6)
110.4(2)
C(3)-C(5)-C(7)
108.79(16)
C(6)-C(5)-C(7)
109.16(16)
C(3)-C(5)-C(7)#1
108.79(16)
C(6)-C(5)-C(7)#1
109.16(16)
C(7)-C(5)-C(7)#1
110.6(3)
N(2)-C(1)-C(2)
111.1(2)
N(3)-C(4)-C(2)
179.3(3)
C(1)-C(2)-C(3)
105.8(2)
C(1)-C(2)-C(4)
127.7(2)
C(3)-C(2)-C(4)
126.5(3)
__________________________________
Symmetry transformations used to generate equivalent atoms:
#1 x,-y,z
142
Table D.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for TlTpt-Bu,4CN. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Tl
0
0
1497
28(1)
N(2)
-1325(3)
-660(3)
3830(5)
25(1)
C(1)
-1717(3)
-859(3)
6478(6)
29(1)
N(1)
-1013(3)
-504(3)
5424(5)
25(1)
C(2)
-2507(3)
-1252(3)
5590(7)
30(1)
C(3)
-2239(4)
-1117(3)
3915(7)
27(1)
C(5)
-2868(5)
-1430(6)
2465(9)
36(2)
B
0
0
5964(11)
22(2)
C(8)
-2321(4)
-1158(5)
835(7)
45(1)
C(7)
-3465(5)
-993(7)
2479(10)
66(2)
C(6)
-3466(6)
-2478(5)
2472(10)
71(2)
C(4)
-3415(4)
-1709(4)
6270(8)
41(1)
N(3)
-4136(5)
-2060(6)
6826(12)
63(2)
___________________________________________________________________________
Table D.2 Anisotropic displacement parameters (Å2 x 103) for TlTpt-Bu,4CN. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Tl
35(1)
35(1)
15(1)
0
0
18(1)
N(2)
28(2)
30(2)
17(2)
-1(2)
-3(1)
14(2)
C(1)
34(3)
31(2)
22(2)
1(2)
6(2)
17(2)
N(1)
30(2)
29(2)
17(2)
-2(1)
-1(1)
15(2)
C(2)
28(2)
30(2)
32(3)
5(2)
7(2)
15(2)
C(3)
28(3)
23(2)
29(3)
-1(2)
1(2)
12(2)
C(5)
25(3)
47(4)
32(3)
0(3)
-1(3)
15(3)
B
27(3)
27(3)
12(4)
0
0
13(1)
C(8)
38(3)
66(4)
24(3)
-3(3)
-5(2)
21(3)
C(7)
58(4)
110(6)
56(4)
-10(4)
-16(3)
61(5)
C(6)
65(5)
50(4)
55(5)
-5(3)
-10(4)
-2(3)
C(4)
39(3)
42(3)
40(3)
3(3)
9(3)
18(3)
N(3)
37(4)
58(4)
86(7)
12(4)
22(4)
19(4)
___________________________________________________________________________
Table D.3 Bond lengths [Å] for TlTpt-Bu,4CN.
__________________________________
Tl-N(2)#1
2.714(4)
Tl-N(2)#2
2.714(4)
Tl-N(2)
2.714(4)
N(2)-C(3)
1.337(7)
N(2)-N(1)
1.378(5)
C(1)-N(1)
1.340(6)
C(1)-C(2)
1.362(7)
N(1)-B
1.544(5)
C(2)-C(3)
1.421(7)
C(2)-C(4)
1.438(8)
C(3)-C(5)
1.498(8)
C(5)-C(7)
1.515(10)
C(5)-C(6)
1.536(11)
143
C(5)-C(8)
1.551(10)
B-N(1)#2
1.544(5)
B-N(1)#1
1.544(5)
C(4)-N(3)
1.146(9)
____________________________________
Table D.4 Bond angles [°] for TlTpt-Bu,4CN.
________________________________________________________
N(2)#1-Tl-N(2)#2
76.27(12)
N(2)#1-Tl-N(2)
76.27(12)
N(2)#2-Tl-N(2)
76.27(12)
C(3)-N(2)-N(1)
106.3(4)
C(3)-N(2)-Tl
138.5(3)
N(1)-N(2)-Tl
115.2(3)
N(1)-C(1)-C(2)
108.0(4)
C(1)-N(1)-N(2)
110.6(4)
C(1)-N(1)-B
123.5(5)
N(2)-N(1)-B
125.9(5)
C(1)-C(2)-C(3)
106.2(4)
C(1)-C(2)-C(4)
125.2(5)
C(3)-C(2)-C(4)
128.7(5)
N(2)-C(3)-C(2)
108.9(5)
N(2)-C(3)-C(5)
124.8(5)
C(2)-C(3)-C(5)
126.2(5)
C(3)-C(5)-C(7)
110.4(6)
C(3)-C(5)-C(6)
110.1(6)
C(7)-C(5)-C(6)
110.2(7)
C(3)-C(5)-C(8)
111.2(5)
C(7)-C(5)-C(8)
107.7(6)
C(6)-C(5)-C(8)
107.1(6)
N(1)#2-B-N(1)
112.2(3)
N(1)#2-B-N(1)#1
112.2(3)
N(1)-B-N(1)#1
112.2(3)
N(3)-C(4)-C(2)
178.9(8)
________________________________________
Symmetry transformations used to generate equivalent atoms:
#1 -x+y,-x,z
#2 -y,x-y,z
144
Table E.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x
103) for (TpPh,4CN)*2Co. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Co(1)
5043(1)
4502(1)
2522(1)
39(1)
B(1)
5971(4)
5548(2)
3384(2)
45(1)
N(1A)
6158(3)
5465(2)
2492(1)
42(1)
C(1A)
7333(3)
6278(2)
2906(2)
46(1)
C(2A)
7472(4)
6344(2)
2431(2)
46(1)
C(3A)
8277(4)
6825(2)
2242(2)
54(1)
N(3A)
8942(4)
7211(2)
2100(2)
70(1)
C(4A)
6712(3)
5820(2)
2172(2)
43(1)
C(5A)
6486(4)
5709(2)
1656(2)
50(1)
C(6A)
6114(5)
6266(3)
1353(2)
64(1)
C(7A)
5867(6)
6178(3)
862(3)
86(2)
C(8A)
5992(6)
5549(3)
656(2)
82(2)
C(9A)
6365(5)
4991(3)
948(2)
69(2)
C(10A)
6614(4)
5074(2)
1443(2)
54(1)
N(2A)
6531(3)
5759(2)
2939(1)
42(1)
N(1B)
3830(3)
5234(2)
2851(1)
41(1)
C(1B)
3692(4)
5975(2)
3440(2)
43(1)
C(2B)
2486(3)
5913(2)
3173(2)
43(1)
C(3B)
1336(4)
6239(2)
3272(2)
49(1)
N(3B)
430(3)
6495(2)
3362(2)
58(1)
C(4B)
2603(3)
5447(2)
2798(2)
42(1)
C(5B)
1621(3)
5251(2)
2386(2)
43(1)
C(6B)
878(4)
5760(2)
2120(2)
48(1)
C(7B)
14(4)
5599(2)
1712(2)
57(1)
C(8B)
-131(4)
4923(2)
1555(2)
57(1)
C(9B)
577(4)
4417(2)
1822(2)
54(1)
C(10B)
1430(4)
4576(2)
2235(2)
46(1)
N(2B)
4489(3)
5566(2)
3250(1)
43(1)
N(1C)
6060(3)
4306(2)
3197(1)
43(1)
C(1C)
6560(4)
3729(2)
3400(2)
45(1)
C(2C)
7262(4)
3861(2)
3850(2)
46(1)
C(3C)
8035(5)
3394(2)
4162(2)
61(1)
N(3C)
8677(5)
3027(2)
4406(2)
89(2)
C(4C)
7168(4)
4566(2)
3924(2)
47(1)
C(5C)
7770(4)
4974(2)
4343(2)
54(1)
C(6C)
7650(5)
4764(3)
4804(2)
72(2)
C(7C)
8239(6)
5130(4)
5210(2)
85(2)
C(8C)
8935(6)
5710(3)
5144(3)
84(2)
C(9C)
9087(5)
5912(3)
4691(3)
78(2)
C(10C)
8513(4)
5553(2)
4287(2)
63(1)
N(2C)
6431(3)
4814(2)
3526(1)
42(1)
B(2)
4107(4)
3470(2)
1657(2)
47(1)
N(1E)
6256(3)
3769(2)
2188(1)
41(1)
C(1E)
6389(4)
3020(2)
1606(2)
50(1)
C(2E)
7600(4)
3092(2)
1867(2)
45(1)
C(3E)
8740(4)
2767(2)
1767(2)
51(1)
N(3E)
9642(3)
2507(2)
1679(2)
66(1)
C(4E)
7482(3)
3562(2)
2237(2)
40(1)
C(5E)
8481(3)
3776(2)
2639(2)
41(1)
C(6E)
9248(4)
3275(2)
2908(2)
47(1)
C(7E)
10158(4)
3456(2)
3298(2)
56(1)
C(8E)
10331(4)
4138(2)
3433(2)
53(1)
145
C(9E)
9600(4)
4630(2)
3171(2)
48(1)
C(10E)
8694(4)
4457(2)
2775(2)
43(1)
N(2E)
5591(3)
3431(2)
1798(1)
44(1)
N(1D)
3920(3)
3545(2)
2558(2)
43(1)
C(1D)
2698(3)
2761(2)
2125(2)
48(1)
C(2D)
2550(4)
2678(2)
2594(2)
47(1)
C(3D)
1708(4)
2196(2)
2760(2)
55(1)
N(3D)
1018(4)
1810(2)
2880(2)
68(1)
C(4D)
3348(4)
3180(2)
2866(2)
48(1)
C(5D)
3561(4)
3276(2)
3388(2)
50(1)
C(6D)
3708(5)
2700(2)
3692(2)
67(2)
C(7D)
3898(6)
2776(3)
4182(3)
84(2)
C(8D)
3989(6)
3411(3)
4392(2)
82(2)
C(9D)
3850(4)
3986(3)
4097(2)
64(1)
C(10D)
3624(4)
3920(2)
3609(2)
52(1)
N(2D)
3527(3)
3279(2)
2105(2)
44(1)
N(1F)
4056(3)
4709(2)
1849(1)
44(1)
C(1F)
3628(4)
5295(2)
1646(2)
45(1)
C(2F)
3034(4)
5184(2)
1180(2)
53(1)
C(3F)
2495(6)
5689(3)
838(2)
77(2)
N(3F)
2085(6)
6101(3)
563(2)
117(2)
C(4F)
3127(4)
4480(2)
1097(2)
50(1)
C(5F)
2653(5)
4089(3)
659(2)
71(2)
C(6F)
1466(7)
4189(4)
418(3)
110(2)
C(7F)
1000(9)
3791(5)
-13(3)
135(3)
C(8F)
1740(12)
3308(6)
-166(4)
151(4)
C(9F)
2960(12)
3206(4)
82(3)
137(3)
C(10F)
3453(7)
3593(3)
488(3)
97(2)
N(2F)
3739(3)
4211(2)
1504(1)
42(1)
___________________________________________________________________________
Table E.2 Anisotropic displacement parameters (Å2 x 103) for (TpPh,4CN)*2Co. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Co(1)
19(1)
21(1)
80(1)
-2(1)
12(1)
-1(1)
B(1)
23(2)
31(2)
81(4)
-2(2)
6(3)
3(2)
N(1A)
24(2)
24(2)
81(3)
4(2)
14(2)
2(1)
C(1A)
16(2)
25(2)
96(4)
-4(2)
5(2)
1(2)
C(2A)
23(2)
22(2)
94(4)
1(2)
11(2)
0(2)
C(3A)
27(2)
30(2)
104(4)
5(2)
13(2)
6(2)
N(3A)
40(2)
33(2)
142(4)
11(2)
31(2)
-1(2)
C(4A)
18(2)
32(2)
80(4)
2(2)
10(2)
9(2)
C(5A)
32(2)
32(2)
89(4)
3(2)
20(2)
-2(2)
C(6A)
55(3)
51(3)
87(4)
6(3)
16(3)
6(2)
C(7A)
98(5)
62(4)
99(5)
14(3)
19(4)
14(3)
C(8A)
87(4)
81(4)
80(4)
8(3)
20(4)
-10(3)
C(9A)
56(3)
58(3)
96(5)
-4(3)
25(3)
-12(3)
C(10A) 36(2)
46(3)
82(4)
4(2)
20(3)
-8(2)
N(2A)
23(2)
22(2)
81(3)
-7(2)
8(2)
0(1)
N(1B)
22(2)
26(2)
76(3)
-1(2)
9(2)
1(1)
C(1B)
32(2)
28(2)
70(3)
-5(2)
14(2)
4(2)
C(2B)
23(2)
21(2)
85(3)
-2(2)
14(2)
2(2)
C(3B)
29(2)
28(2)
92(4)
0(2)
16(2)
-2(2)
N(3B)
31(2)
37(2)
112(3)
-11(2)
23(2)
3(2)
C(4B)
20(2)
21(2)
85(3)
4(2)
11(2)
-1(2)
146
C(5B)
19(2)
C(6B)
20(2)
C(7B)
28(2)
C(8B)
25(2)
C(9B)
26(2)
C(10B) 19(2)
N(2B)
24(2)
N(1C)
24(2)
C(1C)
23(2)
C(2C)
33(2)
C(3C)
57(3)
N(3C)
95(4)
C(4C)
22(2)
C(5C)
35(2)
C(6C)
49(3)
C(7C)
64(4)
C(8C)
63(4)
C(9C)
58(3)
C(10C) 42(3)
N(2C)
19(2)
B(2)
27(2)
N(1E)
24(2)
C(1E)
33(2)
C(2E)
20(2)
C(3E)
28(2)
N(3E)
33(2)
C(4E)
21(2)
C(5E)
18(2)
C(6E)
22(2)
C(7E)
28(2)
C(8E)
26(2)
C(9E)
23(2)
C(10E) 20(2)
N(2E)
24(2)
N(1D)
22(2)
C(1D)
18(2)
C(2D)
24(2)
C(3D)
27(2)
N(3D)
41(2)
C(4D)
24(2)
C(5D)
22(2)
C(6D)
57(3)
C(7D)
92(5)
C(8D)
76(4)
C(9D)
42(3)
C(10D) 30(2)
N(2D)
20(2)
N(1F)
27(2)
C(1F)
26(2)
C(2F)
37(2)
C(3F)
69(4)
N(3F)
121(5)
C(4F)
28(2)
C(5F)
57(3)
C(6F)
91(5)
C(7F)
93(6)
C(8F)
140(9)
C(9F) 202(11)
29(2)
33(2)
47(3)
55(3)
37(2)
35(2)
27(2)
25(2)
26(2)
35(2)
40(3)
58(3)
40(2)
52(3)
71(3)
104(5)
89(4)
68(4)
55(3)
30(2)
30(2)
22(2)
27(2)
27(2)
27(2)
40(2)
23(2)
30(2)
35(2)
52(3)
58(3)
40(2)
31(2)
26(2)
27(2)
23(2)
24(2)
27(2)
32(2)
24(2)
42(3)
44(3)
63(4)
83(4)
59(3)
45(3)
25(2)
23(2)
30(2)
40(3)
59(3)
79(4)
49(3)
63(3)
113(6)
165(9)
175(10)
105(6)
82(3)
92(4)
96(4)
91(4)
100(4)
84(4)
79(3)
80(3)
86(4)
70(3)
85(4)
105(4)
79(3)
74(4)
93(5)
82(4)
97(5)
105(5)
89(4)
74(3)
84(4)
78(3)
92(4)
89(4)
102(4)
128(4)
77(3)
77(3)
86(4)
89(4)
75(3)
83(4)
79(3)
82(3)
82(3)
103(4)
97(4)
113(4)
135(4)
101(4)
89(4)
101(5)
93(5)
89(4)
93(5)
85(4)
87(3)
86(3)
81(4)
82(4)
97(5)
132(5)
73(4)
92(4)
116(6)
133(8)
127(8)
117(7)
1(2)
-3(2)
2(3)
-10(3)
-9(2)
-1(2)
-8(2)
-4(2)
4(2)
5(2)
5(3)
16(3)
-2(2)
-2(2)
-12(3)
-14(4)
-31(4)
-20(4)
-11(3)
-7(2)
-8(2)
-4(2)
-11(2)
-6(2)
-8(2)
-18(2)
2(2)
1(2)
3(2)
15(3)
-1(2)
-6(2)
3(2)
-8(2)
-2(2)
-4(2)
8(2)
8(2)
15(2)
7(2)
8(2)
13(3)
22(3)
11(4)
-3(3)
6(2)
-1(2)
-4(2)
-3(2)
3(2)
6(3)
29(4)
-12(2)
-2(3)
-27(5)
-18(7)
-61(7)
-42(5)
147
13(2)
10(2)
7(3)
9(2)
18(3)
11(2)
9(2)
16(2)
16(2)
11(2)
8(3)
-6(3)
10(2)
6(2)
11(3)
2(3)
3(4)
7(4)
5(3)
3(2)
11(3)
10(2)
19(2)
16(2)
18(2)
28(2)
14(2)
15(2)
12(2)
15(3)
10(2)
14(2)
13(2)
14(2)
14(2)
12(2)
17(2)
18(3)
28(2)
21(2)
16(2)
12(3)
7(4)
17(3)
19(3)
19(2)
12(2)
15(2)
10(2)
8(3)
-7(3)
-32(4)
5(2)
9(3)
-10(5)
-21(6)
-3(7)
62(7)
2(2)
2(2)
7(2)
-1(2)
0(2)
0(2)
2(1)
-1(1)
4(2)
2(2)
5(2)
17(3)
3(2)
8(2)
7(3)
14(4)
6(3)
-1(3)
6(2)
2(1)
-3(2)
-4(1)
-2(2)
-2(2)
-6(2)
-2(2)
1(2)
1(2)
5(2)
13(2)
3(2)
-2(2)
2(2)
0(1)
0(1)
-1(2)
3(2)
5(2)
0(2)
7(2)
5(2)
9(2)
11(3)
5(3)
3(2)
3(2)
0(1)
-3(1)
1(2)
4(2)
8(3)
14(3)
-7(2)
-6(3)
-18(4)
-26(6)
-28(8)
-43(7)
C(10F) 109(5)
77(4)
114(6)
-22(4)
46(4)
-12(4)
N(2F)
22(2)
36(2)
67(3)
-6(2)
4(2)
-2(1)
___________________________________________________________________________
Table E.3 Bond lengths [Å] for (TpPh,4CN)*2Co.
__________________________________
Co(1)-N(1F)
2.029(4)
Co(1)-N(1C)
2.042(4)
Co(1)-N(1B)
2.222(3)
Co(1)-N(1D)
2.227(3)
Co(1)-N(1E)
2.229(3)
Co(1)-N(1A)
2.229(3)
B(1)-N(2A)
1.523(7)
B(1)-N(2C)
1.546(6)
B(1)-N(2B)
1.546(5)
N(1A)-C(4A)
1.342(5)
N(1A)-N(2A)
1.371(5)
C(1A)-N(2A)
1.335(5)
C(1A)-C(2A)
1.366(6)
C(2A)-C(4A)
1.421(6)
C(2A)-C(3A)
1.429(6)
C(3A)-N(3A)
1.145(5)
C(4A)-C(5A)
1.437(6)
C(5A)-C(10A)
1.393(6)
C(5A)-C(6A)
1.396(7)
C(6A)-C(7A)
1.362(8)
C(7A)-C(8A)
1.374(8)
C(8A)-C(9A)
1.379(8)
C(9A)-C(10A)
1.375(7)
N(1B)-C(4B)
1.346(5)
N(1B)-N(2B)
1.373(5)
C(1B)-N(2B)
1.335(5)
C(1B)-C(2B)
1.368(6)
C(2B)-C(4B)
1.411(6)
C(2B)-C(3B)
1.439(5)
C(3B)-N(3B)
1.144(5)
C(4B)-C(5B)
1.463(6)
C(5B)-C(10B)
1.390(5)
C(5B)-C(6B)
1.400(6)
C(6B)-C(7B)
1.370(6)
C(7B)-C(8B)
1.393(6)
C(8B)-C(9B)
1.381(6)
C(9B)-C(10B)
1.375(6)
N(1C)-C(1C)
1.332(5)
N(1C)-N(2C)
1.366(5)
C(1C)-C(2C)
1.372(6)
C(2C)-C(4C)
1.401(6)
C(2C)-C(3C)
1.421(7)
C(3C)-N(3C)
1.133(6)
C(4C)-N(2C)
1.335(6)
C(4C)-C(5C)
1.470(7)
C(5C)-C(6C)
1.378(7)
C(5C)-C(10C)
1.402(7)
C(6C)-C(7C)
1.395(8)
C(7C)-C(8C)
1.381(9)
C(8C)-C(9C)
1.364(8)
C(9C)-C(10C)
1.380(7)
148
B(2)-N(2D)
1.531(7)
B(2)-N(2F)
1.542(6)
B(2)-N(2E)
1.551(5)
N(1E)-C(4E)
1.341(5)
N(1E)-N(2E)
1.365(5)
C(1E)-N(2E)
1.341(5)
C(1E)-C(2E)
1.367(6)
C(2E)-C(4E)
1.405(6)
C(2E)-C(3E)
1.430(5)
C(3E)-N(3E)
1.143(5)
C(4E)-C(5E)
1.465(6)
C(5E)-C(10E)
1.393(5)
C(5E)-C(6E)
1.405(6)
C(6E)-C(7E)
1.371(6)
C(7E)-C(8E)
1.390(6)
C(8E)-C(9E)
1.365(6)
C(9E)-C(10E)
1.376(6)
N(1D)-C(4D)
1.338(5)
N(1D)-N(2D)
1.366(5)
C(1D)-N(2D)
1.346(5)
C(1D)-C(2D)
1.356(6)
C(2D)-C(4D)
1.425(6)
C(2D)-C(3D)
1.427(6)
C(3D)-N(3D)
1.137(5)
C(4D)-C(5D)
1.452(7)
C(5D)-C(10D)
1.399(6)
C(5D)-C(6D)
1.403(7)
C(6D)-C(7D)
1.361(8)
C(7D)-C(8D)
1.368(8)
C(8D)-C(9D)
1.388(7)
C(9D)-C(10D)
1.352(7)
N(1F)-C(1F)
1.324(5)
N(1F)-N(2F)
1.372(5)
C(1F)-C(2F)
1.366(6)
C(2F)-C(4F)
1.402(6)
C(2F)-C(3F)
1.424(7)
C(3F)-N(3F)
1.147(7)
C(4F)-N(2F)
1.319(6)
C(4F)-C(5F)
1.457(7)
C(5F)-C(6F)
1.332(8)
C(5F)-C(10F)
1.421(8)
C(6F)-C(7F)
1.449(11)
C(7F)-C(8F)
1.341(12)
C(8F)-C(9F)
1.370(13)
C(9F)-C(10F)
1.389(10)
___________________________________
Table E.4 Bond angles [°] for (TpPh,4CN)*2Co.
__________________________________
N(1F)-Co(1)-N(1C)
178.99(12)
N(1F)-Co(1)-N(1B)
90.80(13)
N(1C)-Co(1)-N(1B)
89.26(13)
N(1F)-Co(1)-N(1D)
90.96(13)
N(1C)-Co(1)-N(1D)
90.02(13)
N(1B)-Co(1)-N(1D)
100.01(11)
N(1F)-Co(1)-N(1E)
89.00(13)
N(1C)-Co(1)-N(1E)
90.94(13)
149
N(1B)-Co(1)-N(1E)
N(1D)-Co(1)-N(1E)
N(1F)-Co(1)-N(1A)
N(1C)-Co(1)-N(1A)
N(1B)-Co(1)-N(1A)
N(1D)-Co(1)-N(1A)
N(1E)-Co(1)-N(1A)
N(2A)-B(1)-N(2C)
N(2A)-B(1)-N(2B)
N(2C)-B(1)-N(2B)
C(4A)-N(1A)-N(2A)
C(4A)-N(1A)-Co(1)
N(2A)-N(1A)-Co(1)
N(2A)-C(1A)-C(2A)
C(1A)-C(2A)-C(4A)
C(1A)-C(2A)-C(3A)
C(4A)-C(2A)-C(3A)
N(3A)-C(3A)-C(2A)
N(1A)-C(4A)-C(2A)
N(1A)-C(4A)-C(5A)
C(2A)-C(4A)-C(5A)
C(10A)-C(5A)-C(6A)
C(10A)-C(5A)-C(4A)
C(6A)-C(5A)-C(4A)
C(7A)-C(6A)-C(5A)
C(6A)-C(7A)-C(8A)
C(7A)-C(8A)-C(9A)
C(10A)-C(9A)-C(8A)
C(9A)-C(10A)-C(5A)
C(1A)-N(2A)-N(1A)
C(1A)-N(2A)-B(1)
N(1A)-N(2A)-B(1)
C(4B)-N(1B)-N(2B)
C(4B)-N(1B)-Co(1)
N(2B)-N(1B)-Co(1)
N(2B)-C(1B)-C(2B)
C(1B)-C(2B)-C(4B)
C(1B)-C(2B)-C(3B)
C(4B)-C(2B)-C(3B)
N(3B)-C(3B)-C(2B)
N(1B)-C(4B)-C(2B)
N(1B)-C(4B)-C(5B)
C(2B)-C(4B)-C(5B)
C(10B)-C(5B)-C(6B)
C(10B)-C(5B)-C(4B)
C(6B)-C(5B)-C(4B)
C(7B)-C(6B)-C(5B)
C(6B)-C(7B)-C(8B)
C(9B)-C(8B)-C(7B)
C(10B)-C(9B)-C(8B)
C(9B)-C(10B)-C(5B)
C(1B)-N(2B)-N(1B)
C(1B)-N(2B)-B(1)
N(1B)-N(2B)-B(1)
C(1C)-N(1C)-N(2C)
C(1C)-N(1C)-Co(1)
N(2C)-N(1C)-Co(1)
N(1C)-C(1C)-C(2C)
179.80(14)
80.01(11)
89.32(13)
89.70(13)
79.46(11)
179.40(14)
100.52(11)
108.2(3)
108.2(4)
110.1(3)
107.4(3)
139.0(3)
113.1(2)
108.2(4)
106.4(4)
126.3(4)
127.2(5)
178.4(6)
107.8(4)
124.9(4)
127.2(4)
118.3(5)
123.5(4)
118.2(4)
120.0(5)
121.3(6)
119.9(6)
119.3(5)
121.3(5)
110.1(4)
126.9(4)
122.7(3)
106.8(3)
140.0(3)
113.2(2)
108.7(4)
105.8(3)
126.4(4)
127.7(4)
178.4(6)
108.8(4)
123.1(4)
127.9(3)
118.4(4)
122.3(4)
119.2(4)
120.8(4)
120.2(4)
119.3(5)
120.6(4)
120.7(4)
110.0(3)
126.6(4)
122.6(3)
106.3(4)
131.3(3)
122.2(2)
110.2(4)
150
C(1C)-C(2C)-C(4C)
C(1C)-C(2C)-C(3C)
C(4C)-C(2C)-C(3C)
N(3C)-C(3C)-C(2C)
N(2C)-C(4C)-C(2C)
N(2C)-C(4C)-C(5C)
C(2C)-C(4C)-C(5C)
C(6C)-C(5C)-C(10C)
C(6C)-C(5C)-C(4C)
C(10C)-C(5C)-C(4C)
C(5C)-C(6C)-C(7C)
C(8C)-C(7C)-C(6C)
C(9C)-C(8C)-C(7C)
C(8C)-C(9C)-C(10C)
C(9C)-C(10C)-C(5C)
C(4C)-N(2C)-N(1C)
C(4C)-N(2C)-B(1)
N(1C)-N(2C)-B(1)
N(2D)-B(2)-N(2F)
N(2D)-B(2)-N(2E)
N(2F)-B(2)-N(2E)
C(4E)-N(1E)-N(2E)
C(4E)-N(1E)-Co(1)
N(2E)-N(1E)-Co(1)
N(2E)-C(1E)-C(2E)
C(1E)-C(2E)-C(4E)
C(1E)-C(2E)-C(3E)
C(4E)-C(2E)-C(3E)
N(3E)-C(3E)-C(2E)
N(1E)-C(4E)-C(2E)
N(1E)-C(4E)-C(5E)
C(2E)-C(4E)-C(5E)
C(10E)-C(5E)-C(6E)
C(10E)-C(5E)-C(4E)
C(6E)-C(5E)-C(4E)
C(7E)-C(6E)-C(5E)
C(6E)-C(7E)-C(8E)
C(9E)-C(8E)-C(7E)
C(8E)-C(9E)-C(10E)
C(9E)-C(10E)-C(5E)
C(1E)-N(2E)-N(1E)
C(1E)-N(2E)-B(2)
N(1E)-N(2E)-B(2)
C(4D)-N(1D)-N(2D)
C(4D)-N(1D)-Co(1)
N(2D)-N(1D)-Co(1)
N(2D)-C(1D)-C(2D)
C(1D)-C(2D)-C(4D)
C(1D)-C(2D)-C(3D)
C(4D)-C(2D)-C(3D)
N(3D)-C(3D)-C(2D)
N(1D)-C(4D)-C(2D)
N(1D)-C(4D)-C(5D)
C(2D)-C(4D)-C(5D)
C(10D)-C(5D)-C(6D)
C(10D)-C(5D)-C(4D)
C(6D)-C(5D)-C(4D)
C(7D)-C(6D)-C(5D)
106.2(4)
127.4(4)
126.1(5)
178.3(6)
106.3(4)
125.4(4)
128.3(4)
119.2(5)
119.3(5)
121.5(5)
120.6(6)
119.2(6)
120.7(6)
120.6(6)
119.7(6)
111.0(3)
131.6(4)
117.4(4)
109.9(3)
107.9(4)
108.2(3)
106.9(3)
140.0(3)
113.1(2)
108.6(4)
105.6(3)
126.3(4)
128.1(4)
178.7(6)
109.2(4)
123.2(4)
127.5(3)
117.9(4)
123.0(4)
119.0(3)
120.5(4)
120.4(4)
119.6(5)
120.7(4)
120.9(4)
109.8(3)
127.2(4)
122.6(3)
107.0(3)
141.2(3)
111.0(2)
108.2(4)
106.2(4)
125.0(4)
128.8(5)
178.2(6)
108.4(4)
124.6(4)
127.0(4)
117.6(5)
123.2(4)
119.1(4)
120.2(5)
151
C(6D)-C(7D)-C(8D)
121.3(5)
C(7D)-C(8D)-C(9D)
119.2(6)
C(10D)-C(9D)-C(8D)
120.3(5)
C(9D)-C(10D)-C(5D)
121.3(5)
C(1D)-N(2D)-N(1D)
110.2(4)
C(1D)-N(2D)-B(2)
124.8(4)
N(1D)-N(2D)-B(2)
124.3(3)
C(1F)-N(1F)-N(2F)
106.8(4)
C(1F)-N(1F)-Co(1)
130.8(3)
N(2F)-N(1F)-Co(1)
122.3(3)
N(1F)-C(1F)-C(2F)
109.8(4)
C(1F)-C(2F)-C(4F)
106.3(4)
C(1F)-C(2F)-C(3F)
126.6(4)
C(4F)-C(2F)-C(3F)
127.0(5)
N(3F)-C(3F)-C(2F)
178.6(7)
N(2F)-C(4F)-C(2F)
106.6(4)
N(2F)-C(4F)-C(5F)
124.3(4)
C(2F)-C(4F)-C(5F)
129.1(5)
C(6F)-C(5F)-C(10F)
119.5(6)
C(6F)-C(5F)-C(4F)
120.4(6)
C(10F)-C(5F)-C(4F)
120.1(5)
C(5F)-C(6F)-C(7F)
119.9(8)
C(8F)-C(7F)-C(6F)
120.6(9)
C(7F)-C(8F)-C(9F)
119.4(9)
C(8F)-C(9F)-C(10F)
121.5(9)
C(9F)-C(10F)-C(5F)
119.0(8)
C(4F)-N(2F)-N(1F)
110.5(3)
C(4F)-N(2F)-B(2)
132.6(4)
N(1F)-N(2F)-B(2)
116.9(4)
________________________________
Symmetry transformations used to generate equivalent atoms:
152
Table F.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x
103) for (TpPh,4CN)*2Mn. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Mn(1)
5028(1)
4475(1)
2519(1)
36(1)
B(1)
5945(7)
5512(3)
3404(3)
40(2)
N(1A)
6168(4)
5478(2)
2521(2)
40(1)
C(1A)
7318(5)
6276(3)
2949(3)
42(2)
C(2A)
7473(6)
6363(3)
2485(3)
43(2)
C(3A)
8290(6)
6853(3)
2315(3)
50(2)
N(3A)
8944(5)
7241(3)
2173(3)
62(2)
C(4A)
6731(5)
5853(3)
2220(3)
40(2)
C(5A)
6507(6)
5760(3)
1711(3)
47(2)
C(6A)
6142(8)
6315(4)
1409(3)
59(2)
C(7A)
5887(10)
6244(5)
928(4)
82(3)
C(8A)
6014(10)
5613(5)
723(3)
80(3)
C(9A)
6391(8)
5057(4)
1009(4)
66(2)
C(10A)
6625(6)
5132(4)
1493(3)
52(2)
N(2A)
6521(4)
5744(3)
2971(2)
40(1)
N(1B)
3789(4)
5215(2)
2881(2)
37(1)
C(1B)
3671(6)
5936(3)
3480(3)
44(2)
C(2B)
2448(6)
5877(3)
3211(3)
41(2)
C(3B)
1310(6)
6200(3)
3318(3)
48(2)
N(3B)
397(5)
6449(3)
3410(3)
59(2)
C(4B)
2567(5)
5437(3)
2836(3)
41(2)
C(5B)
1599(5)
5238(3)
2425(3)
42(2)
C(6B)
838(6)
5747(3)
2175(3)
45(2)
C(7B)
-4(6)
5591(4)
1766(3)
53(2)
C(8B)
-108(6)
4925(4)
1598(3)
55(2)
C(9B)
614(6)
4418(3)
1852(3)
49(2)
C(10B)
1452(6)
4572(3)
2261(3)
44(2)
N(2B)
4448(5)
5531(3)
3276(2)
41(1)
N(1C)
6081(5)
4275(3)
3225(2)
41(1)
C(1C)
6616(6)
3708(3)
3426(3)
41(2)
C(2C)
7306(7)
3850(3)
3867(3)
47(2)
C(3C)
8116(9)
3402(4)
4175(3)
63(2)
N(3C)
8801(9)
3042(4)
4412(3)
87(3)
C(4C)
7169(6)
4550(3)
3943(3)
42(2)
C(5C)
7736(7)
4958(4)
4355(3)
55(2)
C(6C)
7613(8)
4762(5)
4807(3)
70(2)
C(7C)
8170(10)
5132(6)
5208(4)
85(3)
C(8C)
8882(10)
5700(6)
5145(4)
87(3)
C(9C)
9065(8)
5903(5)
4694(4)
78(3)
C(10C)
8500(7)
5536(4)
4299(3)
62(2)
N(2C)
6428(5)
4784(3)
3553(2)
41(1)
B(2)
4126(6)
3443(4)
1636(3)
40(2)
N(1E)
6281(4)
3732(2)
2161(2)
37(1)
C(1E)
6401(6)
3011(3)
1572(3)
44(2)
C(2E)
7618(6)
3064(3)
1836(3)
40(2)
C(3E)
8759(6)
2753(3)
1724(3)
49(2)
N(3E)
9674(5)
2493(3)
1636(3)
61(2)
C(4E)
7503(5)
3529(3)
2203(2)
36(2)
C(5E)
8483(5)
3727(3)
2603(2)
37(2)
C(6E)
9258(6)
3235(3)
2859(3)
42(2)
C(7E)
10142(6)
3411(4)
3250(3)
49(2)
C(8E)
10270(6)
4086(4)
3405(3)
52(2)
153
C(9E)
9519(6)
4573(4)
3152(3)
45(2)
C(10E)
8639(6)
4406(3)
2753(3)
39(2)
N(2E)
5616(5)
3410(2)
1773(2)
39(1)
N(1D)
3887(4)
3474(2)
2523(2)
37(1)
C(1D)
2698(5)
2707(3)
2074(3)
39(2)
C(2D)
2524(6)
2599(3)
2531(3)
40(2)
C(3D)
1684(6)
2110(3)
2690(3)
47(2)
N(3D)
988(5)
1719(3)
2806(3)
55(2)
C(4D)
3312(6)
3091(3)
2821(3)
38(2)
C(5D)
3500(6)
3168(3)
3335(3)
45(2)
C(6D)
3618(8)
2587(4)
3624(3)
64(2)
C(7D)
3786(10)
2652(5)
4117(4)
86(3)
C(8D)
3871(10)
3287(5)
4331(4)
79(3)
C(9D)
3753(7)
3859(4)
4043(3)
61(2)
C(10D)
3555(6)
3805(3)
3560(3)
47(2)
N(2D)
3525(4)
3229(2)
2070(2)
39(1)
N(1F)
4006(5)
4682(3)
1818(2)
41(1)
C(1F)
3554(6)
5257(3)
1606(3)
46(2)
C(2F)
2980(7)
5130(4)
1147(3)
56(2)
C(3F)
2441(10)
5613(5)
794(4)
80(3)
N(3F)
2021(11)
6010(5)
522(4)
121(4)
C(4F)
3118(7)
4433(4)
1075(3)
53(2)
C(5F)
2697(9)
4029(4)
649(3)
69(2)
C(6F)
1513(13)
4105(6)
400(5)
119(5)
C(7F)
1117(15)
3679(8)
-16(5)
140(6)
C(8F)
1906(17)
3224(8)
-158(5)
128(5)
C(9F)
3162(15)
3160(7)
90(4)
115(4)
C(10F)
3568(11)
3566(5)
479(4)
88(3)
N(2F)
3728(5)
4178(3)
1487(2)
39(1)
___________________________________________________________________________
Table F.2 Anisotropic displacement parameters (Å2 x 103) for (TpPh,4CN)*2Mn. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b*
U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Mn(1)
18(1)
19(1)
74(1)
-3(1)
12(1)
-1(1)
B(1)
24(4)
17(4)
77(6)
-5(4)
3(4)
5(3)
N(1A)
22(3)
16(3)
82(4)
3(3)
13(3)
1(2)
C(1A)
15(3)
23(3)
86(6)
-11(3)
6(3)
0(2)
C(2A)
18(3)
23(3)
90(6)
4(3)
8(3)
4(2)
C(3A)
26(3)
21(3)
105(6)
4(4)
14(4)
3(3)
N(3A)
32(3)
26(3)
132(6)
7(3)
22(4)
0(3)
C(4A)
14(3)
31(4)
76(5)
4(3)
9(3)
7(3)
C(5A)
26(3)
24(4)
95(6)
4(4)
20(3)
2(3)
C(6A)
63(5)
43(5)
76(6)
8(4)
23(4)
10(4)
C(7A)
109(8)
47(5)
90(8)
12(5)
19(6)
17(5)
C(8A)
100(7)
78(7)
64(6)
5(5)
23(5)
-6(6)
C(9A)
58(5)
48(5)
96(7)
4(5)
24(5)
-6(4)
C(10A) 34(4)
48(5)
77(6)
5(4)
17(4)
-12(3)
N(2A)
17(2)
23(3)
80(4)
-3(3)
11(3)
1(2)
N(1B)
15(2)
23(3)
73(4)
-3(3)
10(2)
3(2)
C(1B)
31(3)
27(3)
75(5)
-8(3)
13(3)
2(3)
C(2B)
22(3)
26(3)
79(5)
-1(3)
18(3)
2(2)
C(3B)
31(4)
25(3)
90(6)
-10(3)
15(4)
-3(3)
N(3B)
31(3)
33(3)
117(6)
-13(3)
23(3)
0(3)
154
C(4B)
21(3)
C(5B)
21(3)
C(6B)
21(3)
C(7B)
31(4)
C(8B)
26(3)
C(9B)
26(3)
C(10B) 23(3)
N(2B)
26(3)
N(1C)
24(3)
C(1C)
31(3)
C(2C)
41(4)
C(3C)
71(5)
N(3C)
109(6)
C(4C)
35(4)
C(5C)
47(4)
C(6C)
64(5)
C(7C)
88(7)
C(8C)
82(7)
C(9C)
57(5)
C(10C) 44(4)
N(2C)
24(3)
B(2)
20(3)
N(1E)
22(3)
C(1E)
32(3)
C(2E)
25(3)
C(3E)
27(4)
N(3E)
30(3)
C(4E)
24(3)
C(5E)
20(3)
C(6E)
30(3)
C(7E)
30(3)
C(8E)
25(3)
C(9E)
27(3)
C(10E) 23(3)
N(2E)
24(3)
N(1D)
20(2)
C(1D)
21(3)
C(2D)
24(3)
C(3D)
29(3)
N(3D)
38(3)
C(4D)
25(3)
C(5D)
24(3)
C(6D)
60(5)
C(7D)
102(8)
C(8D)
94(7)
C(9D)
52(5)
C(10D) 31(3)
N(2D)
17(2)
N(1F)
28(3)
C(1F)
33(3)
C(2F)
45(4)
C(3F)
94(7)
N(3F)
143(9)
C(4F)
44(4)
C(5F)
73(6)
C(6F)
109(9)
C(7F) 120(11)
C(8F) 152(14)
17(3)
23(3)
31(4)
37(4)
50(5)
31(4)
30(4)
25(3)
27(3)
22(3)
35(4)
44(5)
51(5)
34(4)
54(5)
64(6)
91(8)
86(8)
58(6)
53(5)
28(3)
33(4)
20(3)
26(3)
22(3)
31(4)
43(4)
17(3)
32(4)
25(3)
51(5)
59(5)
37(4)
25(3)
22(3)
24(3)
11(3)
17(3)
24(4)
27(3)
14(3)
42(4)
43(5)
64(6)
71(7)
54(5)
32(4)
24(3)
21(3)
22(4)
31(4)
51(5)
70(6)
39(4)
53(5)
89(8)
151(14)
113(11)
87(5)
84(5)
84(5)
92(6)
88(6)
93(6)
82(5)
71(4)
73(4)
72(5)
65(5)
73(6)
92(6)
59(5)
63(5)
82(7)
77(7)
88(8)
112(9)
86(6)
73(4)
65(5)
69(4)
76(5)
75(5)
91(6)
115(6)
68(5)
61(4)
72(5)
68(5)
73(5)
74(5)
71(5)
73(4)
67(4)
86(6)
81(5)
89(6)
106(5)
77(5)
69(5)
85(7)
86(8)
71(6)
81(7)
79(6)
75(4)
76(4)
83(6)
90(6)
87(7)
127(8)
75(6)
78(6)
142(11)
129(12)
113(11)
0(3)
-4(3)
-6(3)
-1(4)
-7(4)
-13(4)
-3(3)
-5(3)
-3(3)
1(3)
3(3)
5(4)
13(4)
-3(3)
-4(4)
-12(5)
-22(6)
-26(6)
-24(6)
-16(4)
-9(3)
4(4)
-4(2)
-10(3)
-7(3)
-8(4)
-15(4)
1(3)
1(3)
2(3)
5(4)
-4(4)
-8(3)
1(3)
-4(3)
-1(3)
7(3)
6(3)
1(3)
9(3)
3(3)
5(4)
8(4)
19(5)
5(5)
-9(4)
1(4)
3(3)
-5(3)
-2(3)
3(4)
4(5)
21(6)
-2(4)
6(5)
-32(8)
-39(10)
-42(9)
155
13(3)
15(3)
12(3)
9(4)
8(3)
15(4)
18(3)
9(3)
10(3)
15(3)
9(4)
8(4)
-10(5)
10(3)
8(4)
13(5)
14(6)
1(6)
-6(5)
1(4)
12(3)
8(3)
10(2)
15(3)
14(3)
20(4)
24(3)
13(3)
14(3)
14(3)
10(3)
11(3)
18(3)
15(3)
13(3)
8(2)
11(3)
13(3)
13(3)
26(3)
12(3)
12(3)
1(4)
-1(6)
8(5)
18(4)
14(3)
9(2)
11(3)
11(4)
5(4)
-8(6)
-46(7)
11(4)
9(5)
-32(8)
-44(9)
0(10)
-7(2)
0(2)
4(3)
6(3)
-2(3)
-1(3)
1(3)
0(2)
-1(2)
4(3)
8(3)
3(4)
19(5)
6(3)
14(4)
11(4)
18(6)
19(6)
7(4)
4(4)
-2(2)
-2(3)
-4(2)
-2(3)
-1(2)
-1(3)
1(3)
3(2)
1(2)
2(3)
11(3)
2(3)
-5(3)
-2(2)
3(2)
4(2)
-1(2)
0(2)
6(3)
-5(3)
2(2)
1(3)
6(4)
6(5)
2(5)
0(4)
-1(3)
2(2)
0(2)
3(3)
7(3)
13(5)
14(6)
1(3)
7(4)
3(7)
14(10)
9(10)
C(9F) 141(12)
110(10)
95(9)
-19(8)
20(8)
-5(9)
C(10F) 100(8)
71(7)
97(8)
-19(6)
29(6)
-5(6)
N(2F)
25(3)
27(3)
66(4)
0(3)
10(3)
2(2)
___________________________________________________________________________
Table F.3 Bond lengths [Å] for (TpPh,4CN)*2Mn.
__________________________________
Mn(1)-N(1F)
2.138(6)
Mn(1)-N(1C)
2.161(6)
Mn(1)-N(1B)
2.306(5)
Mn(1)-N(1E)
2.311(5)
Mn(1)-N(1D)
2.310(5)
Mn(1)-N(1A)
2.311(5)
B(1)-N(2A)
1.525(10)
B(1)-N(2C)
1.555(8)
B(1)-N(2B)
1.562(8)
N(1A)-C(4A)
1.336(8)
N(1A)-N(2A)
1.372(8)
C(1A)-N(2A)
1.350(8)
C(1A)-C(2A)
1.361(10)
C(2A)-C(4A)
1.411(9)
C(2A)-C(3A)
1.429(9)
C(3A)-N(3A)
1.145(9)
C(4A)-C(5A)
1.434(10)
C(5A)-C(6A)
1.401(10)
C(5A)-C(10A)
1.397(10)
C(6A)-C(7A)
1.351(12)
C(7A)-C(8A)
1.386(13)
C(8A)-C(9A)
1.381(12)
C(9A)-C(10A)
1.360(11)
N(1B)-C(4B)
1.348(7)
N(1B)-N(2B)
1.368(7)
C(1B)-N(2B)
1.340(8)
C(1B)-C(2B)
1.392(9)
C(2B)-C(4B)
1.392(10)
C(2B)-C(3B)
1.434(9)
C(3B)-N(3B)
1.147(8)
C(4B)-C(5B)
1.472(9)
C(5B)-C(10B)
1.392(9)
C(5B)-C(6B)
1.402(9)
C(6B)-C(7B)
1.374(10)
C(7B)-C(8B)
1.393(10)
C(8B)-C(9B)
1.384(10)
C(9B)-C(10B)
1.372(10)
N(1C)-C(1C)
1.336(8)
N(1C)-N(2C)
1.374(7)
C(1C)-C(2C)
1.368(10)
C(2C)-C(4C)
1.406(9)
C(2C)-C(3C)
1.422(11)
C(3C)-N(3C)
1.148(10)
C(4C)-N(2C)
1.328(9)
C(4C)-C(5C)
1.462(10)
C(5C)-C(6C)
1.361(12)
C(5C)-C(10C)
1.418(11)
C(6C)-C(7C)
1.397(13)
C(7C)-C(8C)
1.373(15)
C(8C)-C(9C)
1.382(14)
156
C(9C)-C(10C)
1.385(12)
B(2)-N(2D)
1.530(10)
B(2)-N(2F)
1.546(9)
B(2)-N(2E)
1.558(8)
N(1E)-C(4E)
1.337(7)
N(1E)-N(2E)
1.362(7)
C(1E)-N(2E)
1.335(8)
C(1E)-C(2E)
1.381(9)
C(2E)-C(4E)
1.403(9)
C(2E)-C(3E)
1.431(9)
C(3E)-N(3E)
1.155(8)
C(4E)-C(5E)
1.458(9)
C(5E)-C(10E)
1.403(9)
C(5E)-C(6E)
1.393(9)
C(6E)-C(7E)
1.373(10)
C(7E)-C(8E)
1.398(10)
C(8E)-C(9E)
1.369(10)
C(9E)-C(10E)
1.381(10)
N(1D)-C(4D)
1.347(8)
N(1D)-N(2D)
1.365(8)
C(1D)-N(2D)
1.350(7)
C(1D)-C(2D)
1.353(10)
C(2D)-C(3D)
1.430(9)
C(2D)-C(4D)
1.443(9)
C(3D)-N(3D)
1.147(8)
C(4D)-C(5D)
1.446(10)
C(5D)-C(6D)
1.400(10)
C(5D)-C(10D)
1.402(10)
C(6D)-C(7D)
1.384(13)
C(7D)-C(8D)
1.386(13)
C(8D)-C(9D)
1.384(12)
C(9D)-C(10D)
1.352(11)
N(1F)-C(1F)
1.332(8)
N(1F)-N(2F)
1.364(7)
C(1F)-C(2F)
1.365(11)
C(2F)-C(4F)
1.397(10)
C(2F)-C(3F)
1.428(12)
C(3F)-N(3F)
1.136(11)
C(4F)-N(2F)
1.333(9)
C(4F)-C(5F)
1.453(12)
C(5F)-C(6F)
1.339(14)
C(5F)-C(10F)
1.432(13)
C(6F)-C(7F)
1.451(17)
C(7F)-C(8F)
1.329(18)
C(8F)-C(9F)
1.400(19)
C(9F)-C(10F)
1.373(15)
_____________________________________
Table F.4 Bond angles [°] for (TpPh,4CN)*2Mn.
__________________________________
N(1F)-Mn(1)-N(1C)
179.2(2)
N(1F)-Mn(1)-N(1B)
93.1(2)
N(1C)-Mn(1)-N(1B)
86.94(19)
N(1F)-Mn(1)-N(1E)
87.3(2)
N(1C)-Mn(1)-N(1E)
92.6(2)
N(1B)-Mn(1)-N(1E)
179.6(2)
N(1F)-Mn(1)-N(1D)
89.0(2)
157
N(1C)-Mn(1)-N(1D)
N(1B)-Mn(1)-N(1D)
N(1E)-Mn(1)-N(1D)
N(1F)-Mn(1)-N(1A)
N(1C)-Mn(1)-N(1A)
N(1B)-Mn(1)-N(1A)
N(1E)-Mn(1)-N(1A)
N(1D)-Mn(1)-N(1A)
N(2A)-B(1)-N(2C)
N(2A)-B(1)-N(2B)
N(2C)-B(1)-N(2B)
C(4A)-N(1A)-N(2A)
C(4A)-N(1A)-Mn(1)
N(2A)-N(1A)-Mn(1)
N(2A)-C(1A)-C(2A)
C(1A)-C(2A)-C(4A)
C(1A)-C(2A)-C(3A)
C(4A)-C(2A)-C(3A)
N(3A)-C(3A)-C(2A)
N(1A)-C(4A)-C(2A)
N(1A)-C(4A)-C(5A)
C(2A)-C(4A)-C(5A)
C(6A)-C(5A)-C(10A)
C(6A)-C(5A)-C(4A)
C(10A)-C(5A)-C(4A)
C(7A)-C(6A)-C(5A)
C(6A)-C(7A)-C(8A)
C(9A)-C(8A)-C(7A)
C(10A)-C(9A)-C(8A)
C(9A)-C(10A)-C(5A)
C(1A)-N(2A)-N(1A)
C(1A)-N(2A)-B(1)
N(1A)-N(2A)-B(1)
C(4B)-N(1B)-N(2B)
C(4B)-N(1B)-Mn(1)
N(2B)-N(1B)-Mn(1)
N(2B)-C(1B)-C(2B)
C(1B)-C(2B)-C(4B)
C(1B)-C(2B)-C(3B)
C(4B)-C(2B)-C(3B)
N(3B)-C(3B)-C(2B)
N(1B)-C(4B)-C(2B)
N(1B)-C(4B)-C(5B)
C(2B)-C(4B)-C(5B)
C(10B)-C(5B)-C(6B)
C(10B)-C(5B)-C(4B)
C(6B)-C(5B)-C(4B)
C(7B)-C(6B)-C(5B)
C(6B)-C(7B)-C(8B)
C(9B)-C(8B)-C(7B)
C(10B)-C(9B)-C(8B)
C(9B)-C(10B)-C(5B)
C(1B)-N(2B)-N(1B)
C(1B)-N(2B)-B(1)
N(1B)-N(2B)-B(1)
C(1C)-N(1C)-N(2C)
C(1C)-N(1C)-Mn(1)
N(2C)-N(1C)-Mn(1)
91.8(2)
101.71(17)
78.37(17)
91.3(2)
87.9(2)
77.99(17)
101.92(17)
179.6(2)
109.8(5)
109.1(6)
111.0(5)
107.4(5)
139.1(5)
113.0(4)
108.3(6)
106.3(6)
125.8(7)
127.8(8)
179.1(9)
108.6(7)
123.5(6)
127.7(6)
117.1(8)
119.9(7)
123.0(7)
121.6(8)
119.8(9)
120.3(9)
119.4(9)
121.8(8)
109.4(6)
126.9(6)
123.3(5)
106.3(5)
140.0(5)
113.6(3)
107.0(6)
106.2(5)
125.6(6)
128.3(6)
178.6(9)
109.5(6)
121.2(6)
129.2(5)
118.7(6)
122.7(6)
118.5(6)
120.3(6)
120.2(7)
119.7(7)
120.3(6)
120.8(7)
110.9(5)
125.5(6)
122.6(5)
106.0(5)
131.6(5)
122.2(4)
158
N(1C)-C(1C)-C(2C)
C(1C)-C(2C)-C(4C)
C(1C)-C(2C)-C(3C)
C(4C)-C(2C)-C(3C)
N(3C)-C(3C)-C(2C)
N(2C)-C(4C)-C(2C)
N(2C)-C(4C)-C(5C)
C(2C)-C(4C)-C(5C)
C(6C)-C(5C)-C(10C)
C(6C)-C(5C)-C(4C)
C(10C)-C(5C)-C(4C)
C(5C)-C(6C)-C(7C)
C(8C)-C(7C)-C(6C)
C(9C)-C(8C)-C(7C)
C(8C)-C(9C)-C(10C)
C(9C)-C(10C)-C(5C)
C(4C)-N(2C)-N(1C)
C(4C)-N(2C)-B(1)
N(1C)-N(2C)-B(1)
N(2D)-B(2)-N(2F)
N(2D)-B(2)-N(2E)
N(2F)-B(2)-N(2E)
C(4E)-N(1E)-N(2E)
C(4E)-N(1E)-Mn(1)
N(2E)-N(1E)-Mn(1)
N(2E)-C(1E)-C(2E)
C(1E)-C(2E)-C(4E)
C(1E)-C(2E)-C(3E)
C(4E)-C(2E)-C(3E)
N(3E)-C(3E)-C(2E)
N(1E)-C(4E)-C(2E)
N(1E)-C(4E)-C(5E)
C(2E)-C(4E)-C(5E)
C(10E)-C(5E)-C(6E)
C(10E)-C(5E)-C(4E)
C(6E)-C(5E)-C(4E)
C(7E)-C(6E)-C(5E)
C(6E)-C(7E)-C(8E)
C(9E)-C(8E)-C(7E)
C(8E)-C(9E)-C(10E)
C(9E)-C(10E)-C(5E)
C(1E)-N(2E)-N(1E)
C(1E)-N(2E)-B(2)
N(1E)-N(2E)-B(2)
C(4D)-N(1D)-N(2D)
C(4D)-N(1D)-Mn(1)
N(2D)-N(1D)-Mn(1)
N(2D)-C(1D)-C(2D)
C(1D)-C(2D)-C(3D)
C(1D)-C(2D)-C(4D)
C(3D)-C(2D)-C(4D)
N(3D)-C(3D)-C(2D)
N(1D)-C(4D)-C(2D)
N(1D)-C(4D)-C(5D)
C(2D)-C(4D)-C(5D)
C(6D)-C(5D)-C(10D)
C(6D)-C(5D)-C(4D)
C(10D)-C(5D)-C(4D)
110.1(6)
106.7(6)
127.6(7)
125.4(7)
177.5(10)
106.0(6)
125.6(6)
128.4(7)
118.5(8)
120.3(8)
121.1(8)
121.6(10)
119.1(11)
121.1(10)
119.3(10)
120.3(9)
111.4(5)
131.9(6)
116.7(5)
110.3(6)
108.8(6)
109.0(5)
107.1(5)
139.8(4)
113.0(3)
108.1(6)
105.4(5)
126.0(6)
128.3(6)
178.9(8)
109.2(5)
122.7(6)
127.9(5)
118.3(6)
121.6(6)
120.0(6)
120.6(6)
120.7(7)
118.9(7)
121.1(7)
120.3(6)
110.1(5)
126.2(6)
123.3(5)
107.8(5)
140.2(5)
111.3(4)
108.5(6)
126.4(6)
106.4(6)
127.1(7)
178.2(9)
107.2(6)
124.8(6)
127.9(6)
118.2(7)
119.2(7)
122.6(6)
159
C(7D)-C(6D)-C(5D)
119.8(8)
C(8D)-C(7D)-C(6D)
120.9(9)
C(9D)-C(8D)-C(7D)
118.8(9)
C(10D)-C(9D)-C(8D)
121.1(8)
C(9D)-C(10D)-C(5D)
121.1(7)
C(1D)-N(2D)-N(1D)
110.0(6)
C(1D)-N(2D)-B(2)
124.8(6)
N(1D)-N(2D)-B(2)
124.6(5)
C(1F)-N(1F)-N(2F)
106.7(6)
C(1F)-N(1F)-Mn(1)
132.0(5)
N(2F)-N(1F)-Mn(1)
121.3(4)
N(1F)-C(1F)-C(2F)
110.1(6)
C(1F)-C(2F)-C(4F)
106.2(7)
C(1F)-C(2F)-C(3F)
127.5(7)
C(4F)-C(2F)-C(3F)
126.2(8)
N(3F)-C(3F)-C(2F)
178.2(11)
N(2F)-C(4F)-C(2F)
106.8(7)
N(2F)-C(4F)-C(5F)
123.9(7)
C(2F)-C(4F)-C(5F)
129.3(8)
C(6F)-C(5F)-C(10F)
119.3(10)
C(6F)-C(5F)-C(4F)
120.6(9)
C(10F)-C(5F)-C(4F)
120.1(8)
C(5F)-C(6F)-C(7F)
118.9(12)
C(8F)-C(7F)-C(6F)
121.5(13)
C(7F)-C(8F)-C(9F)
119.9(13)
C(10F)-C(9F)-C(8F)
119.7(13)
C(9F)-C(10F)-C(5F)
120.4(11)
C(4F)-N(2F)-N(1F)
110.3(5)
C(4F)-N(2F)-B(2)
131.4(6)
N(1F)-N(2F)-B(2)
118.3(6)
__________________________________
Symmetry transformations used to generate equivalent atoms:
160
Table G.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for (TpPh,4CN)*2Fe. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Fe(1)
-30(1)
512(1)
2483(1)
50(1)
B(1)
882(8)
1537(5)
3351(5)
54(3)
N(1A)
1104(5)
1484(3)
2458(4)
52(2)
C(1A)
2304(6)
2261(4)
2901(4)
53(3)
C(2A)
2454(7)
2345(4)
2431(4)
53(3)
C(3A)
3305(7)
2842(4)
2264(4)
64(3)
N(3A)
4010(6)
3224(3)
2154(3)
77(3)
C(4A)
1663(7)
1853(4)
2153(5)
51(3)
C(5A)
1473(7)
1768(4)
1630(5)
60(3)
C(6A)
1393(6)
1131(4)
1400(5)
57(3)
C(7A)
1187(7)
1070(5)
917(5)
64(3)
C(8A)
1063(9)
1644(7)
628(4)
90(3)
C(9A)
1163(10)
2287(6)
832(6)
95(4)
C(10A)
1337(8)
2340(5)
1330(5)
79(4)
N(2A)
1466(5)
1737(3)
2915(3)
49(2)
N(1B)
-1270(5)
1237(3)
2824(3)
52(2)
C(1B)
-1390(7)
1988(3)
3407(4)
61(3)
C(2B)
-2627(7)
1929(4)
3145(4)
60(3)
C(3B)
-3746(7)
2240(4)
3251(4)
61(3)
N(3B)
-4651(6)
2500(3)
3344(3)
73(2)
C(4B)
-2492(6)
1448(4)
2776(3)
47(3)
C(5B)
-3493(6)
1243(4)
2372(3)
49(2)
C(6B)
-3670(7)
566(4)
2236(3)
53(3)
C(7B)
-4578(7)
395(4)
1843(4)
62(3)
C(8B)
-5313(7)
877(5)
1576(4)
63(3)
C(9B)
-5146(8)
1567(5)
1723(4)
66(3)
C(10B)
-4250(7)
1739(4)
2112(4)
60(3)
N(2B)
-605(5)
1580(3)
3215(3)
54(2)
N(1C)
951(5)
300(3)
3156(3)
51(2)
C(1C)
1424(8)
-277(4)
3385(4)
61(3)
C(2C)
1989(8)
-155(5)
3849(4)
59(3)
C(3C)
2538(11)
-642(6)
4192(5)
94(4)
N(3C)
2929(10)
-1050(5)
4474(5)
134(4)
C(4C)
1858(9)
551(5)
3910(5)
64(3)
C(5C)
2335(11)
942(5)
4345(5)
83(3)
C(6C)
3504(14)
857(6)
4583(5)
133(5)
C(7C)
3981(15)
1256(9)
5002(7)
152(6)
C(8C)
3250(20)
1747(11)
5174(8)
187(10)
C(9C)
2060(20)
1831(7)
4937(6)
161(8)
C(10C)
1511(11)
1437(6)
4525(5)
112(4)
N(2C)
1250(6)
788(4)
3499(3)
54(2)
B(2)
-958(8)
-530(4)
1610(4)
47(3)
N(1D)
-1148(5)
-459(3)
2509(3)
48(2)
C(1D)
-2311(7)
-1266(4)
2083(5)
64(3)
C(2D)
-2477(7)
-1351(4)
2558(5)
60(3)
C(3D)
-3272(7)
-1832(4)
2737(4)
68(3)
N(3D)
-3955(6)
-2216(3)
2869(3)
80(3)
C(4D)
-1718(7)
-825(4)
2813(5)
52(3)
C(5D)
-1495(7)
-727(4)
3334(5)
57(3)
C(6D)
-1632(7)
-80(5)
3543(5)
65(3)
C(7D)
-1404(9)
-10(6)
4041(6)
84(4)
C(8D)
-1003(10)
-572(6)
4328(4)
93(4)
161
C(9D)
-883(10)
-1197(6)
4109(5)
92(4)
C(10D)
-1136(9)
-1288(5)
3629(5)
73(3)
N(2D)
-1517(6)
-735(3)
2058(3)
53(2)
N(1E)
1195(5)
-221(3)
2145(3)
48(2)
C(1E)
1319(7)
-946(4)
1549(3)
58(3)
C(2E)
2526(6)
-892(4)
1819(4)
52(3)
C(3E)
3676(7)
-1217(4)
1719(3)
58(3)
N(3E)
4586(6)
-1472(3)
1628(3)
67(2)
C(4E)
2415(6)
-432(4)
2196(4)
50(3)
C(5E)
3388(7)
-243(4)
2605(3)
52(3)
C(6E)
4145(7)
-748(4)
2865(4)
58(3)
C(7E)
4980(8)
-595(4)
3284(4)
68(3)
C(8E)
5125(7)
68(4)
3438(4)
68(3)
C(9E)
4417(8)
581(4)
3179(4)
63(3)
C(10E)
3569(7)
427(4)
2762(4)
57(3)
N(2E)
546(6)
-540(3)
1743(3)
55(2)
N(1F)
-1056(5)
714(3)
1793(3)
52(2)
C(1F)
-1593(7)
1285(4)
1586(4)
56(3)
C(2F)
-2280(8)
1150(4)
1141(4)
54(3)
C(3F)
-3090(10)
1602(5)
827(4)
77(3)
N(3F)
-3769(9)
1968(4)
591(4)
104(3)
C(4F)
-2162(7)
445(4)
1066(4)
49(2)
C(5F)
-2745(9)
41(5)
658(5)
66(3)
C(6F)
-2631(9)
231(5)
206(6)
79(3)
C(7F)
-3233(11)
-142(7)
-206(5)
100(4)
C(8F)
-3906(11)
-718(6)
-123(6)
97(4)
C(9F)
-4071(10)
-925(5)
320(6)
86(4)
C(10F)
-3490(8)
-569(5)
721(4)
74(3)
N(2F)
-1437(6)
208(3)
1466(3)
50(2)
___________________________________________________________________________
Table G.2 Anisotropic displacement parameters (Å2 x 103) for (TpPh,4CN)*2Fe. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Fe(1)
25(1)
15(1)
113(1)
-1(1)
21(1)
0(1)
B(1)
29(5)
22(6)
118(12)
-5(7)
31(6)
-1(4)
N(1A)
30(3)
19(4)
110(8)
4(5)
25(4)
6(3)
C(1A)
29(4)
16(5)
118(10)
2(5)
21(5)
-7(4)
C(2A)
33(4)
11(5)
118(10)
8(5)
22(5)
-2(4)
C(3A)
34(4)
29(5)
132(10)
4(5)
23(5)
10(4)
N(3A)
39(4)
38(5)
159(9)
18(5)
37(5)
-4(3)
C(4A)
37(5)
21(5)
97(10)
8(6)
17(6)
6(4)
C(5A)
34(4)
33(6)
114(11)
15(7)
19(6)
2(4)
C(6A)
43(5)
27(6)
108(11)
2(6)
33(6)
2(4)
C(7A)
52(5)
53(7)
94(10)
-1(7)
29(6)
4(5)
C(8A)
89(8)
85(9)
96(11)
12(9)
16(7)
2(7)
C(9A)
100(8)
62(9)
124(13)
27(9)
24(9)
13(6)
C(10A) 67(6)
45(7)
130(12)
12(8)
26(8)
6(5)
N(2A)
23(3)
24(4)
103(8)
-7(4)
16(4)
-3(3)
N(1B)
36(4)
14(4)
109(7)
-5(4)
22(4)
-3(3)
C(1B)
48(5)
15(4)
127(9)
-14(5)
34(5)
-1(4)
C(2B)
32(5)
22(5)
133(10)
-11(5)
35(5)
-6(4)
C(3B)
34(4)
20(5)
136(10)
-13(5)
32(5)
-10(4)
N(3B)
40(4)
47(5)
139(8)
-15(5)
35(4)
-1(4)
C(4B)
29(4)
11(4)
106(9)
8(5)
23(5)
6(3)
162
C(5B)
C(6B)
C(7B)
C(8B)
C(9B)
C(10B)
N(2B)
N(1C)
C(1C)
C(2C)
C(3C)
N(3C)
C(4C)
C(5C)
C(6C)
C(7C)
C(8C)
C(9C)
C(10C)
N(2C)
B(2)
N(1D)
C(1D)
C(2D)
C(3D)
N(3D)
C(4D)
C(5D)
C(6D)
C(7D)
C(8D)
C(9D)
C(10D)
N(2D)
N(1E)
C(1E)
C(2E)
C(3E)
N(3E)
C(4E)
C(5E)
C(6E)
C(7E)
C(8E)
C(9E)
C(10E)
N(2E)
N(1F)
C(1F)
C(2F)
C(3F)
N(3F)
C(4F)
C(5F)
C(6F)
C(7F)
C(8F)
C(9F)
20(4)
25(4)
31(4)
33(5)
41(5)
36(4)
38(4)
44(4)
43(5)
48(5)
87(8)
134(9)
48(5)
69(7)
130(12)
113(12)
165(19)
290(30)
88(8)
24(3)
38(5)
35(4)
21(4)
21(4)
28(4)
43(4)
19(4)
33(4)
36(5)
61(6)
98(8)
107(9)
87(7)
39(4)
21(3)
48(5)
23(4)
34(4)
38(4)
25(4)
34(4)
37(4)
51(5)
37(5)
44(5)
26(4)
36(4)
30(3)
35(4)
46(5)
76(7)
126(8)
41(5)
67(6)
62(6)
98(9)
88(8)
72(7)
24(5)
32(6)
43(6)
64(7)
47(6)
36(5)
22(4)
18(4)
30(6)
48(7)
59(8)
79(8)
38(7)
56(7)
94(10)
135(14)
180(20)
77(10)
78(8)
47(5)
17(5)
20(4)
21(5)
18(5)
32(5)
32(4)
35(6)
27(6)
51(7)
61(8)
73(9)
61(8)
37(6)
23(4)
19(4)
37(5)
26(5)
24(5)
31(4)
25(5)
23(5)
32(5)
36(6)
40(6)
36(5)
28(6)
26(4)
24(4)
26(5)
24(6)
32(6)
47(6)
41(6)
63(8)
71(7)
105(10)
60(8)
52(7)
104(8)
106(9)
116(10)
97(9)
112(10)
111(9)
107(7)
92(7)
115(11)
80(10)
128(13)
170(13)
107(11)
125(12)
157(15)
200(20)
180(20)
130(17)
182(15)
89(7)
88(10)
93(7)
151(12)
147(11)
145(10)
170(9)
110(10)
119(11)
112(11)
138(13)
107(11)
110(13)
98(11)
98(8)
108(7)
94(9)
110(9)
121(9)
139(8)
106(9)
104(8)
108(9)
118(10)
125(10)
108(9)
119(10)
103(7)
106(7)
114(10)
89(9)
124(11)
129(9)
65(8)
70(10)
106(12)
95(11)
140(15)
130(14)
9(5)
11(5)
3(6)
-10(6)
18(6)
-1(5)
-13(4)
-10(4)
4(6)
4(6)
9(8)
15(7)
-17(7)
-6(7)
-49(9)
-20(13)
-38(15)
-47(10)
1(9)
7(5)
-8(6)
0(4)
-18(6)
-12(6)
0(6)
9(5)
2(6)
-1(7)
6(7)
13(9)
-3(9)
0(8)
2(7)
1(4)
0(4)
-11(5)
4(5)
0(5)
-11(4)
-6(5)
-1(5)
-1(5)
-8(6)
-7(6)
-10(6)
-3(5)
-15(4)
-8(4)
-2(6)
-1(5)
10(6)
16(5)
-1(5)
0(7)
-20(8)
-20(9)
-23(8)
-1(8)
163
16(4)
20(5)
23(5)
20(5)
21(6)
22(5)
29(4)
15(4)
27(6)
5(5)
-3(8)
-28(8)
20(6)
14(7)
-31(10)
-4(12)
-56(16)
83(16)
53(9)
9(4)
16(6)
20(4)
21(6)
29(6)
21(5)
31(5)
31(5)
34(5)
26(6)
38(8)
19(7)
24(9)
25(7)
17(4)
23(4)
25(5)
22(5)
24(5)
31(4)
24(5)
24(5)
19(5)
13(6)
11(5)
14(6)
20(5)
13(4)
26(4)
27(5)
4(5)
16(7)
-9(7)
4(5)
20(6)
20(7)
11(8)
13(9)
11(8)
8(4)
4(4)
7(4)
-2(5)
12(5)
-6(4)
-5(3)
-13(3)
-6(4)
-1(5)
3(6)
-9(7)
-10(5)
1(6)
-13(9)
-4(11)
-19(15)
-45(14)
15(7)
2(3)
1(4)
4(3)
5(4)
1(4)
-8(4)
9(4)
12(4)
-6(4)
-7(4)
-8(5)
4(7)
7(6)
14(5)
9(3)
3(3)
3(4)
-1(3)
-4(4)
-4(3)
-7(4)
1(4)
6(4)
16(4)
-5(4)
3(5)
6(4)
-3(3)
4(3)
11(4)
0(4)
0(5)
12(5)
5(4)
26(6)
3(5)
39(8)
-2(7)
0(6)
C(10F) 50(5)
45(6)
125(11)
-18(7)
6(6)
4(5)
N(2F)
36(4)
25(4)
92(7)
-13(4)
14(4)
-3(3)
___________________________________________________________________________
Table G.3 Bond lengths [Å] for (TpPh,4CN)*2Fe.
__________________________________
Fe(1)-N(1C)
2.043(7)
Fe(1)-N(1F)
2.096(7)
Fe(1)-N(1D)
2.249(6)
Fe(1)-N(1E)
2.247(6)
Fe(1)-N(1B)
2.252(6)
Fe(1)-N(1A)
2.259(6)
B(1)-N(2A)
1.511(12)
B(1)-N(2B)
1.555(10)
B(1)-N(2C)
1.559(11)
B(1)-H(1)
1.07(6)
N(1A)-C(4A)
1.334(10)
N(1A)-N(2A)
1.369(9)
C(1A)-N(2A)
1.361(9)
C(1A)-C(2A)
1.365(11)
C(1A)-H(1A)
0.9500
C(2A)-C(4A)
1.424(11)
C(2A)-C(3A)
1.455(12)
C(3A)-N(3A)
1.134(9)
C(4A)-C(5A)
1.457(12)
C(5A)-C(10A)
1.396(12)
C(5A)-C(6A)
1.403(12)
C(6A)-C(7A)
1.342(11)
C(6A)-H(6A)
0.9500
C(7A)-C(8A)
1.381(13)
C(7A)-H(7A)
0.9500
C(8A)-C(9A)
1.384(14)
C(8A)-H(8A)
0.9500
C(9A)-C(10A)
1.385(13)
C(9A)-H(9A)
0.9500
C(10A)-H(10A)
0.9500
N(1B)-C(4B)
1.341(8)
N(1B)-N(2B)
1.378(8)
C(1B)-N(2B)
1.330(9)
C(1B)-C(2B)
1.394(10)
C(1B)-H(1B)
0.9500
C(2B)-C(3B)
1.406(10)
C(2B)-C(4B)
1.426(11)
C(3B)-N(3B)
1.152(8)
C(4B)-C(5B)
1.473(11)
C(5B)-C(6B)
1.386(10)
C(5B)-C(10B)
1.388(10)
C(6B)-C(7B)
1.377(11)
C(6B)-H(6B)
0.9500
C(7B)-C(8B)
1.367(11)
C(7B)-H(7B)
0.9500
C(8B)-C(9B)
1.417(11)
C(8B)-H(8B)
0.9500
C(9B)-C(10B)
1.364(11)
C(9B)-H(9B)
0.9500
C(10B)-H(10B)
0.9500
N(1C)-C(1C)
1.356(10)
164
N(1C)-N(2C)
C(1C)-C(2C)
C(1C)-H(1C)
C(2C)-C(4C)
C(2C)-C(3C)
C(3C)-N(3C)
C(4C)-N(2C)
C(4C)-C(5C)
C(5C)-C(6C)
C(5C)-C(10C)
C(6C)-C(7C)
C(6C)-H(6C)
C(7C)-C(8C)
C(7C)-H(7C)
C(8C)-C(9C)
C(8C)-H(8C)
C(9C)-C(10C)
C(9C)-H(9C)
C(10C)-H(10C)
B(2)-N(2D)
B(2)-N(2F)
B(2)-N(2E)
B(2)-H(2)
N(1D)-C(4D)
N(1D)-N(2D)
C(1D)-N(2D)
C(1D)-C(2D)
C(1D)-H(1D)
C(2D)-C(3D)
C(2D)-C(4D)
C(3D)-N(3D)
C(4D)-C(5D)
C(5D)-C(10D)
C(5D)-C(6D)
C(6D)-C(7D)
C(6D)-H(6D)
C(7D)-C(8D)
C(7D)-H(7D)
C(8D)-C(9D)
C(8D)-H(8D)
C(9D)-C(10D)
C(9D)-H(9D)
C(10D)-H(10D)
N(1E)-C(4E)
N(1E)-N(2E)
C(1E)-N(2E)
C(1E)-C(2E)
C(1E)-H(1E)
C(2E)-C(4E)
C(2E)-C(3E)
C(3E)-N(3E)
C(4E)-C(5E)
C(5E)-C(10E)
C(5E)-C(6E)
C(6E)-C(7E)
C(6E)-H(6E)
C(7E)-C(8E)
C(7E)-H(7E)
1.361(9)
1.360(11)
0.9500
1.406(11)
1.412(15)
1.153(13)
1.310(11)
1.460(14)
1.313(14)
1.450(13)
1.434(18)
0.9500
1.37(2)
0.9500
1.33(2)
0.9500
1.431(17)
0.9500
0.9500
1.531(12)
1.565(11)
1.571(10)
1.31(7)
1.334(10)
1.373(9)
1.347(9)
1.384(12)
0.9500
1.409(12)
1.425(12)
1.146(9)
1.456(12)
1.391(12)
1.417(12)
1.386(12)
0.9500
1.391(13)
0.9500
1.388(13)
0.9500
1.343(12)
0.9500
0.9500
1.338(8)
1.371(8)
1.321(9)
1.376(10)
0.9500
1.412(11)
1.440(10)
1.149(8)
1.457(11)
1.389(10)
1.402(10)
1.382(11)
0.9500
1.373(10)
0.9500
165
C(8E)-C(9E)
1.385(11)
C(8E)-H(8E)
0.9500
C(9E)-C(10E)
1.384(11)
C(9E)-H(9E)
0.9500
C(10E)-H(10E)
0.9500
N(1F)-C(1F)
1.343(9)
N(1F)-N(2F)
1.368(8)
C(1F)-C(2F)
1.363(11)
C(1F)-H(1F)
0.9500
C(2F)-C(4F)
1.408(10)
C(2F)-C(3F)
1.430(13)
C(3F)-N(3F)
1.146(11)
C(4F)-N(2F)
1.332(10)
C(4F)-C(5F)
1.445(12)
C(5F)-C(6F)
1.346(13)
C(5F)-C(10F)
1.460(13)
C(6F)-C(7F)
1.427(14)
C(6F)-H(6F)
0.9500
C(7F)-C(8F)
1.376(15)
C(7F)-H(7F)
0.9500
C(8F)-C(9F)
1.346(14)
C(8F)-H(8F)
0.9500
C(9F)-C(10F)
1.379(13)
C(9F)-H(9F)
0.9500
C(10F)-H(10F)
0.9500
_____________________________________
Table G.4 Bond angles [°] for (TpPh,4CN)*2Fe.
_________________________________
N(1C)-Fe(1)-N(1F)
179.0(3)
N(1C)-Fe(1)-N(1D)
89.1(3)
N(1F)-Fe(1)-N(1D)
89.9(3)
N(1C)-Fe(1)-N(1E)
91.2(3)
N(1F)-Fe(1)-N(1E)
88.7(3)
N(1D)-Fe(1)-N(1E)
79.3(2)
N(1C)-Fe(1)-N(1B)
88.6(3)
N(1F)-Fe(1)-N(1B)
91.5(3)
N(1D)-Fe(1)-N(1B)
100.1(2)
N(1E)-Fe(1)-N(1B)
179.4(2)
N(1C)-Fe(1)-N(1A)
90.6(3)
N(1F)-Fe(1)-N(1A)
90.4(3)
N(1D)-Fe(1)-N(1A)
179.6(3)
N(1E)-Fe(1)-N(1A)
100.5(2)
N(1B)-Fe(1)-N(1A)
80.1(2)
N(2A)-B(1)-N(2B)
108.6(8)
N(2A)-B(1)-N(2C)
110.1(7)
N(2B)-B(1)-N(2C)
108.3(6)
N(2A)-B(1)-H(1)
108(3)
N(2B)-B(1)-H(1)
109(3)
N(2C)-B(1)-H(1)
113(3)
C(4A)-N(1A)-N(2A)
108.7(7)
C(4A)-N(1A)-Fe(1)
140.5(7)
N(2A)-N(1A)-Fe(1)
110.2(6)
N(2A)-C(1A)-C(2A)
107.4(8)
N(2A)-C(1A)-H(1A)
126.3
C(2A)-C(1A)-H(1A)
126.3
C(1A)-C(2A)-C(4A)
107.3(8)
166
C(1A)-C(2A)-C(3A)
C(4A)-C(2A)-C(3A)
N(3A)-C(3A)-C(2A)
N(1A)-C(4A)-C(2A)
N(1A)-C(4A)-C(5A)
C(2A)-C(4A)-C(5A)
C(10A)-C(5A)-C(6A)
C(10A)-C(5A)-C(4A)
C(6A)-C(5A)-C(4A)
C(7A)-C(6A)-C(5A)
C(7A)-C(6A)-H(6A)
C(5A)-C(6A)-H(6A)
C(6A)-C(7A)-C(8A)
C(6A)-C(7A)-H(7A)
C(8A)-C(7A)-H(7A)
C(7A)-C(8A)-C(9A)
C(7A)-C(8A)-H(8A)
C(9A)-C(8A)-H(8A)
C(10A)-C(9A)-C(8A)
C(10A)-C(9A)-H(9A)
C(8A)-C(9A)-H(9A)
C(9A)-C(10A)-C(5A)
C(9A)-C(10A)-H(10A)
C(5A)-C(10A)-H(10A)
C(1A)-N(2A)-N(1A)
C(1A)-N(2A)-B(1)
N(1A)-N(2A)-B(1)
C(4B)-N(1B)-N(2B)
C(4B)-N(1B)-Fe(1)
N(2B)-N(1B)-Fe(1)
N(2B)-C(1B)-C(2B)
N(2B)-C(1B)-H(1B)
C(2B)-C(1B)-H(1B)
C(1B)-C(2B)-C(3B)
C(1B)-C(2B)-C(4B)
C(3B)-C(2B)-C(4B)
N(3B)-C(3B)-C(2B)
N(1B)-C(4B)-C(2B)
N(1B)-C(4B)-C(5B)
C(2B)-C(4B)-C(5B)
C(6B)-C(5B)-C(10B)
C(6B)-C(5B)-C(4B)
C(10B)-C(5B)-C(4B)
C(7B)-C(6B)-C(5B)
C(7B)-C(6B)-H(6B)
C(5B)-C(6B)-H(6B)
C(8B)-C(7B)-C(6B)
C(8B)-C(7B)-H(7B)
C(6B)-C(7B)-H(7B)
C(7B)-C(8B)-C(9B)
C(7B)-C(8B)-H(8B)
C(9B)-C(8B)-H(8B)
C(10B)-C(9B)-C(8B)
C(10B)-C(9B)-H(9B)
C(8B)-C(9B)-H(9B)
C(9B)-C(10B)-C(5B)
C(9B)-C(10B)-H(10B)
C(5B)-C(10B)-H(10B)
124.7(9)
128.0(11)
176.7(10)
107.3(10)
125.8(8)
127.0(9)
116.5(11)
119.9(10)
123.6(9)
122.2(10)
118.9
118.9
120.3(10)
119.9
119.9
120.5(12)
119.8
119.8
118.3(11)
120.8
120.8
122.2(11)
118.9
118.9
109.2(8)
125.0(9)
125.2(7)
106.5(6)
140.4(6)
113.2(4)
109.1(8)
125.4
125.4
126.8(9)
104.0(7)
129.1(8)
178.9(10)
110.0(7)
123.3(8)
126.5(6)
119.2(8)
121.4(7)
119.4(7)
120.0(7)
120.0
120.0
121.8(8)
119.1
119.1
117.9(9)
121.0
121.0
120.5(8)
119.8
119.8
120.6(8)
119.7
119.7
167
C(1B)-N(2B)-N(1B)
C(1B)-N(2B)-B(1)
N(1B)-N(2B)-B(1)
C(1C)-N(1C)-N(2C)
C(1C)-N(1C)-Fe(1)
N(2C)-N(1C)-Fe(1)
N(1C)-C(1C)-C(2C)
N(1C)-C(1C)-H(1C)
C(2C)-C(1C)-H(1C)
C(1C)-C(2C)-C(4C)
C(1C)-C(2C)-C(3C)
C(4C)-C(2C)-C(3C)
N(3C)-C(3C)-C(2C)
N(2C)-C(4C)-C(2C)
N(2C)-C(4C)-C(5C)
C(2C)-C(4C)-C(5C)
C(6C)-C(5C)-C(10C)
C(6C)-C(5C)-C(4C)
C(10C)-C(5C)-C(4C)
C(5C)-C(6C)-C(7C)
C(5C)-C(6C)-H(6C)
C(7C)-C(6C)-H(6C)
C(8C)-C(7C)-C(6C)
C(8C)-C(7C)-H(7C)
C(6C)-C(7C)-H(7C)
C(9C)-C(8C)-C(7C)
C(9C)-C(8C)-H(8C)
C(7C)-C(8C)-H(8C)
C(8C)-C(9C)-C(10C)
C(8C)-C(9C)-H(9C)
C(10C)-C(9C)-H(9C)
C(9C)-C(10C)-C(5C)
C(9C)-C(10C)-H(10C)
C(5C)-C(10C)-H(10C)
C(4C)-N(2C)-N(1C)
C(4C)-N(2C)-B(1)
N(1C)-N(2C)-B(1)
N(2D)-B(2)-N(2F)
N(2D)-B(2)-N(2E)
N(2F)-B(2)-N(2E)
N(2D)-B(2)-H(2)
N(2F)-B(2)-H(2)
N(2E)-B(2)-H(2)
C(4D)-N(1D)-N(2D)
C(4D)-N(1D)-Fe(1)
N(2D)-N(1D)-Fe(1)
N(2D)-C(1D)-C(2D)
N(2D)-C(1D)-H(1D)
C(2D)-C(1D)-H(1D)
C(1D)-C(2D)-C(3D)
C(1D)-C(2D)-C(4D)
C(3D)-C(2D)-C(4D)
N(3D)-C(3D)-C(2D)
N(1D)-C(4D)-C(2D)
N(1D)-C(4D)-C(5D)
C(2D)-C(4D)-C(5D)
C(10D)-C(5D)-C(6D)
C(10D)-C(5D)-C(4D)
110.4(6)
127.3(8)
121.9(7)
103.1(8)
134.5(7)
122.4(6)
112.1(8)
123.9
123.9
104.8(9)
126.9(10)
128.3(12)
176.8(13)
106.6(9)
127.0(9)
126.4(11)
118.5(12)
121.5(11)
120.0(11)
121.3(14)
119.3
119.4
122.0(16)
119.0
119.0
117(2)
121.5
121.5
123.8(18)
118.1
118.1
117.3(13)
121.3
121.4
113.4(7)
129.5(9)
117.1(9)
107.7(7)
108.3(8)
110.1(6)
115(3)
101(3)
114(3)
106.8(7)
140.6(7)
112.0(6)
108.8(9)
125.6
125.6
127.1(9)
104.3(8)
128.6(11)
177.4(11)
110.1(10)
123.9(9)
125.8(9)
120.0(11)
118.4(10)
168
C(6D)-C(5D)-C(4D)
C(7D)-C(6D)-C(5D)
C(7D)-C(6D)-H(6D)
C(5D)-C(6D)-H(6D)
C(6D)-C(7D)-C(8D)
C(6D)-C(7D)-H(7D)
C(8D)-C(7D)-H(7D)
C(7D)-C(8D)-C(9D)
C(7D)-C(8D)-H(8D)
C(9D)-C(8D)-H(8D)
C(10D)-C(9D)-C(8D)
C(10D)-C(9D)-H(9D)
C(8D)-C(9D)-H(9D)
C(9D)-C(10D)-C(5D)
C(9D)-C(10D)-H(10D)
C(5D)-C(10D)-H(10D)
C(1D)-N(2D)-N(1D)
C(1D)-N(2D)-B(2)
N(1D)-N(2D)-B(2)
C(4E)-N(1E)-N(2E)
C(4E)-N(1E)-Fe(1)
N(2E)-N(1E)-Fe(1)
N(2E)-C(1E)-C(2E)
N(2E)-C(1E)-H(1E)
C(2E)-C(1E)-H(1E)
C(1E)-C(2E)-C(4E)
C(1E)-C(2E)-C(3E)
C(4E)-C(2E)-C(3E)
N(3E)-C(3E)-C(2E)
N(1E)-C(4E)-C(2E)
N(1E)-C(4E)-C(5E)
C(2E)-C(4E)-C(5E)
C(10E)-C(5E)-C(6E)
C(10E)-C(5E)-C(4E)
C(6E)-C(5E)-C(4E)
C(7E)-C(6E)-C(5E)
C(7E)-C(6E)-H(6E)
C(5E)-C(6E)-H(6E)
C(8E)-C(7E)-C(6E)
C(8E)-C(7E)-H(7E)
C(6E)-C(7E)-H(7E)
C(7E)-C(8E)-C(9E)
C(7E)-C(8E)-H(8E)
C(9E)-C(8E)-H(8E)
C(10E)-C(9E)-C(8E)
C(10E)-C(9E)-H(9E)
C(8E)-C(9E)-H(9E)
C(9E)-C(10E)-C(5E)
C(9E)-C(10E)-H(10E)
C(5E)-C(10E)-H(10E)
C(1E)-N(2E)-N(1E)
C(1E)-N(2E)-B(2)
N(1E)-N(2E)-B(2)
C(1F)-N(1F)-N(2F)
C(1F)-N(1F)-Fe(1)
N(2F)-N(1F)-Fe(1)
N(1F)-C(1F)-C(2F)
N(1F)-C(1F)-H(1F)
121.6(10)
119.6(10)
120.2
120.2
119.5(11)
120.2
120.2
119.0(12)
120.5
120.5
123.0(12)
118.5
118.5
118.8(11)
120.6
120.6
110.0(8)
125.0(9)
124.5(7)
106.7(6)
139.8(6)
113.3(4)
107.8(8)
126.1
126.1
106.2(7)
126.3(9)
127.4(7)
178.4(10)
108.4(7)
123.2(8)
128.2(7)
117.9(8)
122.2(7)
119.9(7)
121.3(8)
119.4
119.4
119.8(8)
120.1
120.1
120.0(9)
120.0
120.0
120.3(8)
119.9
119.9
120.7(8)
119.6
119.6
110.9(6)
125.4(7)
122.5(7)
105.1(7)
132.4(7)
122.2(5)
110.8(8)
124.6
169
C(2F)-C(1F)-H(1F)
124.6
C(1F)-C(2F)-C(4F)
106.4(8)
C(1F)-C(2F)-C(3F)
128.1(8)
C(4F)-C(2F)-C(3F)
125.2(9)
N(3F)-C(3F)-C(2F)
177.2(13)
N(2F)-C(4F)-C(2F)
105.6(8)
N(2F)-C(4F)-C(5F)
126.0(8)
C(2F)-C(4F)-C(5F)
128.3(9)
C(6F)-C(5F)-C(4F)
120.3(11)
C(6F)-C(5F)-C(10F)
118.4(11)
C(4F)-C(5F)-C(10F)
121.3(11)
C(5F)-C(6F)-C(7F)
121.7(12)
C(5F)-C(6F)-H(6F)
119.2
C(7F)-C(6F)-H(6F)
119.2
C(8F)-C(7F)-C(6F)
117.1(12)
C(8F)-C(7F)-H(7F)
121.4
C(6F)-C(7F)-H(7F)
121.4
C(9F)-C(8F)-C(7F)
123.7(13)
C(9F)-C(8F)-H(8F)
118.2
C(7F)-C(8F)-H(8F)
118.2
C(8F)-C(9F)-C(10F)
119.5(12)
C(8F)-C(9F)-H(9F)
120.2
C(10F)-C(9F)-H(9F)
120.2
C(9F)-C(10F)-C(5F)
119.5(11)
C(9F)-C(10F)-H(10F)
120.2
C(5F)-C(10F)-H(10F)
120.2
C(4F)-N(2F)-N(1F)
112.1(7)
C(4F)-N(2F)-B(2)
131.1(8)
N(1F)-N(2F)-B(2)
116.8(7)
___________________________________
Symmetry transformations used to generate equivalent atoms:
170
Table H.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for [TpPh,4CNCu]n. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Cu(1)
3974(1)
3309(1)
3592(1)
28(1)
N(7)
5628(7)
3516(3)
1574(5)
25(2)
C(14)
7618(10)
5031(4)
5179(7)
36(3)
N(5)
5087(7)
4032(3)
4013(5)
23(2)
N(4)
5569(7)
4285(3)
3021(5)
24(2)
C(23)
5819(8)
2639(4)
1783(7)
22(2)
C(21)
6531(7)
3351(4)
776(6)
27(2)
N(1)
3442(7)
4097(3)
1703(5)
23(2)
C(13)
5750(9)
4281(4)
4918(7)
23(2)
C(15)
5390(9)
4158(4)
6124(7)
27(2)
C(22)
6683
2803
879
29(2)
N(8)
5196(7)
3075(3)
2219(6)
24(2)
N(9)
3193(7)
2835(3)
4664(6)
26(2)
N(2)
2738(7)
3707(3)
2356(5)
26(2)
C(24)
5507(9)
2083(4)
2198(7)
28(2)
C(2)
1173(9)
4265(4)
1433(8)
29(2)
N(3)
-1220(8)
4624(3)
755(7)
40(2)
C(30)
2538(9)
2544(4)
5206(7)
22(2)
C(3)
1365(9)
3810(4)
2177(8)
32(2)
C(18)
4665(10)
4009(4)
8431(8)
37(3)
C(16)
4090(9)
3946(4)
6374(8)
34(2)
C(20)
6308(9)
4285(4)
7060(8)
37(3)
C(17)
3733(10)
3877(4)
7520(7)
33(2)
C(11)
6522(8)
4662(3)
3323(7)
24(2)
C(25)
5305(9)
1979(4)
3355(8)
38(3)
C(5)
358(9)
3447(4)
2689(7)
29(2)
C(19)
5932(10)
4205(4)
8201(8)
39(3)
C(4)
-127(11)
4476(4)
1036(8)
37(3)
N(6)
8390
5304
5686
51(3)
C(1)
2495(9)
4429(4)
1160(7)
31(2)
C(7)
-346(13)
2533(5)
3196(9)
57(3)
C(10)
-770(9)
3644(5)
3263(8)
44(3)
C(29)
5412(8)
1651(4)
1430(7)
32(2)
C(6)
580(10)
2882(4)
2641(9)
47(3)
C(12)
6681(9)
4677(4)
4536(7)
28(2)
C(28)
5103(10)
1123(4)
1778(9)
46(3)
C(26)
4989(10)
1461(5)
3764(9)
47(3)
C(9)
-1657(10)
3287(6)
3789(8)
52(3)
C(27)
4892(10)
1036(4)
2964(10)
48(3)
B(1)
5071(11)
4106(5)
1792(9)
27(3)
C(8)
-1457(11)
2747(6)
3780(11)
64(4)
___________________________________________________________________________
Table H.2 Anisotropic displacement parameters (Å2 x 103) for [TpPh,4CNCu]n. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Cu(1)
28(1)
30(1)
27(1)
5(1)
4(1)
-1(1)
N(7)
27(4)
24(5)
25(4)
3(3)
-1(3)
9(3)
C(14)
44(7)
44(7)
21(5)
11(5)
5(5)
-2(5)
171
N(5)
28(4)
24(5)
16(4)
1(3)
1(3)
-2(4)
N(4)
26(4)
24(5)
22(4)
6(3)
5(3)
3(4)
C(23)
24(5)
21(6)
22(5)
3(4)
-6(4)
3(4)
C(21)
18(4)
42(6)
20(4)
11(5)
5(3)
4(5)
N(1)
28(4)
16(5)
26(4)
-5(3)
0(3)
5(3)
C(13)
30(5)
21(6)
18(4)
-3(4)
0(4)
-1(4)
C(15)
33(5)
23(6)
23(5)
4(4)
-7(4)
-3(5)
C(22)
24(5)
29(7)
35(5)
0(5)
3(4)
10(5)
N(8)
19(4)
26(5)
26(4)
2(4)
-7(3)
0(4)
N(9)
33(5)
17(5)
29(4)
2(4)
2(3)
-4(4)
N(2)
31(4)
21(5)
26(4)
-2(3)
0(3)
-1(4)
C(24)
31(6)
25(6)
26(5)
3(5)
0(4)
1(5)
C(2)
23(5)
35(6)
27(4)
-17(5)
-8(4)
14(5)
N(3)
33(5)
36(6)
50(5)
9(4)
-4(4)
11(4)
C(30)
42(6)
11(5)
14(4)
-6(4)
2(4)
11(4)
C(3)
27(5)
27(7)
41(6)
1(5)
-7(4)
2(5)
C(18)
47(7)
40(7)
22(5)
-3(5)
-5(5)
6(5)
C(16)
28(5)
42(7)
32(5)
7(5)
-7(4)
2(5)
C(20)
29(5)
36(7)
46(6)
-7(5)
-9(5)
-17(5)
C(17)
39(6)
39(7)
22(5)
-3(4)
0(4)
-4(5)
C(11)
20(5)
17(6)
36(5)
2(4)
3(4)
-9(4)
C(25)
39(6)
35(7)
41(6)
12(5)
15(5)
8(5)
C(5)
29(5)
24(7)
32(5)
3(4)
-11(4)
4(4)
C(19)
46(7)
39(7)
30(5)
20(5)
-16(5)
-6(6)
C(4)
39(7)
37(7)
34(6)
-7(5)
0(5)
0(5)
N(6)
53(6)
64(7)
36(5)
-8(5)
-3(4)
-17(5)
C(1)
35(6)
28(6)
29(5)
7(5)
-7(4)
12(5)
C(7)
61(8)
32(8)
74(9)
18(6)
-31(7)
-17(7)
C(10)
33(6)
50(8)
50(7)
11(6)
5(5)
-2(6)
C(29)
37(5)
18(5)
42(5)
0(5)
0(4)
9(5)
C(6)
26(6)
34(7)
81(8)
-1(6)
6(6)
-9(5)
C(12)
24(5)
37(7)
23(5)
-13(5)
-10(4)
5(5)
C(28)
37(6)
36(8)
65(8)
-7(6)
-7(5)
-4(5)
C(26)
50(7)
59(9)
31(5)
22(6)
4(5)
10(6)
C(9)
34(6)
65(9)
56(7)
5(8)
-9(5)
2(7)
C(27)
35(6)
31(7)
77(8)
20(6)
-1(6)
1(5)
B(1)
24(6)
36(8)
23(6)
4(5)
2(5)
6(5)
C(8)
29(7)
71(11)
91(10)
23(8)
-21(6)
-21(7)
___________________________________________________________________________
Table H.3 Bond lengths [Å] for [TpPh,4CNCu]n.
___________________________________
Cu(1)-N(9)
1.863(7)
Cu(1)-N(2)
2.044(7)
Cu(1)-N(8)
2.079(7)
Cu(1)-N(5)
2.100(7)
N(7)-C(21)
1.345(9)
N(7)-N(8)
1.374(8)
N(7)-B(1)
1.556(12)
C(14)-N(6)
1.132(10)
C(14)-C(12)
1.423(12)
N(5)-C(13)
1.334(9)
N(5)-N(4)
1.387(8)
N(4)-C(11)
1.327(9)
N(4)-B(1)
1.527(11)
C(23)-N(8)
1.325(10)
C(23)-C(22)
1.411(8)
172
C(23)-C(24)
1.468(11)
C(21)-C(22)
1.344(10)
N(1)-C(1)
1.344(9)
N(1)-N(2)
1.399(9)
N(1)-B(1)
1.556(12)
C(13)-C(12)
1.394(11)
C(13)-C(15)
1.468(10)
C(15)-C(16)
1.386(11)
C(15)-C(20)
1.388(11)
C(22)-C(30)#1
1.424(9)
N(9)-C(30)
1.147(9)
N(2)-C(3)
1.342(10)
C(24)-C(29)
1.369(11)
C(24)-C(25)
1.370(11)
C(2)-C(1)
1.375(12)
C(2)-C(4)
1.400(12)
C(2)-C(3)
1.401(11)
N(3)-C(4)
1.137(11)
C(30)-C(22)#2
1.424(9)
C(3)-C(5)
1.449(12)
C(18)-C(19)
1.338(12)
C(18)-C(17)
1.378(11)
C(16)-C(17)
1.380(10)
C(20)-C(19)
1.384(11)
C(11)-C(12)
1.390(10)
C(25)-C(26)
1.381(12)
C(5)-C(10)
1.374(11)
C(5)-C(6)
1.391(12)
C(7)-C(8)
1.382(14)
C(7)-C(6)
1.399(13)
C(10)-C(9)
1.372(12)
C(29)-C(28)
1.380(12)
C(28)-C(27)
1.396(12)
C(26)-C(27)
1.381(13)
C(9)-C(8)
1.327(15)
____________________________________
Table H.4 Bond angles [°] for [TpPh,4CNCu]n.
____________________________________
N(9)-Cu(1)-N(2)
120.7(3)
N(9)-Cu(1)-N(8)
125.8(3)
N(2)-Cu(1)-N(8)
86.2(3)
N(9)-Cu(1)-N(5)
125.5(3)
N(2)-Cu(1)-N(5)
91.9(3)
N(8)-Cu(1)-N(5)
96.1(3)
C(21)-N(7)-N(8)
110.5(7)
C(21)-N(7)-B(1)
128.2(7)
N(8)-N(7)-B(1)
121.3(6)
N(6)-C(14)-C(12)
178.2(10)
C(13)-N(5)-N(4)
105.7(7)
C(13)-N(5)-Cu(1)
140.9(6)
N(4)-N(5)-Cu(1)
111.5(5)
C(11)-N(4)-N(5)
110.0(7)
C(11)-N(4)-B(1)
128.1(7)
N(5)-N(4)-B(1)
121.8(7)
N(8)-C(23)-C(22)
109.7(7)
N(8)-C(23)-C(24)
121.0(8)
173
C(22)-C(23)-C(24)
C(22)-C(21)-N(7)
C(1)-N(1)-N(2)
C(1)-N(1)-B(1)
N(2)-N(1)-B(1)
N(5)-C(13)-C(12)
N(5)-C(13)-C(15)
C(12)-C(13)-C(15)
C(16)-C(15)-C(20)
C(16)-C(15)-C(13)
C(20)-C(15)-C(13)
C(21)-C(22)-C(23)
C(21)-C(22)-C(30)#1
C(23)-C(22)-C(30)#1
C(23)-N(8)-N(7)
C(23)-N(8)-Cu(1)
N(7)-N(8)-Cu(1)
C(30)-N(9)-Cu(1)
C(3)-N(2)-N(1)
C(3)-N(2)-Cu(1)
N(1)-N(2)-Cu(1)
C(29)-C(24)-C(25)
C(29)-C(24)-C(23)
C(25)-C(24)-C(23)
C(1)-C(2)-C(4)
C(1)-C(2)-C(3)
C(4)-C(2)-C(3)
N(9)-C(30)-C(22)#2
N(2)-C(3)-C(2)
N(2)-C(3)-C(5)
C(2)-C(3)-C(5)
C(19)-C(18)-C(17)
C(17)-C(16)-C(15)
C(19)-C(20)-C(15)
C(18)-C(17)-C(16)
N(4)-C(11)-C(12)
C(24)-C(25)-C(26)
C(10)-C(5)-C(6)
C(10)-C(5)-C(3)
C(6)-C(5)-C(3)
C(18)-C(19)-C(20)
N(3)-C(4)-C(2)
N(1)-C(1)-C(2)
C(8)-C(7)-C(6)
C(9)-C(10)-C(5)
C(24)-C(29)-C(28)
C(5)-C(6)-C(7)
C(11)-C(12)-C(13)
C(11)-C(12)-C(14)
C(13)-C(12)-C(14)
C(29)-C(28)-C(27)
C(27)-C(26)-C(25)
C(8)-C(9)-C(10)
C(26)-C(27)-C(28)
N(4)-B(1)-N(1)
N(4)-B(1)-N(7)
N(1)-B(1)-N(7)
C(9)-C(8)-C(7)
129.2(7)
107.9(6)
108.9(7)
132.2(8)
118.7(7)
110.9(7)
120.8(8)
128.1(8)
117.7(8)
121.4(8)
120.8(8)
106.2(5)
127.0(4)
126.8(5)
105.7(7)
141.3(6)
112.7(5)
169.5(7)
106.4(7)
136.4(6)
114.4(5)
118.1(9)
120.5(8)
121.4(9)
129.1(9)
105.7(8)
125.1(9)
177.8(8)
109.9(8)
119.1(8)
130.9(8)
119.5(9)
120.2(8)
120.9(9)
120.8(9)
108.7(8)
122.5(10)
119.1(9)
122.1(9)
118.7(9)
120.8(9)
175.8(11)
109.1(8)
120.5(11)
120.2(11)
122.4(9)
118.8(10)
104.6(8)
124.7(8)
130.6(8)
117.6(10)
117.8(9)
122.1(11)
121.5(10)
109.4(7)
108.4(7)
108.9(8)
119.3(11)
174
__________________________________
Symmetry transformations used to generate equivalent atoms:
#1 x+1/2,-y+1/2,z-1/2
#2 x-1/2,-y+1/2,z+1/2
175
Table I.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x
103) for [Tpt-Bu,4CNCu]n. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
C(25)
2036(8)
9032(8)
9562(4)
32(3)
C(15)
1455(7)
11125(9)
11850(5)
27(3)
C(14)
1098(7)
9504(9)
12759(5)
41(4)
C(5)
5012(11)
10591(13)
11381(8)
51(5)
C(24)
2236(9)
6748(11)
9734(6)
33(4)
N(7)
6544(8)
8415(8)
11831(5)
62(4)
N(8)
764(7)
9482(8)
13121(5)
53(3)
C(16)
2181(10)
11696(11)
11902(7)
51(4)
C(8)
4938(9)
10674(10)
10747(5)
62(5)
C(18)
977(10)
11402(10)
12271(6)
72(5)
C(6)
5907(10)
10677(12)
11694(9)
74(6)
C(7)
4573(13)
11364(12)
11591(8)
42(5)
B
2933(9)
8267(10)
11576(5)
27(4)
C(12)
1561(7)
9468(9)
12326(5)
34(3)
C(11)
1985(8)
8726(10)
12233(5)
33(4)
C(27)
2784(8)
9521(8)
9456(5)
59(5)
C(28)
1698(11)
8442(9)
9057(5)
75(6)
N(5)
2616(5)
8093(6)
10951(4)
27(3)
N(9)
2794(7)
11162(8)
10573(4)
24(3)
N(4)
2210(5)
9780(8)
11635(3)
26(4)
N(3)
2374(6)
8892(8)
11824(4)
26(3)
C(26)
1388(6)
9780(10)
9634(4)
76(8)
C(17)
959(6)
11185(10)
11280(4)
60(5)
C(13)
1724(6)
10095(19)
11948(4)
26(3)
N(6)
2456(7)
8809(8)
10576(4)
19(3)
C(101)
-440(9)
11513(11)
9077(7)
67(5)
N(101)
476(13)
12385(19)
9844(10)
200(16)
C(102)
72(16)
11959(16)
9525(9)
101(7)
Cu
2797(1)
9977(8)
10994(1)
33(1)
N(1)
3774(6)
8692(7)
11632(4)
21(2)
N(2)
3875(6)
9566(6)
11456(4)
32(3)
C(22)
2320(8)
7478(9)
10119(4)
24(3)
C(21)
2534(7)
7318(8)
10678(5)
30(3)
C(1)
4461(11)
8305(11)
11788(6)
28(4)
C(2)
5093(9)
8905(11)
11719(6)
29(3)
C(3)
4665(8)
9695(9)
11519(6)
30(5)
C(4)
5872(9)
8650(13)
11770(7)
53(5)
C(23)
2266(9)
8430(10)
10077(6)
33(4)
___________________________________________________________________________
Table I.2 Anisotropic displacement parameters (Å2 x 103) for [Tpt-Bu,4CNCu]n. The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
C(25)
56(9)
19(7)
20(6)
7(6)
4(6)
4(7)
C(15)
24(7)
37(9)
21(7)
-3(6)
8(6)
15(7)
C(14)
41(8)
57(10)
29(7)
16(7)
17(7)
3(7)
C(5)
48(13)
50(12)
56(12)
-9(10)
12(10)
-10(10)
C(24)
38(10)
33(10)
27(9)
-17(8)
8(8)
-6(9)
N(7)
48(9)
43(9)
91(10)
10(8)
1(8)
12(7)
176
N(8)
71(9)
53(8)
42(7)
7(6)
27(7)
1(7)
C(16)
61(12)
27(10)
64(12)
-20(9)
10(9)
-2(10)
C(8)
75(11)
72(12)
47(9)
34(8)
31(9)
-3(9)
C(18)
123(15)
45(10)
63(10)
19(8)
56(11)
45(10)
C(6)
58(13)
39(11)
130(18)
-1(12)
34(12)
-2(11)
C(7)
43(13)
34(13)
49(14)
-4(9)
8(11)
-5(11)
B
55(11)
11(8)
17(8)
0(6)
13(7)
6(8)
C(11)
39(9)
38(9)
28(8)
-5(7)
23(7)
-12(7)
C(27)
85(12)
52(10)
52(9)
20(7)
44(9)
16(9)
C(28)
169(19)
30(10)
23(8)
17(7)
12(10)
1(11)
N(5)
29(7)
9(5)
43(6)
7(5)
5(5)
12(5)
N(4)
32(5)
28(12)
19(5)
7(4)
8(4)
5(5)
N(3)
35(7)
19(7)
26(6)
11(5)
13(5)
6(6)
C(26)
58(9)
110(20)
60(9)
47(12)
7(7)
10(12)
C(17)
68(12)
32(10)
88(13)
-6(9)
31(11)
5(9)
C(101) 56(12)
68(14)
67(12)
4(10)
-12(10)
-20(10)
N(101) 137(19)
260(30)
170(20)
-160(20)
-54(17)
20(18)
C(102) 130(20)
82(17)
103(18)
14(15)
45(17)
12(16)
Cu
35(1)
34(1)
33(1)
-21(3)
13(1)
-9(4)
N(1)
17(6)
15(6)
30(6)
-1(4)
2(5)
9(5)
N(2)
33(6)
24(6)
43(6)
9(5)
17(5)
-1(5)
C(22)
47(10)
12(6)
17(8)
-1(6)
17(6)
9(7)
C(21)
38(8)
6(7)
47(8)
-9(6)
10(7)
4(6)
C(1)
36(10)
27(11)
25(9)
6(7)
15(7)
-2(9)
C(2)
18(8)
30(10)
38(9)
-2(7)
2(7)
6(8)
C(3)
23(9)
37(14)
31(8)
6(6)
5(6)
5(7)
C(4)
20(10)
58(12)
77(12)
-14(11)
0(8)
10(10)
C(23)
31(9)
35(10)
40(10)
-9(8)
21(8)
-4(8)
___________________________________________________________________________
Table I.3 Bond lengths [Å] for [Tpt-Bu,4CNCu]n.
___________________________________
C(25)-C(27)
1.523(17)
C(25)-C(23)
1.525(18)
C(25)-C(28)
1.527(17)
C(25)-C(26)
1.585(16)
C(15)-C(16)
1.476(19)
C(15)-C(18)
1.480(15)
C(15)-C(17)
1.489(15)
C(15)-C(13)
1.58(3)
C(14)-N(8)
1.136(13)
C(14)-C(12)
1.430(15)
C(5)-C(7)
1.50(2)
C(5)-C(3)
1.503(19)
C(5)-C(8)
1.53(2)
C(5)-C(6)
1.57(3)
C(24)-N(9)#1
1.134(16)
C(24)-C(22)
1.410(19)
N(7)-C(4)
1.176(17)
B-N(3)
1.524(16)
B-N(1)
1.540(17)
B-N(5)
1.541(16)
C(12)-C(11)
1.346(18)
C(12)-C(13)
1.37(2)
C(11)-N(3)
1.318(14)
N(5)-C(21)
1.309(13)
N(5)-N(6)
1.384(13)
177
N(9)-C(24)#2
1.134(16)
N(9)-Cu
2.016(16)
N(4)-C(13)
1.311(15)
N(4)-N(3)
1.390(14)
N(4)-Cu
2.025(8)
N(6)-C(23)
1.323(18)
N(6)-Cu
2.017(15)
C(101)-C(102)
1.42(3)
N(101)-C(102)
1.13(3)
Cu-N(2)
2.054(11)
N(1)-C(1)
1.29(2)
N(1)-N(2)
1.370(12)
N(2)-C(3)
1.335(16)
C(22)-C(21)
1.367(16)
C(22)-C(23)
1.399(19)
C(1)-C(2)
1.42(2)
C(2)-C(4)
1.36(2)
C(2)-C(3)
1.40(2)
___________________________________
Table I.4 Bond angles [°] for [Tpt-Bu,4CNCu]n.
__________________________________
C(27)-C(25)-C(23)
108.5(11)
C(27)-C(25)-C(28)
109.2(10)
C(23)-C(25)-C(28)
109.8(11)
C(27)-C(25)-C(26)
108.2(10)
C(23)-C(25)-C(26)
112.6(9)
C(28)-C(25)-C(26)
108.4(10)
C(16)-C(15)-C(18)
110.0(13)
C(16)-C(15)-C(17)
111.4(11)
C(18)-C(15)-C(17)
110.1(11)
C(16)-C(15)-C(13)
108.4(11)
C(18)-C(15)-C(13)
109.7(10)
C(17)-C(15)-C(13)
107.2(10)
N(8)-C(14)-C(12)
175.1(14)
C(7)-C(5)-C(3)
109.9(12)
C(7)-C(5)-C(8)
109.5(15)
C(3)-C(5)-C(8)
109.5(16)
C(7)-C(5)-C(6)
105.8(17)
C(3)-C(5)-C(6)
110.2(15)
C(8)-C(5)-C(6)
111.9(14)
N(9)#1-C(24)-C(22)
176.9(17)
N(3)-B-N(1)
111.0(10)
N(3)-B-N(5)
111.4(11)
N(1)-B-N(5)
107.6(9)
C(11)-C(12)-C(13)
104.2(13)
C(11)-C(12)-C(14)
122.6(12)
C(13)-C(12)-C(14)
133.1(14)
N(3)-C(11)-C(12)
109.8(13)
C(21)-N(5)-N(6)
109.4(10)
C(21)-N(5)-B
129.0(10)
N(6)-N(5)-B
121.2(10)
C(24)#2-N(9)-Cu
169.5(12)
C(13)-N(4)-N(3)
104.1(13)
C(13)-N(4)-Cu
148.8(14)
N(3)-N(4)-Cu
107.0(7)
C(11)-N(3)-N(4)
109.0(10)
178
C(11)-N(3)-B
128.9(13)
N(4)-N(3)-B
122.0(9)
N(4)-C(13)-C(12)
113(2)
N(4)-C(13)-C(15)
116.3(14)
C(12)-C(13)-C(15)
130.8(12)
C(23)-N(6)-N(5)
105.9(11)
C(23)-N(6)-Cu
144.9(10)
N(5)-N(6)-Cu
107.8(8)
N(101)-C(102)-C(101)
173(3)
N(9)-Cu-N(6)
119.9(3)
N(9)-Cu-N(4)
124.1(6)
N(6)-Cu-N(4)
97.7(6)
N(9)-Cu-N(2)
116.7(5)
N(6)-Cu-N(2)
99.9(6)
N(4)-Cu-N(2)
92.9(4)
C(1)-N(1)-N(2)
110.1(11)
C(1)-N(1)-B
128.5(12)
N(2)-N(1)-B
121.1(10)
C(3)-N(2)-N(1)
106.1(10)
C(3)-N(2)-Cu
142.7(9)
N(1)-N(2)-Cu
107.1(8)
C(21)-C(22)-C(23)
104.2(12)
C(21)-C(22)-C(24)
120.7(12)
C(23)-C(22)-C(24)
135.1(13)
N(5)-C(21)-C(22)
110.0(11)
N(1)-C(1)-C(2)
110.8(14)
C(4)-C(2)-C(3)
133.8(18)
C(4)-C(2)-C(1)
124.3(16)
C(3)-C(2)-C(1)
101.3(13)
N(2)-C(3)-C(2)
111.6(12)
N(2)-C(3)-C(5)
121.8(12)
C(2)-C(3)-C(5)
126.6(14)
N(7)-C(4)-C(2)
178(2)
N(6)-C(23)-C(22)
110.5(13)
N(6)-C(23)-C(25)
119.8(12)
C(22)-C(23)-C(25)
129.7(13)
__________________________________
Symmetry transformations used to generate equivalent atoms:
#1 -x+1/2,y-1/2,-z+2
#2 -x+1/2,y+1/2,-z+2
179
Table J.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x
103) for TpPhCu(NO3). U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Cu(1)
7092(1)
2178(1)
4652(1)
50(1)
O(2)
9282(5)
2206(3)
4926(2)
56(1)
N(2)
4983(6)
2340(3)
4519(3)
51(1)
N(3)
5745(6)
618(3)
4037(3)
50(1)
N(1)
4154(6)
1923(3)
3943(3)
56(1)
N(6)
6902(6)
2351(3)
3478(3)
51(1)
O(1)
8013(6)
3215(3)
5270(3)
71(1)
N(7)
9273(8)
2919(4)
5284(3)
60(2)
N(4)
6799(6)
891(3)
4619(3)
49(1)
N(5)
5901(6)
1764(3)
3106(3)
51(1)
C(27)
10710(9)
338(6)
6911(4)
78(2)
O(3)
10410(6)
3269(4)
5584(3)
92(2)
C(23)
7391(8)
184(4)
5001(3)
49(2)
C(4)
4615(9)
3345(5)
5489(4)
65(2)
C(24)
8513(7)
235(4)
5660(3)
47(2)
C(19)
8654(8)
3943(4)
3722(3)
60(2)
C(13)
7649(8)
2649(4)
2993(3)
51(2)
C(2)
2675(8)
2729(5)
4413(4)
67(2)
C(1)
2743(7)
2153(5)
3862(4)
64(2)
C(3)
4079(8)
2852(4)
4809(3)
55(2)
C(14)
8734(7)
3342(4)
3196(3)
52(2)
C(22)
6729(8)
-548(4)
4639(4)
64(2)
C(25)
9582(8)
-395(4)
5828(3)
58(2)
C(7)
5708(13)
4273(9)
6740(7)
127(4)
C(12)
7176(8)
2235(4)
2330(3)
62(2)
C(29)
8561(9)
921(4)
6157(3)
63(2)
C(11)
6081(8)
1685(4)
2412(3)
62(2)
C(21)
5712(8)
-256(4)
4047(4)
63(2)
C(18)
9677(10)
4599(5)
3892(4)
78(2)
C(28)
9657(10)
966(5)
6778(4)
75(2)
C(9)
5595(9)
2986(5)
6066(4)
76(2)
C(15)
9857(9)
3424(5)
2816(4)
67(2)
C(26)
10674(9)
-344(5)
6450(4)
73(2)
B(1)
4875(9)
1264(5)
3502(4)
54(2)
C(17)
10800(10)
4670(5)
3521(5)
86(3)
C(16)
10858(9)
4091(6)
2989(5)
82(2)
C(6)
4739(13)
4646(8)
6202(8)
142(5)
C(8)
6152(11)
3446(7)
6700(5)
101(3)
C(5)
4175(11)
4193(7)
5553(6)
118(4)
___________________________________________________________________________
Table J.2 Anisotropic displacement parameters (Å2 x 103) for TpPhCu(NO3). The anisotropic
displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Cu(1)
50(1)
48(1)
53(1)
-5(1)
12(1)
-1(1)
O(2)
57(3)
45(2)
66(3)
-6(2)
13(2)
0(3)
N(2)
48(3)
60(3)
45(3)
2(3)
7(3)
4(3)
N(3)
50(4)
48(3)
49(3)
2(3)
1(3)
-5(3)
N(1)
50(4)
65(4)
50(3)
6(3)
2(3)
1(3)
180
N(6)
56(4)
50(3)
47(3)
0(3)
9(3)
-3(3)
O(1)
64(3)
70(3)
85(4)
-19(3)
28(3)
0(3)
N(7)
73(5)
63(4)
44(3)
-5(3)
14(3)
-13(4)
N(4)
49(4)
49(3)
47(3)
-3(3)
6(3)
-5(3)
N(5)
55(4)
57(3)
40(3)
4(3)
7(3)
-1(3)
C(27)
66(6)
105(6)
59(5)
9(5)
4(4)
-9(6)
O(3)
75(4)
110(4)
86(4)
-20(3)
5(3)
-33(4)
C(23)
60(5)
42(4)
47(4)
1(3)
14(4)
0(4)
C(4)
63(5)
64(4)
77(5)
-4(4)
32(5)
2(4)
C(24)
54(4)
44(3)
43(4)
4(3)
10(4)
-6(4)
C(19)
70(5)
57(4)
53(4)
0(3)
13(4)
-1(4)
C(13)
63(4)
58(4)
35(3)
10(3)
12(3)
11(4)
C(2)
54(5)
74(5)
76(5)
8(4)
18(4)
13(5)
C(1)
41(4)
86(5)
60(4)
17(4)
-1(4)
3(5)
C(3)
59(4)
58(4)
53(4)
11(4)
24(4)
10(4)
C(14)
49(4)
59(4)
46(4)
15(3)
4(4)
8(4)
C(22)
85(6)
45(3)
61(4)
6(3)
18(5)
-3(4)
C(25)
69(5)
55(4)
52(4)
13(3)
17(4)
7(4)
C(7)
93(9)
147(11)
158(12)
-77(9)
63(8)
-20(8)
C(12)
74(5)
71(4)
44(4)
1(4)
18(4)
1(5)
C(29)
80(6)
53(4)
51(4)
6(3)
6(4)
1(4)
C(11)
73(5)
68(4)
40(4)
-7(3)
3(4)
-2(4)
C(21)
72(5)
56(4)
57(4)
-5(4)
5(4)
-18(4)
C(18)
101(7)
56(4)
72(5)
3(4)
6(5)
-8(5)
C(28)
92(7)
76(5)
55(5)
-6(4)
8(5)
-12(5)
C(9)
91(6)
84(5)
60(5)
0(5)
28(5)
-9(5)
C(15)
64(5)
81(5)
59(4)
6(4)
16(4)
8(5)
C(26)
59(5)
91(6)
68(5)
28(5)
13(5)
18(5)
B(1)
51(5)
62(5)
42(4)
-5(4)
-5(4)
-6(4)
C(17)
82(7)
70(5)
95(7)
35(5)
-5(6)
-18(5)
C(16)
63(6)
108(7)
75(6)
35(5)
14(5)
-2(6)
C(6)
97(9)
119(9)
203(14)
-80(10)
18(9)
32(8)
C(8)
97(8)
143(8)
73(6)
-19(6)
41(6)
-30(8)
C(5)
89(8)
106(7)
152(10)
-36(7)
9(7)
18(6)
___________________________________________________________________________
Table J.3 Bond lengths [Å] for TpPhCu(NO3).
___________________________________
Cu(1)-N(2)
1.943(6)
Cu(1)-O(2)
1.994(5)
Cu(1)-N(4)
1.996(5)
Cu(1)-O(1)
2.048(5)
Cu(1)-N(6)
2.191(5)
Cu(1)-N(7)
2.407(7)
O(2)-N(7)
1.286(6)
N(2)-N(1)
1.349(7)
N(2)-C(3)
1.351(7)
N(3)-C(21)
1.346(7)
N(3)-N(4)
1.368(7)
N(3)-B(1)
1.517(9)
N(1)-C(1)
1.338(8)
N(1)-B(1)
1.551(9)
N(6)-C(13)
1.340(7)
N(6)-N(5)
1.375(6)
O(1)-N(7)
1.254(7)
N(7)-O(3)
1.214(7)
N(4)-C(23)
1.354(7)
181
N(5)-C(11)
1.356(7)
N(5)-B(1)
1.537(9)
C(27)-C(26)
1.357(10)
C(27)-C(28)
1.360(10)
C(23)-C(22)
1.389(8)
C(23)-C(24)
1.440(8)
C(4)-C(9)
1.375(10)
C(4)-C(5)
1.379(11)
C(4)-C(3)
1.476(9)
C(24)-C(25)
1.376(8)
C(24)-C(29)
1.403(8)
C(19)-C(14)
1.367(8)
C(19)-C(18)
1.377(9)
C(13)-C(12)
1.385(8)
C(13)-C(14)
1.461(9)
C(2)-C(3)
1.372(9)
C(2)-C(1)
1.374(9)
C(14)-C(15)
1.394(9)
C(22)-C(21)
1.372(9)
C(25)-C(26)
1.377(9)
C(7)-C(6)
1.332(15)
C(7)-C(8)
1.345(13)
C(12)-C(11)
1.359(9)
C(29)-C(28)
1.377(10)
C(18)-C(17)
1.381(11)
C(9)-C(8)
1.385(10)
C(15)-C(16)
1.378(10)
C(17)-C(16)
1.348(10)
C(6)-C(5)
1.405(13)
____________________________________
Table J.4 Bond angles [°] for TpPhCu(NO3).
_________________________________
N(2)-Cu(1)-O(2)
168.7(2)
N(2)-Cu(1)-N(4)
89.7(2)
O(2)-Cu(1)-N(4)
99.0(2)
N(2)-Cu(1)-O(1)
105.1(2)
O(2)-Cu(1)-O(1)
63.67(19)
N(4)-Cu(1)-O(1)
145.8(2)
N(2)-Cu(1)-N(6)
89.7(2)
O(2)-Cu(1)-N(6)
96.5(2)
N(4)-Cu(1)-N(6)
96.18(19)
O(1)-Cu(1)-N(6)
114.13(19)
N(2)-Cu(1)-N(7)
136.5(2)
O(2)-Cu(1)-N(7)
32.27(18)
N(4)-Cu(1)-N(7)
125.5(2)
O(1)-Cu(1)-N(7)
31.40(17)
N(6)-Cu(1)-N(7)
108.37(19)
N(7)-O(2)-Cu(1)
91.8(4)
N(1)-N(2)-C(3)
107.5(5)
N(1)-N(2)-Cu(1)
115.5(4)
C(3)-N(2)-Cu(1)
136.4(5)
C(21)-N(3)-N(4)
108.0(5)
C(21)-N(3)-B(1)
130.8(6)
N(4)-N(3)-B(1)
121.2(5)
C(1)-N(1)-N(2)
110.1(6)
C(1)-N(1)-B(1)
129.9(6)
182
N(2)-N(1)-B(1)
C(13)-N(6)-N(5)
C(13)-N(6)-Cu(1)
N(5)-N(6)-Cu(1)
N(7)-O(1)-Cu(1)
O(3)-N(7)-O(1)
O(3)-N(7)-O(2)
O(1)-N(7)-O(2)
O(3)-N(7)-Cu(1)
O(1)-N(7)-Cu(1)
O(2)-N(7)-Cu(1)
C(23)-N(4)-N(3)
C(23)-N(4)-Cu(1)
N(3)-N(4)-Cu(1)
C(11)-N(5)-N(6)
C(11)-N(5)-B(1)
N(6)-N(5)-B(1)
C(26)-C(27)-C(28)
N(4)-C(23)-C(22)
N(4)-C(23)-C(24)
C(22)-C(23)-C(24)
C(9)-C(4)-C(5)
C(9)-C(4)-C(3)
C(5)-C(4)-C(3)
C(25)-C(24)-C(29)
C(25)-C(24)-C(23)
C(29)-C(24)-C(23)
C(14)-C(19)-C(18)
N(6)-C(13)-C(12)
N(6)-C(13)-C(14)
C(12)-C(13)-C(14)
C(3)-C(2)-C(1)
N(1)-C(1)-C(2)
N(2)-C(3)-C(2)
N(2)-C(3)-C(4)
C(2)-C(3)-C(4)
C(19)-C(14)-C(15)
C(19)-C(14)-C(13)
C(15)-C(14)-C(13)
C(21)-C(22)-C(23)
C(26)-C(25)-C(24)
C(6)-C(7)-C(8)
C(11)-C(12)-C(13)
C(28)-C(29)-C(24)
N(5)-C(11)-C(12)
N(3)-C(21)-C(22)
C(19)-C(18)-C(17)
C(27)-C(28)-C(29)
C(4)-C(9)-C(8)
C(16)-C(15)-C(14)
C(27)-C(26)-C(25)
N(3)-B(1)-N(5)
N(3)-B(1)-N(1)
N(5)-B(1)-N(1)
C(16)-C(17)-C(18)
C(17)-C(16)-C(15)
C(7)-C(6)-C(5)
C(7)-C(8)-C(9)
120.0(6)
105.9(5)
141.7(5)
109.3(3)
90.3(4)
124.6(6)
121.2(7)
114.2(6)
177.0(5)
58.3(3)
55.9(3)
108.5(5)
137.9(4)
113.5(4)
109.7(5)
129.7(6)
120.4(5)
120.9(8)
107.7(6)
123.4(6)
128.9(6)
118.1(8)
121.3(7)
120.6(8)
117.3(6)
120.9(6)
121.7(6)
121.3(7)
110.1(6)
120.2(5)
129.6(6)
107.7(7)
106.8(6)
107.8(6)
121.6(7)
130.2(7)
118.2(7)
122.6(6)
119.1(6)
106.7(6)
121.4(7)
122.1(12)
106.6(6)
120.8(7)
107.8(6)
108.9(6)
120.2(7)
119.7(7)
122.3(8)
119.4(7)
119.9(8)
110.4(6)
107.8(5)
108.6(6)
118.5(8)
122.2(8)
120.8(11)
118.0(11)
183
C(4)-C(5)-C(6)
118.8(10)
_________________________________
Symmetry transformations used to generate equivalent atoms:
184
Table K.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n. U(eq) is defined as one third of the trace
of the orthogonalized Uij tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
C(1)
8573(3)
1826(2)
4931(3)
20(1)
C(2)
7681(3)
2244(2)
5465(3)
19(1)
C(3)
7385(2)
1576(2)
6261(3)
20(1)
C(4)
7095(3)
3147(2)
5187(3)
21(1)
C(5)
6475(3)
1606(2)
7035(3)
24(1)
C(6)
5665(3)
846(2)
7048(3)
33(1)
C(7)
4821(3)
890(3)
7801(4)
46(1)
C(8)
4797(3)
1673(3)
8531(4)
50(1)
C(9)
5575(3)
2434(3)
8501(3)
44(1)
C(10)
6416(3)
2408(2)
7747(3)
33(1)
C(101)
11492(3)
-337(2)
8071(3)
25(1)
C(102)
12152(4)
-540(3)
9473(3)
43(1)
N(1)
8827(2)
957(2)
5387(2)
18(1)
N(2)
8099(2)
816(2)
6193(2)
20(1)
N(3)
6586(2)
3856(2)
4984(2)
25(1)
N(101)
10965(2)
-181(2)
6981(2)
20(1)
O(1)
4753(3)
2796(2)
2066(4)
68(1)
O(2)
3675(2)
1400(2)
1145(2)
45(1)
O(3)
6028(3)
1482(2)
2047(3)
57(1)
O(4)
4734(3)
1546(2)
3440(2)
51(1)
O(5)
8427(3)
9317(2)
7949(2)
31(1)
Cl(1)
4810(1)
1804(1)
2174(1)
32(1)
Cu(01)
10000
0
5000
16(1)
___________________________________________________________________________
Table
K.2
Anisotropic
displacement
parameters
(Å2
x
103)
for
Ph,4CN
)2Cu(CH3CN)2][ClO4]2}n. The anisotropic displacement factor exponent takes
{[(Hpz
the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
C(1)
20(1)
14(1)
27(1)
2(1)
12(1)
1(1)
C(2)
19(1)
14(1)
26(1)
0(1)
9(1)
2(1)
C(3)
18(1)
18(1)
25(1)
-1(1)
9(1)
1(1)
C(4)
20(1)
20(1)
25(1)
-1(1)
11(1)
-2(1)
C(5)
18(1)
30(2)
27(1)
8(1)
11(1)
6(1)
C(6)
27(2)
30(2)
45(2)
14(1)
17(1)
7(1)
C(7)
26(2)
62(2)
57(2)
35(2)
22(2)
12(2)
C(8)
33(2)
87(3)
43(2)
27(2)
28(2)
29(2)
C(9)
39(2)
64(2)
33(2)
5(2)
18(2)
25(2)
C(10)
31(2)
38(2)
35(2)
-1(1)
17(1)
6(1)
C(101)
21(1)
22(1)
35(2)
-3(1)
12(1)
3(1)
C(102)
49(2)
49(2)
26(2)
-1(2)
7(2)
11(2)
N(1)
19(1)
14(1)
25(1)
1(1)
12(1)
3(1)
N(2)
22(1)
14(1)
28(1)
4(1)
13(1)
2(1)
N(3)
26(1)
16(1)
35(1)
3(1)
14(1)
6(1)
N(101) 20(1)
19(1)
24(1)
1(1)
10(1)
3(1)
O(1)
63(2)
28(1)
116(3)
-8(2)
35(2)
-14(1)
O(2)
42(1)
56(2)
39(1)
-14(1)
18(1)
-21(1)
O(3)
37(1)
72(2)
72(2)
-15(2)
31(1)
6(1)
O(4)
58(2)
64(2)
40(1)
-13(1)
26(1)
-8(1)
185
O(5)
32(1)
25(1)
46(1)
5(1)
25(1)
2(1)
Cl(1)
29(1)
29(1)
43(1)
-13(1)
18(1)
-6(1)
Cu(01)
16(1)
9(1)
23(1)
0(1)
9(1)
3(1)
___________________________________________________________________________
Table K.3 Bond lengths [Å] for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n.
__________________________________
C(1)-N(1)
1.330(3)
C(1)-C(2)
1.392(4)
C(2)-C(3)
1.385(4)
C(2)-C(4)
1.421(4)
C(3)-N(2)
1.339(3)
C(3)-C(5)
1.466(4)
C(4)-N(3)
1.134(4)
C(5)-C(6)
1.386(4)
C(5)-C(10)
1.389(4)
C(6)-C(7)
1.391(4)
C(7)-C(8)
1.369(6)
C(8)-C(9)
1.372(6)
C(9)-C(10)
1.387(4)
C(101)-N(101)
1.124(4)
C(101)-C(102)
1.443(4)
N(1)-N(2)
1.351(3)
N(1)-Cu(01)
1.983(2)
N(3)-Cu(01)#1
2.347(2)
N(101)-Cu(01)
2.019(2)
O(1)-Cl(1)
1.424(3)
O(2)-Cl(1)
1.437(2)
O(3)-Cl(1)
1.416(2)
O(4)-Cl(1)
1.427(3)
Cu(01)-N(1)#2
1.983(2)
Cu(01)-N(101)#2
2.019(2)
Cu(01)-N(3)#3
2.347(2)
Cu(01)-N(3)#4
2.347(3)
___________________________________
Table K.4 Bond angles [°] for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n.
________________________________
N(1)-C(1)-C(2)
109.4(2)
C(3)-C(2)-C(1)
106.3(2)
C(3)-C(2)-C(4)
125.7(2)
C(1)-C(2)-C(4)
127.8(3)
N(2)-C(3)-C(2)
106.2(2)
N(2)-C(3)-C(5)
122.9(2)
C(2)-C(3)-C(5)
130.9(2)
N(3)-C(4)-C(2)
177.1(3)
C(6)-C(5)-C(10)
119.9(3)
C(6)-C(5)-C(3)
120.6(3)
C(10)-C(5)-C(3)
119.5(3)
C(5)-C(6)-C(7)
119.5(3)
C(8)-C(7)-C(6)
120.3(3)
C(7)-C(8)-C(9)
120.5(3)
C(8)-C(9)-C(10)
120.1(3)
C(9)-C(10)-C(5)
119.7(3)
N(101)-C(101)-C(102)
179.3(3)
C(1)-N(1)-N(2)
106.6(2)
186
C(1)-N(1)-Cu(01)
129.20(18)
N(2)-N(1)-Cu(01)
124.15(16)
C(3)-N(2)-N(1)
111.5(2)
C(4)-N(3)-Cu(01)#1
156.4(2)
C(101)-N(101)-Cu(01)
175.9(2)
O(3)-Cl(1)-O(1)
109.37(18)
O(3)-Cl(1)-O(4)
110.75(18)
O(1)-Cl(1)-O(4)
108.79(19)
O(3)-Cl(1)-O(2)
110.00(16)
O(1)-Cl(1)-O(2)
109.73(19)
O(4)-Cl(1)-O(2)
108.18(15)
N(1)#2-Cu(01)-N(1)
180.00(12)
N(1)#2-Cu(01)-N(101)
90.02(9)
N(1)-Cu(01)-N(101)
89.98(9)
N(1)#2-Cu(01)-N(101)#2
89.98(9)
N(1)-Cu(01)-N(101)#2
90.02(9)
N(101)-Cu(01)-N(101)#2 180.0
N(1)#2-Cu(01)-N(3)#3
91.00(9)
N(1)-Cu(01)-N(3)#3
89.00(9)
N(101)-Cu(01)-N(3)#3
90.32(9)
N(101)#2-Cu(01)-N(3)#3
89.68(9)
N(1)#2-Cu(01)-N(3)#4
89.00(9)
N(1)-Cu(01)-N(3)#4
91.00(9)
N(101)-Cu(01)-N(3)#4
89.68(9)
N(101)#2-Cu(01)-N(3)#4
90.32(9)
N(3)#3-Cu(01)-N(3)#4
180.0
___________________________________
Symmetry transformations used to generate equivalent atoms:
#1 -x+3/2,y+1/2,-z+1
#2 -x+2,-y,-z+1
#3 -x+3/2,y-1/2,-z+1
#4 x+1/2,-y+1/2,z
187
Table L.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x
103) for (Hpzt-Bu,4CN)4CoCl2. U(eq) is defined as one third of the trace of the orthogonalized
Uij tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Co
0
0
0
33(1)
Cl
477(1)
940(1)
1113(1)
41(1)
N(2)
1353(4)
-1605(3)
1103(2)
36(1)
N(4)
-2542(4)
-1366(3)
-163(2)
42(1)
N(1)
745(4)
-1553(3)
455(2)
37(1)
N(3)
-1886(4)
-515(3)
193(2)
40(1)
C(3)
1627(5)
-2666(3)
1329(2)
38(1)
C(2)
1149(5)
-3347(3)
777(2)
41(1)
C(5)
2299(5)
-2948(4)
2029(2)
44(1)
C(13)
-3679(5)
-1629(4)
58(3)
43(1)
N(5)
1162(6)
-5519(4)
731(3)
83(2)
C(4)
1167(6)
-4554(4)
753(3)
55(1)
C(12)
-3777(5)
-885(4)
579(3)
47(1)
C(1)
623(5)
-2622(4)
250(2)
43(1)
C(8)
2577(6)
-1883(4)
2467(2)
56(2)
C(14)
-4841(6)
-732(5)
957(3)
62(2)
C(11)
-2645(5)
-227(4)
639(3)
48(1)
N(6)
-5674(6)
-565(5)
1273(3)
83(2)
C(15)
-4487(6)
-2626(4)
-244(3)
62(2)
C(7)
3604(6)
-3541(5)
1965(3)
63(2)
C(6)
1439(7)
-3753(5)
2375(3)
60(2)
C(16)
-5844(7)
-2560(8)
-79(6)
105(3)
C(18)
-4384(12)
-2784(10)
-955(5)
139(5)
C(17)
-3855(12)
-3678(6)
187(8)
143(4)
C(21)
-8460(30)
-3670(20)
-1753(15)
281(16)
C(22)
-6940(30)
-4760(30)
-2230(20)
288(19)
C(23)
-8046(19)
-2830(20)
-2184(11)
203(7)
C(24)
-6710(40)
-3760(50)
-2657(14)
330(30)
C(25)
-7540(60)
-1240(70)
-2760(40)
720(70)
C(26)
-8070(30)
-4600(30)
-1605(17)
299(15)
C(27)
-6910(50)
-2550(70)
-3030(40)
510(40)
___________________________________________________________________________
Table L.2 Anisotropic displacement parameters (Å2 x 103) for (Hpzt-Bu,4CN)4CoCl2. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b*
U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Co
31(1)
35(1)
32(1)
1(1)
5(1)
-3(1)
Cl
45(1)
43(1)
34(1)
-4(1)
5(1)
-2(1)
N(2)
43(2)
34(2)
30(2)
-1(1)
3(2)
-2(2)
N(4)
30(2)
44(2)
53(2)
-7(2)
11(2)
-9(2)
N(1)
38(2)
36(2)
37(2)
-1(2)
1(2)
-4(2)
N(3)
37(2)
45(2)
39(2)
-4(2)
7(2)
-7(2)
C(3)
35(3)
35(2)
42(2)
4(2)
5(2)
-1(2)
C(2)
42(3)
34(2)
47(3)
-3(2)
2(2)
-2(2)
C(5)
51(3)
43(2)
37(2)
7(2)
3(2)
-3(2)
C(13)
33(3)
44(2)
55(3)
-1(2)
14(2)
-8(2)
N(5)
109(5)
40(2)
87(4)
-9(2)
-29(3)
7(3)
C(4)
62(4)
43(3)
54(3)
-7(2)
-8(3)
2(3)
188
C(12)
36(3)
55(3)
53(3)
2(2)
16(2)
-5(2)
C(1)
45(3)
41(2)
41(2)
-6(2)
0(2)
1(2)
C(8)
85(5)
52(3)
31(2)
2(2)
3(2)
-7(3)
C(14)
56(4)
66(3)
68(4)
-6(3)
26(3)
-10(3)
C(11)
40(3)
54(3)
51(3)
-5(2)
14(2)
-7(2)
N(6)
72(4)
92(4)
96(4)
-25(3)
47(3)
-18(3)
C(15)
51(4)
54(3)
88(4)
-18(3)
28(3)
-20(3)
C(7)
65(4)
72(3)
47(3)
3(3)
-3(3)
17(3)
C(6)
80(5)
53(3)
48(3)
12(2)
6(3)
-14(3)
C(16)
53(5)
115(7)
151(8)
-54(6)
28(5)
-40(5)
C(18)
159(10)
163(10)
102(6)
-62(7)
45(7)
-119(9)
C(17)
118(9)
57(4)
251(14)
30(6)
15(8)
-20(5)
C(21)
340(40)
190(20)
260(30)
29(19)
-150(20)
-40(20)
C(22)
170(20)
280(30)
390(40)
-110(30)
-50(20)
100(20)
C(23)
145(14)
250(20)
191(16)
-27(15)
-45(12)
16(15)
C(24)
270(30)
510(70)
170(20)
-110(30)
-90(20)
-140(40)
C(25) 680(100)
520(100)
780(120)
-130(100)
-510(90)
190(80)
C(26)
200(30)
280(30)
360(40)
30(30)
-110(20)
0(30)
C(27)
280(40)
650(120)
540(80)
-180(70)
-160(50)
-150(60)
___________________________________________________________________________
Table L.3 Bond lengths [Å] for (Hpzt-Bu,4CN)4CoCl2.
__________________________________
Co-N(3)
2.130(5)
Co-N(3)#1
2.130(5)
Co-N(1)
2.131(4)
Co-N(1)#1
2.131(4)
Co-Cl
2.449(4)
Co-Cl#1
2.449(4)
N(2)-C(3)
1.343(5)
N(2)-N(1)
1.344(5)
N(4)-N(3)
1.347(5)
N(4)-C(13)
1.350(6)
N(1)-C(1)
1.322(5)
N(3)-C(11)
1.309(6)
C(3)-C(2)
1.386(6)
C(3)-C(5)
1.494(6)
C(2)-C(1)
1.395(6)
C(2)-C(4)
1.422(6)
C(5)-C(8)
1.526(7)
C(5)-C(6)
1.532(7)
C(5)-C(7)
1.537(8)
C(13)-C(12)
1.367(7)
C(13)-C(15)
1.511(7)
N(5)-C(4)
1.137(7)
C(12)-C(11)
1.395(7)
C(12)-C(14)
1.429(7)
C(14)-N(6)
1.152(7)
C(15)-C(18)
1.441(10)
C(15)-C(16)
1.486(9)
C(15)-C(17)
1.589(11)
C(21)-C(26)
1.18(3)
C(21)-C(23)
1.43(3)
C(22)-C(24)
1.49(4)
C(22)-C(25)#2
1.82(6)
C(22)-C(26)
1.84(5)
C(24)-C(27)
1.61(7)
189
C(25)-C(27)
1.78(7)
C(25)-C(22)#3
1.82(6)
_____________________________________
Table L.4 Bond angles [°] for (Hpzt-Bu,4CN)4CoCl2.
__________________________________
N(3)-Co-N(3)#1
180.0(3)
N(3)-Co-N(1)
87.57(18)
N(3)#1-Co-N(1)
92.43(18)
N(3)-Co-N(1)#1
92.43(18)
N(3)#1-Co-N(1)#1
87.57(18)
N(1)-Co-N(1)#1
180.0(3)
N(3)-Co-Cl
91.97(16)
N(3)#1-Co-Cl
88.03(16)
N(1)-Co-Cl
89.62(14)
N(1)#1-Co-Cl
90.38(14)
N(3)-Co-Cl#1
88.03(16)
N(3)#1-Co-Cl#1
91.97(16)
N(1)-Co-Cl#1
90.38(14)
N(1)#1-Co-Cl#1
89.62(14)
Cl-Co-Cl#1
180.00(2)
C(3)-N(2)-N(1)
114.0(4)
N(3)-N(4)-C(13)
113.5(4)
C(1)-N(1)-N(2)
105.0(4)
C(1)-N(1)-Co
132.4(3)
N(2)-N(1)-Co
122.1(3)
C(11)-N(3)-N(4)
103.8(4)
C(11)-N(3)-Co
134.7(3)
N(4)-N(3)-Co
121.5(3)
N(2)-C(3)-C(2)
104.0(4)
N(2)-C(3)-C(5)
124.3(4)
C(2)-C(3)-C(5)
131.7(4)
C(3)-C(2)-C(1)
106.8(4)
C(3)-C(2)-C(4)
126.7(5)
C(1)-C(2)-C(4)
126.4(4)
C(3)-C(5)-C(8)
111.5(4)
C(3)-C(5)-C(6)
109.6(4)
C(8)-C(5)-C(6)
109.2(4)
C(3)-C(5)-C(7)
108.4(4)
C(8)-C(5)-C(7)
108.9(5)
C(6)-C(5)-C(7)
109.3(5)
N(4)-C(13)-C(12)
105.2(4)
N(4)-C(13)-C(15)
120.6(4)
C(12)-C(13)-C(15)
134.1(4)
N(5)-C(4)-C(2)
178.9(7)
C(13)-C(12)-C(11)
105.3(4)
C(13)-C(12)-C(14)
128.6(5)
C(11)-C(12)-C(14)
126.0(5)
N(1)-C(1)-C(2)
110.2(4)
N(6)-C(14)-C(12)
177.1(6)
N(3)-C(11)-C(12)
112.3(5)
C(18)-C(15)-C(16)
115.5(8)
C(18)-C(15)-C(13)
111.6(5)
C(16)-C(15)-C(13)
111.0(5)
C(18)-C(15)-C(17)
110.1(9)
C(16)-C(15)-C(17)
104.1(8)
C(13)-C(15)-C(17)
103.6(6)
190
C(26)-C(21)-C(23)
132(4)
C(24)-C(22)-C(25)#2
146(4)
C(24)-C(22)-C(26)
118(3)
C(25)#2-C(22)-C(26)
83(4)
C(22)-C(24)-C(27)
160(6)
C(27)-C(25)-C(22)#3
161(8)
C(21)-C(26)-C(22)
99(4)
C(24)-C(27)-C(25)
131(8)
_________________________________
Symmetry transformations used to generate equivalent atoms:
#1 -x,-y,-z
#2 -x-3/2,y-1/2,-z-1/2
#3 -x-3/2,y+1/2,-z-1/2
191
Table M.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Mn
0
0
0
17(1)
S
3611(1)
2074(1)
-583(1)
18(1)
F(3)
1637(3)
4452(2)
-1615(2)
51(1)
O(2)
4219(2)
2036(2)
-1980(2)
28(1)
O(3)
2086(2)
1227(2)
115(2)
26(1)
O(1)
4895(2)
1832(2)
239(2)
31(1)
F(1)
4012(3)
5000(2)
-1274(2)
55(1)
O(4)
-1820(3)
1631(2)
769(2)
28(1)
F(2)
1947(3)
4231(2)
426(2)
46(1)
N(2)
1332(2)
1895(2)
-3164(2)
18(1)
N(1)
-91(2)
1272(2)
-2247(2)
19(1)
N(3)
-1784(3)
1901(3)
-6491(2)
28(1)
C(1)
-1205(3)
1238(3)
-3005(2)
19(1)
C(5)
2533(3)
2995(3)
-5675(2)
21(1)
C(2)
-490(3)
1827(2)
-4417(2)
17(1)
C(3)
1150(3)
2255(2)
-4477(2)
17(1)
C(4)
-1232(3)
1886(3)
-5559(2)
20(1)
C(6)
3210(4)
1875(3)
-6524(3)
32(1)
C(9)
2752(4)
4052(3)
-767(3)
29(1)
C(7)
1725(4)
4467(3)
-6562(3)
34(1)
C(8)
4033(4)
3376(4)
-5175(3)
44(1)
___________________________________________________________________________
Table
M.2
Anisotropic
displacement
parameters
(Å2
x
103)
for
t-Bu,4CN
)2Mn(CF3SO3)2·2H2O. The anisotropic displacement factor exponent takes the
(Hpz
form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Mn
18(1)
24(1)
7(1)
-2(1)
0(1)
-5(1)
S
17(1)
27(1)
11(1)
-5(1)
-2(1)
-4(1)
F(3)
65(1)
45(1)
42(1)
-6(1)
-29(1)
17(1)
O(2)
24(1)
48(1)
12(1)
-12(1)
2(1)
-6(1)
O(3)
25(1)
32(1)
19(1)
-5(1)
1(1)
-13(1)
O(1)
26(1)
48(1)
25(1)
-13(1)
-11(1)
-1(1)
F(1)
66(1)
36(1)
54(1)
-7(1)
8(1)
-27(1)
O(4)
23(1)
43(1)
22(1)
-16(1)
-10(1)
5(1)
F(2)
61(1)
41(1)
29(1)
-15(1)
6(1)
6(1)
N(2)
20(1)
27(1)
7(1)
-3(1)
0(1)
-9(1)
N(1)
20(1)
24(1)
10(1)
-1(1)
0(1)
-8(1)
N(3)
30(1)
38(1)
18(1)
-9(1)
-8(1)
-2(1)
C(1)
20(1)
22(1)
12(1)
-3(1)
-1(1)
-6(1)
C(5)
26(1)
27(1)
8(1)
-3(1)
4(1)
-10(1)
C(2)
21(1)
19(1)
10(1)
-3(1)
-2(1)
-2(1)
C(3)
23(1)
18(1)
9(1)
-3(1)
-1(1)
-4(1)
C(4)
21(1)
23(1)
14(1)
-4(1)
-2(1)
-4(1)
C(6)
37(2)
33(1)
20(1)
-9(1)
10(1)
-4(1)
C(9)
35(1)
29(1)
20(1)
-6(1)
-1(1)
-4(1)
C(7)
45(2)
26(1)
21(1)
1(1)
9(1)
-4(1)
C(8)
41(2)
76(2)
16(1)
-9(1)
7(1)
-36(2)
___________________________________________________________________________
192
Table M.3 Bond lengths [Å] for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O.
____________________________________
Mn-O(4)#1
2.1494(19)
Mn-O(4)
2.1494(19)
Mn-O(3)
2.1673(17)
Mn-O(3)#1
2.1673(17)
Mn-N(1)
2.2721(19)
Mn-N(1)#1
2.2721(19)
S-O(1)
1.4203(18)
S-O(2)
1.4367(17)
S-O(3)
1.4493(17)
S-C(9)
1.817(3)
F(3)-C(9)
1.320(3)
F(1)-C(9)
1.321(3)
F(2)-C(9)
1.313(3)
N(2)-C(3)
1.335(3)
N(2)-N(1)
1.364(3)
N(1)-C(1)
1.316(3)
N(3)-C(4)
1.145(3)
C(1)-C(2)
1.408(3)
C(5)-C(3)
1.509(3)
C(5)-C(8)
1.519(4)
C(5)-C(7)
1.525(4)
C(5)-C(6)
1.531(3)
C(2)-C(3)
1.390(3)
C(2)-C(4)
1.422(3)
_______________________________________
Table M.4 Bond angles [°] for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O.
__________________________________
O(4)#1-Mn-O(4)
180.00(14)
O(4)#1-Mn-O(3)
91.48(8)
O(4)-Mn-O(3)
88.52(8)
O(4)#1-Mn-O(3)#1
88.52(8)
O(4)-Mn-O(3)#1
91.48(8)
O(3)-Mn-O(3)#1
180.00(8)
O(4)#1-Mn-N(1)
86.04(7)
O(4)-Mn-N(1)
93.96(7)
O(3)-Mn-N(1)
95.54(7)
O(3)#1-Mn-N(1)
84.46(7)
O(4)#1-Mn-N(1)#1
93.96(7)
O(4)-Mn-N(1)#1
86.04(7)
O(3)-Mn-N(1)#1
84.46(7)
O(3)#1-Mn-N(1)#1
95.54(7)
N(1)-Mn-N(1)#1
180.00(12)
O(1)-S-O(2)
116.45(11)
O(1)-S-O(3)
113.82(11)
O(2)-S-O(3)
113.69(10)
O(1)-S-C(9)
104.69(12)
O(2)-S-C(9)
103.87(11)
O(3)-S-C(9)
102.17(12)
S-O(3)-Mn
148.69(11)
C(3)-N(2)-N(1)
113.00(19)
C(1)-N(1)-N(2)
105.40(18)
C(1)-N(1)-Mn
130.22(15)
N(2)-N(1)-Mn
122.13(14)
N(1)-C(1)-C(2)
110.3(2)
193
C(3)-C(5)-C(8)
111.04(19)
C(3)-C(5)-C(7)
108.6(2)
C(8)-C(5)-C(7)
109.5(2)
C(3)-C(5)-C(6)
108.64(19)
C(8)-C(5)-C(6)
109.2(2)
C(7)-C(5)-C(6)
109.9(2)
C(3)-C(2)-C(1)
106.03(19)
C(3)-C(2)-C(4)
126.4(2)
C(1)-C(2)-C(4)
127.5(2)
N(2)-C(3)-C(2)
105.28(19)
N(2)-C(3)-C(5)
122.8(2)
C(2)-C(3)-C(5)
131.9(2)
N(3)-C(4)-C(2)
177.7(3)
F(2)-C(9)-F(3)
108.3(2)
F(2)-C(9)-F(1)
108.0(2)
F(3)-C(9)-F(1)
108.2(2)
F(2)-C(9)-S
111.26(18)
F(3)-C(9)-S
110.08(18)
F(1)-C(9)-S
110.86(19)
___________________________________
Symmetry transformations used to generate equivalent atoms:
#1 -x,-y,-z
194
Table N.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for (Hpzt-Bu,CN)2CuCl2. U(eq) is defined as one third of the trace of the orthogonalized
Uij tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Cu
1569(1)
6627(1)
1226(1)
18(1)
Cl(1)
386(1)
8628(1)
2021(1)
29(1)
N(3)
32(2)
5728(2)
2653(2)
19(1)
N(1)
3098(2)
7535(2)
-180(2)
19(1)
N(4)
-214(2)
4578(2)
2501(2)
20(1)
N(2)
2892(2)
8932(2)
-475(2)
18(1)
C(11)
-848(2)
5966(2)
3878(2)
19(1)
C(13)
-1203(2)
4061(2)
3583(2)
18(1)
C(12)
-1643(2)
4940(2)
4515(2)
19(1)
C(2)
5046(3)
8140(2)
-1832(2)
20(1)
C(1)
4424(3)
7037(2)
-1019(2)
21(1)
C(5)
4035(3)
10859(2)
-1986(2)
22(1)
C(15)
-1678(3)
2795(2)
3645(3)
23(1)
N(6)
-3290(3)
4605(2)
7013(2)
32(1)
C(14)
-2593(3)
4774(2)
5890(2)
22(1)
C(4)
6454(3)
8017(3)
-2857(3)
25(1)
N(5)
7577(3)
7924(2)
-3682(2)
35(1)
C(3)
4025(2)
9351(2)
-1461(2)
18(1)
C(6)
3978(3)
11222(3)
-3454(3)
31(1)
C(7)
5439(3)
11099(3)
-1950(3)
32(1)
C(8)
2702(3)
11779(3)
-1098(3)
31(1)
C(17)
-3322(3)
3248(3)
3786(3)
32(1)
C(18)
-1394(3)
1714(3)
4881(3)
32(1)
C(16)
-799(3)
2194(3)
2348(3)
32(1)
Cl(2)
2400(1)
4832(1)
103(1)
26(1)
___________________________________________________________________________
Table N.2 Anisotropic displacement parameters (Å2 x 103) for (Hpzt-Bu,CN)2CuCl2. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b*
U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Cu
19(1)
14(1)
19(1)
-4(1)
2(1)
-7(1)
Cl(1)
29(1)
17(1)
31(1)
-10(1)
8(1)
-9(1)
N(3)
20(1)
13(1)
22(1)
-5(1)
-2(1)
-6(1)
N(1)
20(1)
14(1)
22(1)
-3(1)
-4(1)
-6(1)
N(4)
23(1)
14(1)
19(1)
-5(1)
-1(1)
-7(1)
N(2)
18(1)
14(1)
21(1)
-5(1)
-1(1)
-6(1)
C(11)
17(1)
15(1)
22(1)
-4(1)
-3(1)
-4(1)
C(13)
17(1)
15(1)
20(1)
0(1)
-5(1)
-3(1)
C(12)
17(1)
17(1)
19(1)
-2(1)
-3(1)
-4(1)
C(2)
19(1)
20(1)
19(1)
-4(1)
-3(1)
-7(1)
C(1)
20(1)
19(1)
21(1)
-5(1)
-4(1)
-4(1)
C(5)
26(1)
18(1)
22(1)
-1(1)
-6(1)
-10(1)
C(15)
26(1)
16(1)
28(1)
-2(1)
-5(1)
-10(1)
N(6)
36(1)
28(1)
27(1)
-8(1)
4(1)
-14(1)
C(14)
22(1)
18(1)
26(1)
-5(1)
-3(1)
-7(1)
C(4)
26(1)
21(1)
25(1)
-5(1)
-2(1)
-9(1)
N(5)
30(1)
32(1)
36(1)
-11(1)
5(1)
-10(1)
C(3)
18(1)
20(1)
17(1)
-3(1)
-5(1)
-7(1)
195
C(6)
40(2)
24(1)
25(1)
3(1)
-10(1)
-9(1)
C(7)
34(2)
30(1)
37(2)
0(1)
-8(1)
-21(1)
C(8)
38(2)
18(1)
35(2)
-9(1)
-4(1)
-9(1)
C(17)
27(1)
34(2)
38(2)
-6(1)
-8(1)
-14(1)
C(18)
39(2)
21(1)
34(2)
2(1)
-8(1)
-13(1)
C(16)
40(2)
22(1)
35(2)
-11(1)
-5(1)
-12(1)
Cl(2)
31(1)
19(1)
24(1)
-9(1)
5(1)
-12(1)
___________________________________________________________________________
Table N.3 Bond lengths [Å] for (Hpzt-Bu,CN)2CuCl2.
____________________________________
Cu-N(1)
1.989(2)
Cu-N(3)
1.997(2)
Cu-Cl(1)
2.2541(12)
Cu-Cl(2)
2.2595(12)
N(3)-C(11)
1.322(3)
N(3)-N(4)
1.355(3)
N(1)-C(1)
1.335(3)
N(1)-N(2)
1.356(3)
N(4)-C(13)
1.329(3)
N(2)-C(3)
1.334(3)
C(11)-C(12)
1.407(3)
C(13)-C(12)
1.393(3)
C(13)-C(15)
1.513(3)
C(12)-C(14)
1.428(3)
C(2)-C(3)
1.391(3)
C(2)-C(1)
1.401(3)
C(2)-C(4)
1.429(3)
C(5)-C(3)
1.508(3)
C(5)-C(7)
1.530(3)
C(5)-C(8)
1.533(4)
C(5)-C(6)
1.534(3)
C(15)-C(16)
1.522(4)
C(15)-C(18)
1.531(4)
C(15)-C(17)
1.531(4)
N(6)-C(14)
1.143(3)
C(4)-N(5)
1.143(3)
___________________________________
Table N.4 Bond angles [°] for (Hpzt-Bu,CN)2CuCl2.
_________________________________
N(1)-Cu-N(3)
179.34(8)
N(1)-Cu-Cl(1)
89.95(7)
N(3)-Cu-Cl(1)
89.54(7)
N(1)-Cu-Cl(2)
90.08(7)
N(3)-Cu-Cl(2)
90.51(7)
Cl(1)-Cu-Cl(2)
166.14(3)
C(11)-N(3)-N(4)
105.54(18)
C(11)-N(3)-Cu
133.10(16)
N(4)-N(3)-Cu
121.25(15)
C(1)-N(1)-N(2)
105.57(18)
C(1)-N(1)-Cu
132.65(16)
N(2)-N(1)-Cu
121.77(15)
C(13)-N(4)-N(3)
113.38(19)
C(3)-N(2)-N(1)
113.25(19)
N(3)-C(11)-C(12)
109.8(2)
196
N(4)-C(13)-C(12)
105.1(2)
N(4)-C(13)-C(15)
123.1(2)
C(12)-C(13)-C(15)
131.8(2)
C(13)-C(12)-C(11)
106.1(2)
C(13)-C(12)-C(14)
127.6(2)
C(11)-C(12)-C(14)
126.0(2)
C(3)-C(2)-C(1)
106.8(2)
C(3)-C(2)-C(4)
127.5(2)
C(1)-C(2)-C(4)
125.6(2)
N(1)-C(1)-C(2)
109.3(2)
C(3)-C(5)-C(7)
109.6(2)
C(3)-C(5)-C(8)
110.6(2)
C(7)-C(5)-C(8)
108.5(2)
C(3)-C(5)-C(6)
107.9(2)
C(7)-C(5)-C(6)
110.3(2)
C(8)-C(5)-C(6)
109.8(2)
C(13)-C(15)-C(16)
109.9(2)
C(13)-C(15)-C(18)
108.6(2)
C(16)-C(15)-C(18)
109.5(2)
C(13)-C(15)-C(17)
107.7(2)
C(16)-C(15)-C(17)
110.2(2)
C(18)-C(15)-C(17)
110.8(2)
N(6)-C(14)-C(12)
176.4(3)
N(5)-C(4)-C(2)
179.6(3)
N(2)-C(3)-C(2)
105.1(2)
N(2)-C(3)-C(5)
122.9(2)
C(2)-C(3)-C(5)
132.0(2)
________________________________
Symmetry transformations used to generate equivalent atoms:
197
Table O.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for (HpzMe2)2CuCl2. U(eq) is defined as one third of the trace of the orthogonalized Uij
tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Cu(1)
8834(1)
2224(1)
6218(1)
51(1)
Cl(1)
8252(1)
907(2)
5453(1)
72(1)
Cl(2)
10002(1)
1105(3)
6733(1)
71(1)
N(1)
7990(3)
2607(6)
6800(2)
45(1)
N(2)
8224(3)
2500(6)
7356(2)
49(1)
N(3)
9060(3)
4412(6)
5900(2)
49(1)
N(4)
8808(4)
4769(7)
5361(2)
55(1)
C(1)
7152(4)
3172(7)
6743(3)
48(1)
C(6)
9395(4)
5779(8)
6129(3)
53(2)
C(8)
8966(4)
6321(8)
5242(3)
56(2)
C(3)
7560(4)
2981(8)
7648(3)
54(2)
C(2)
6873(4)
3405(9)
7265(3)
56(2)
C(7)
9338(5)
6988(8)
5726(3)
62(2)
C(4)
6676(5)
3442(11)
6175(3)
76(2)
C(015)
9740(6)
5850(10)
6734(3)
76(2)
C(016)
8739(6)
6992(10)
4665(3)
80(2)
C(5)
7682(6)
3002(12)
8274(3)
84(3)
___________________________________________________________________________
Table O.2 Anisotropic displacement parameters (Å2 x 103) for (HpzMe2)2CuCl2. The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b*
U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Cu(1)
53(1)
51(1)
47(1)
-2(1)
-7(1)
7(1)
Cl(1)
96(1)
54(1)
60(1)
-17(1)
-27(1)
12(1)
Cl(2)
58(1)
89(1)
60(1)
-8(1)
-18(1)
33(1)
N(1)
45(3)
50(3)
38(2)
4(2)
-2(2)
7(2)
N(2)
50(3)
53(3)
43(3)
3(2)
-9(2)
6(2)
N(3)
55(3)
52(3)
39(3)
2(2)
-7(2)
0(2)
N(4)
70(3)
57(3)
35(3)
-4(2)
-4(2)
-3(3)
C(1)
45(3)
48(3)
51(3)
2(3)
0(3)
8(3)
C(6)
55(4)
54(4)
48(3)
-5(3)
-6(3)
5(3)
C(8)
59(4)
58(4)
49(4)
9(3)
-2(3)
0(3)
C(3)
57(4)
55(4)
51(4)
-2(3)
4(3)
6(3)
C(2)
47(3)
62(4)
58(4)
-5(3)
3(3)
13(3)
C(7)
70(4)
49(4)
63(4)
6(3)
-7(3)
0(3)
C(4)
61(4)
105(6)
59(4)
-9(4)
-9(3)
36(4)
C(015)
96(6)
66(5)
58(4)
-9(4)
-25(4)
-6(4)
C(016)
96(6)
84(6)
58(4)
21(4)
2(4)
11(5)
C(5)
88(6)
108(7)
53(4)
-7(4)
2(4)
21(5)
___________________________________________________________________________
Table O.3 Bond lengths [Å] for (HpzMe2)2CuCl2.
___________________________________
Cu(1)-N(3)
2.007(5)
Cu(1)-N(1)
2.010(5)
Cu(1)-Cl(1)
2.234(2)
Cu(1)-Cl(2)
2.2392(19)
198
N(1)-C(1)
1.336(7)
N(1)-N(2)
1.348(6)
N(2)-C(3)
1.340(8)
N(2)-H(2)
0.8600
N(3)-C(6)
1.333(8)
N(3)-N(4)
1.343(6)
N(4)-C(8)
1.341(9)
N(4)-H(4)
0.8600
C(1)-C(2)
1.379(8)
C(1)-C(4)
1.488(8)
C(6)-C(7)
1.389(9)
C(6)-C(015)
1.493(8)
C(8)-C(7)
1.353(9)
C(8)-C(016)
1.500(9)
C(3)-C(2)
1.355(9)
C(3)-C(5)
1.497(9)
C(2)-H(2A)
0.9300
C(7)-H(7)
0.9300
C(4)-H(4A)
0.9600
C(4)-H(4B)
0.9600
C(4)-H(4C)
0.9600
C(015)-H(01A)
0.9600
C(015)-H(01B)
0.9600
C(015)-H(01C)
0.9600
C(016)-H(01D)
0.9600
C(016)-H(01E)
0.9600
C(016)-H(01F)
0.9600
C(5)-H(5A)
0.9600
C(5)-H(5B)
0.9600
C(5)-H(5C)
0.9600
__________________________________
Table O.4 Bond angles [°] for (HpzMe2)2CuCl2.
__________________________________
N(3)-Cu(1)-N(1)
105.5(2)
N(3)-Cu(1)-Cl(1)
101.13(15)
N(1)-Cu(1)-Cl(1)
115.38(16)
N(3)-Cu(1)-Cl(2)
115.41(16)
N(1)-Cu(1)-Cl(2)
101.24(15)
Cl(1)-Cu(1)-Cl(2)
118.03(9)
C(1)-N(1)-N(2)
105.7(5)
C(1)-N(1)-Cu(1)
129.7(4)
N(2)-N(1)-Cu(1)
124.2(4)
C(3)-N(2)-N(1)
111.7(5)
C(3)-N(2)-H(2)
124.1
N(1)-N(2)-H(2)
124.1
C(6)-N(3)-N(4)
105.5(5)
C(6)-N(3)-Cu(1)
132.7(4)
N(4)-N(3)-Cu(1)
121.6(4)
C(8)-N(4)-N(3)
112.2(5)
C(8)-N(4)-H(4)
123.9
N(3)-N(4)-H(4)
123.9
N(1)-C(1)-C(2)
109.1(5)
N(1)-C(1)-C(4)
120.3(6)
C(2)-C(1)-C(4)
130.6(6)
N(3)-C(6)-C(7)
109.3(6)
N(3)-C(6)-C(015)
120.9(6)
199
C(7)-C(6)-C(015)
129.9(7)
N(4)-C(8)-C(7)
105.9(6)
N(4)-C(8)-C(016)
121.5(6)
C(7)-C(8)-C(016)
132.6(7)
N(2)-C(3)-C(2)
106.0(6)
N(2)-C(3)-C(5)
120.8(6)
C(2)-C(3)-C(5)
133.3(6)
C(3)-C(2)-C(1)
107.5(6)
C(3)-C(2)-H(2A)
126.2
C(1)-C(2)-H(2A)
126.2
C(8)-C(7)-C(6)
107.2(6)
C(8)-C(7)-H(7)
126.4
C(6)-C(7)-H(7)
126.4
C(1)-C(4)-H(4A)
109.5
C(1)-C(4)-H(4B)
109.5
H(4A)-C(4)-H(4B)
109.5
C(1)-C(4)-H(4C)
109.5
H(4A)-C(4)-H(4C)
109.5
H(4B)-C(4)-H(4C)
109.5
C(6)-C(015)-H(01A)
109.5
C(6)-C(015)-H(01B)
109.5
H(01A)-C(015)-H(01B)
109.5
C(6)-C(015)-H(01C)
109.5
H(01A)-C(015)-H(01C)
109.5
H(01B)-C(015)-H(01C)
109.5
C(8)-C(016)-H(01D)
109.5
C(8)-C(016)-H(01E)
109.5
H(01D)-C(016)-H(01E)
109.5
C(8)-C(016)-H(01F)
109.5
H(01D)-C(016)-H(01F)
109.5
H(01E)-C(016)-H(01F)
109.5
C(3)-C(5)-H(5A)
109.5
C(3)-C(5)-H(5B)
109.5
H(5A)-C(5)-H(5B)
109.5
C(3)-C(5)-H(5C)
109.5
H(5A)-C(5)-H(5C)
109.5
H(5B)-C(5)-H(5C)
109.5
________________________________
Symmetry transformations used to generate equivalent atoms:
200
Table P.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x
103) for TpPhCo(HpzPh,4CN)(NO3). U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Co
3194(1)
2242(1)
4938(1)
21(1)
N(3)
3619(4)
160(4)
5193(3)
26(2)
N(10)
3181(5)
4133(6)
4331(4)
40(2)
O(1)
2703(3)
3395(4)
4254(3)
41(2)
N(4)
3884(4)
1070(4)
5484(3)
24(1)
N(5)
2059(4)
459(5)
4884(3)
27(2)
N(2)
3359(3)
1550(4)
3814(3)
23(1)
N(8)
3104(3)
2385(4)
6821(3)
28(2)
N(1)
3046(4)
610(4)
3739(3)
27(2)
O(3)
2943(5)
4901(4)
3977(4)
82(2)
N(6)
2007(3)
1461(4)
5022(3)
28(2)
N(7)
3108(3)
2905(4)
6092(3)
28(2)
C(4)
3965(4)
2745(6)
2883(4)
28(2)
C(14)
5105(4)
1719(6)
6435(5)
26(2)
C(13)
4583(5)
916(5)
6045(4)
25(2)
C(24)
1033(4)
2566(6)
5672(4)
33(2)
N(9)
2241(5)
5360(5)
7945(4)
57(2)
C(33)
2935(4)
2928(6)
7474(4)
29(2)
C(23)
1292(5)
1582(6)
5409(4)
30(2)
C(35)
2913(5)
2525(5)
8333(4)
30(2)
C(1)
3041(4)
315(6)
2940(4)
32(2)
C(11)
4124(5)
-539(5)
5580(4)
29(2)
C(5)
3685(5)
3322(6)
2183(5)
38(2)
C(19)
5200(5)
2588(6)
6021(5)
39(2)
C(16)
6064(5)
2308(8)
7589(5)
55(3)
C(21)
1409(5)
-12(7)
5182(5)
48(2)
C(2)
3356(4)
1052(5)
2465(4)
29(2)
C(12)
4728(5)
-98(6)
6115(4)
31(2)
O(2)
3866(4)
4044(7)
4776(3)
108(3)
C(25)
718(4)
2694(7)
6454(4)
38(2)
C(3)
3550(4)
1816(5)
3039(4)
23(2)
C(32)
2799(5)
3867(6)
7162(5)
36(2)
C(9)
4675(5)
3063(6)
3403(5)
35(2)
C(6)
4087(5)
4195(6)
2021(5)
43(2)
C(15)
5537(5)
1583(7)
7226(5)
46(2)
C(34)
2498(6)
4687(7)
7589(5)
45(2)
C(26)
508(5)
3621(7)
6713(6)
49(2)
C(7)
4779(5)
4507(6)
2553(5)
45(2)
B
2856(6)
43(7)
4525(5)
28(2)
C(18)
5709(5)
3331(7)
6388(6)
53(3)
C(29)
1084(5)
3365(6)
5164(5)
45(2)
C(38)
2882(6)
1817(6)
9954(5)
52(3)
C(39)
2153(6)
1985(8)
9458(5)
70(3)
C(31)
2919(5)
3803(6)
6317(5)
40(2)
C(17)
6152(6)
3192(8)
7176(6)
61(3)
C(22)
903(5)
678(7)
5515(5)
49(3)
C(28)
869(6)
4296(7)
5423(6)
61(3)
C(8)
5076(5)
3952(6)
3251(5)
43(2)
C(40)
2157(5)
2353(7)
8653(5)
57(3)
C(27)
563(5)
4420(7)
6207(6)
59(3)
C(36)
3665(5)
2342(7)
8834(5)
57(3)
C(37)
3646(6)
1995(8)
9649(5)
75(4)
201
___________________________________________________________________________
Table P.2 Anisotropic displacement parameters (Å2 x 103) for TpPhCo(HpzPh,4CN)(NO3). The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b*
U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Co
22(1)
21(1)
20(1)
0(1)
2(1)
0(1)
N(3)
36(4)
15(3)
27(4)
-1(3)
-1(3)
-4(3)
N(10)
44(5)
47(5)
30(4)
5(4)
16(4)
7(4)
O(1)
53(4)
33(4)
39(3)
3(3)
10(3)
-13(3)
N(4)
27(4)
22(3)
21(3)
-1(3)
-4(3)
-5(3)
N(5)
22(4)
36(4)
23(3)
-10(3)
7(3)
-6(3)
N(2)
20(3)
26(4)
24(3)
-1(3)
3(3)
-1(3)
N(8)
39(4)
22(4)
21(3)
1(3)
2(3)
10(3)
N(1)
26(4)
29(4)
25(3)
-2(3)
1(3)
1(3)
O(3)
136(7)
31(4)
82(5)
24(4)
33(5)
7(5)
N(6)
28(4)
30(4)
25(3)
-9(3)
2(3)
3(3)
N(7)
24(3)
28(4)
31(3)
3(3)
-3(3)
0(3)
C(4)
22(4)
35(4)
26(4)
3(4)
-1(3)
7(5)
C(14)
17(4)
27(5)
33(4)
-11(4)
-2(3)
1(4)
C(13)
26(4)
28(4)
22(4)
1(3)
7(3)
6(4)
C(24)
24(4)
41(6)
34(4)
-5(4)
-1(3)
1(4)
N(9)
93(7)
28(4)
53(5)
1(4)
29(5)
10(5)
C(33)
35(4)
30(5)
23(4)
-6(4)
7(3)
-6(4)
C(23)
19(4)
41(5)
32(4)
-7(4)
6(4)
-4(4)
C(35)
36(4)
26(5)
27(4)
-3(3)
4(4)
3(4)
C(1)
27(4)
43(5)
26(4)
-12(4)
-5(3)
4(4)
C(11)
37(5)
11(4)
38(5)
-1(3)
3(4)
3(4)
C(5)
40(5)
46(6)
27(4)
5(4)
10(4)
5(5)
C(19)
32(5)
39(6)
47(5)
-2(4)
6(4)
-10(4)
C(16)
44(6)
55(6)
58(6)
-24(6)
-30(5)
14(6)
C(21)
44(6)
50(6)
51(6)
-8(5)
16(5)
-31(5)
C(2)
28(5)
34(5)
24(4)
-5(4)
-1(3)
9(4)
C(12)
33(5)
36(5)
21(4)
9(4)
-4(3)
8(4)
O(2)
32(4)
260(11)
32(4)
3(5)
3(3)
-16(5)
C(25)
30(4)
45(5)
39(4)
-12(5)
7(3)
-13(5)
C(3)
13(4)
29(4)
28(4)
7(3)
1(3)
1(4)
C(32)
56(6)
24(5)
29(5)
-4(4)
6(4)
1(4)
C(9)
31(5)
40(6)
34(4)
11(4)
-1(4)
-4(4)
C(6)
48(6)
47(6)
36(5)
10(4)
11(4)
17(5)
C(15)
40(5)
58(7)
36(5)
0(5)
-8(4)
10(5)
C(34)
64(6)
45(6)
28(5)
-4(4)
11(4)
0(5)
C(26)
36(5)
54(6)
59(6)
-16(5)
17(5)
0(5)
C(7)
50(6)
40(6)
48(5)
2(5)
18(5)
-8(5)
B
33(6)
22(5)
29(5)
0(4)
3(4)
-5(5)
C(18)
33(5)
42(6)
84(7)
-8(6)
13(5)
-6(5)
C(29)
37(5)
48(6)
52(6)
17(5)
8(4)
23(5)
C(38)
83(8)
43(6)
29(5)
3(4)
-2(5)
-4(6)
C(39)
51(6)
123(10)
36(5)
20(6)
6(5)
3(7)
C(31)
60(6)
28(5)
34(5)
5(4)
17(4)
-7(5)
C(17)
35(6)
54(7)
91(8)
-25(6)
-15(6)
-6(6)
C(22)
35(6)
64(7)
50(6)
-17(5)
19(5)
-24(5)
C(28)
54(7)
61(7)
72(7)
19(6)
20(6)
25(6)
C(8)
27(5)
51(6)
52(6)
5(5)
4(4)
-1(5)
C(40)
30(4)
95(8)
45(5)
26(6)
2(4)
7(6)
202
C(27)
47(6)
48(7)
83(8)
3(6)
16(6)
23(5)
C(36)
32(5)
70(7)
66(6)
18(6)
-6(4)
-2(5)
C(37)
65(7)
107(10)
49(6)
30(6)
-18(6)
-13(7)
___________________________________________________________________________
Table P.3 Bond lengths [Å] for TpPhCo(HpzPh,4CN)(NO3).
__________________________________
Co-O(1)
2.016(5)
Co-N(2)
2.060(5)
Co-N(7)
2.061(6)
Co-N(4)
2.065(6)
Co-N(6)
2.163(6)
N(3)-C(11)
1.346(8)
N(3)-N(4)
1.371(7)
N(3)-B
1.526(9)
N(10)-O(3)
1.226(8)
N(10)-O(2)
1.233(8)
N(10)-O(1)
1.250(8)
N(4)-C(13)
1.359(8)
N(5)-C(21)
1.334(8)
N(5)-N(6)
1.382(7)
N(5)-B
1.537(9)
N(2)-C(3)
1.347(8)
N(2)-N(1)
1.370(7)
N(8)-C(33)
1.322(8)
N(8)-N(7)
1.357(7)
N(1)-C(1)
1.331(8)
N(1)-B
1.523(9)
N(6)-C(23)
1.344(8)
N(7)-C(31)
1.314(9)
C(4)-C(9)
1.388(9)
C(4)-C(5)
1.395(9)
C(4)-C(3)
1.453(9)
C(14)-C(19)
1.368(9)
C(14)-C(15)
1.380(9)
C(14)-C(13)
1.463(9)
C(13)-C(12)
1.398(9)
C(24)-C(29)
1.361(10)
C(24)-C(25)
1.395(9)
C(24)-C(23)
1.470(10)
N(9)-C(34)
1.169(9)
C(33)-C(32)
1.378(9)
C(33)-C(35)
1.475(9)
C(23)-C(22)
1.390(10)
C(35)-C(40)
1.359(9)
C(35)-C(36)
1.379(9)
C(1)-C(2)
1.376(9)
C(11)-C(12)
1.349(9)
C(5)-C(6)
1.381(10)
C(19)-C(18)
1.379(10)
C(16)-C(15)
1.375(11)
C(16)-C(17)
1.383(12)
C(21)-C(22)
1.370(11)
C(2)-C(3)
1.395(9)
C(25)-C(26)
1.376(10)
C(32)-C(31)
1.379(9)
C(32)-C(34)
1.410(10)
203
C(9)-C(8)
1.394(10)
C(6)-C(7)
1.373(10)
C(26)-C(27)
1.359(11)
C(7)-C(8)
1.384(10)
C(18)-C(17)
1.383(11)
C(29)-C(28)
1.382(11)
C(38)-C(39)
1.342(10)
C(38)-C(37)
1.363(11)
C(39)-C(40)
1.376(10)
C(28)-C(27)
1.391(11)
C(36)-C(37)
1.382(10)
____________________________________
Table P.4 Bond angles [°] for TpPhCo(HpzPh,4CN)(NO3).
________________________________
O(1)-Co-N(2)
87.7(2)
O(1)-Co-N(7)
94.9(2)
N(2)-Co-N(7)
176.3(2)
O(1)-Co-N(4)
168.8(2)
N(2)-Co-N(4)
84.6(2)
N(7)-Co-N(4)
92.4(2)
O(1)-Co-N(6)
97.4(2)
N(2)-Co-N(6)
90.9(2)
N(7)-Co-N(6)
91.3(2)
N(4)-Co-N(6)
90.9(2)
C(11)-N(3)-N(4)
109.7(6)
C(11)-N(3)-B
129.1(7)
N(4)-N(3)-B
121.3(6)
O(3)-N(10)-O(2)
123.7(9)
O(3)-N(10)-O(1)
119.1(8)
O(2)-N(10)-O(1)
117.3(8)
N(10)-O(1)-Co
112.2(5)
C(13)-N(4)-N(3)
106.3(6)
C(13)-N(4)-Co
138.5(5)
N(3)-N(4)-Co
115.1(4)
C(21)-N(5)-N(6)
110.8(6)
C(21)-N(5)-B
129.7(7)
N(6)-N(5)-B
119.1(6)
C(3)-N(2)-N(1)
106.4(5)
C(3)-N(2)-Co
137.0(5)
N(1)-N(2)-Co
115.1(4)
C(33)-N(8)-N(7)
113.6(6)
C(1)-N(1)-N(2)
109.3(6)
C(1)-N(1)-B
130.4(7)
N(2)-N(1)-B
119.9(6)
C(23)-N(6)-N(5)
105.1(6)
C(23)-N(6)-Co
137.3(5)
N(5)-N(6)-Co
114.0(4)
C(31)-N(7)-N(8)
103.3(6)
C(31)-N(7)-Co
133.3(5)
N(8)-N(7)-Co
122.6(4)
C(9)-C(4)-C(5)
118.0(8)
C(9)-C(4)-C(3)
121.1(7)
C(5)-C(4)-C(3)
120.9(7)
C(19)-C(14)-C(15)
119.1(8)
C(19)-C(14)-C(13)
121.6(7)
C(15)-C(14)-C(13)
119.3(7)
204
N(4)-C(13)-C(12)
108.5(7)
N(4)-C(13)-C(14)
123.0(7)
C(12)-C(13)-C(14)
128.3(7)
C(29)-C(24)-C(25)
118.5(8)
C(29)-C(24)-C(23)
121.4(7)
C(25)-C(24)-C(23)
120.1(7)
N(8)-C(33)-C(32)
105.7(6)
N(8)-C(33)-C(35)
123.1(7)
C(32)-C(33)-C(35)
131.2(7)
N(6)-C(23)-C(22)
110.2(7)
N(6)-C(23)-C(24)
120.7(7)
C(22)-C(23)-C(24)
129.1(7)
C(40)-C(35)-C(36)
118.8(7)
C(40)-C(35)-C(33)
121.0(7)
C(36)-C(35)-C(33)
120.1(7)
N(1)-C(1)-C(2)
109.7(7)
N(3)-C(11)-C(12)
108.7(6)
C(6)-C(5)-C(4)
121.2(8)
C(14)-C(19)-C(18)
121.0(8)
C(15)-C(16)-C(17)
120.5(8)
N(5)-C(21)-C(22)
107.8(7)
C(1)-C(2)-C(3)
104.4(6)
C(11)-C(12)-C(13)
106.8(7)
C(26)-C(25)-C(24)
120.0(8)
N(2)-C(3)-C(2)
110.2(7)
N(2)-C(3)-C(4)
122.3(6)
C(2)-C(3)-C(4)
127.3(6)
C(33)-C(32)-C(31)
105.1(7)
C(33)-C(32)-C(34)
127.2(7)
C(31)-C(32)-C(34)
127.3(8)
C(4)-C(9)-C(8)
121.1(7)
C(7)-C(6)-C(5)
119.9(8)
C(16)-C(15)-C(14)
120.4(8)
N(9)-C(34)-C(32)
179.2(11)
C(27)-C(26)-C(25)
121.4(8)
C(6)-C(7)-C(8)
120.5(8)
N(1)-B-N(3)
108.2(6)
N(1)-B-N(5)
110.8(6)
N(3)-B-N(5)
108.3(6)
C(19)-C(18)-C(17)
120.0(9)
C(24)-C(29)-C(28)
121.4(8)
C(39)-C(38)-C(37)
119.4(8)
C(38)-C(39)-C(40)
121.6(8)
N(7)-C(31)-C(32)
112.4(7)
C(16)-C(17)-C(18)
118.9(9)
C(21)-C(22)-C(23)
106.1(7)
C(29)-C(28)-C(27)
119.7(9)
C(7)-C(8)-C(9)
119.3(8)
C(35)-C(40)-C(39)
120.0(8)
C(26)-C(27)-C(28)
118.9(9)
C(35)-C(36)-C(37)
120.3(8)
C(38)-C(37)-C(36)
119.9(9)
__________________________________
Symmetry transformations used to generate equivalent atoms:
205
Table Q.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for TpPhCu(HpzPh,4CN)(NO3). U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Cu(1)
10067(1)
7788(1)
1761(1)
11(1)
B(1)
10459(1)
9993(2)
2140(1)
14(1)
N(1)
11174(1)
8462(1)
1622(1)
14(1)
N(2)
11248(1)
9404(1)
1938(1)
14(1)
C(1)
12063(1)
9702(1)
1952(1)
16(1)
C(2)
12528(1)
8952(1)
1639(1)
16(1)
C(3)
11951(1)
8186(1)
1434(1)
14(1)
C(4)
12100(1)
7237(1)
1015(1)
15(1)
C(5)
12811(1)
6663(1)
1287(1)
19(1)
C(6)
12960(1)
5785(2)
881(1)
23(1)
C(7)
12411(1)
5468(2)
200(1)
23(1)
C(8)
11709(1)
6029(2)
-78(1)
22(1)
C(9)
11558(1)
6913(1)
325(1)
18(1)
N(3)
9508(1)
8939(1)
1103(1)
13(1)
N(4)
9779(1)
9858(1)
1376(1)
13(1)
C(10)
9396(1)
10546(1)
861(1)
16(1)
C(11)
8863(1)
10089(1)
239(1)
15(1)
C(12)
8960(1)
9075(1)
406(1)
13(1)
C(13)
8579(1)
8254(1)
-111(1)
14(1)
C(14)
7791(1)
8379(2)
-585(1)
20(1)
C(15)
7454(1)
7635(2)
-1122(1)
26(1)
C(16)
7893(1)
6755(2)
-1183(1)
26(1)
C(17)
8669(1)
6615(2)
-706(1)
22(1)
C(18)
9010(1)
7361(1)
-178(1)
18(1)
N(5)
9985(1)
8587(1)
3010(1)
15(1)
N(6)
10116(1)
9582(1)
2937(1)
15(1)
C(19)
9791(1)
10071(2)
3571(1)
20(1)
C(38)
9444(1)
9392(2)
4079(1)
21(1)
C(21)
9581(1)
8472(1)
3710(1)
16(1)
C(22)
9335(1)
7480(1)
3986(1)
17(1)
C(23)
8555(1)
7335(2)
4311(1)
20(1)
C(24)
8306(1)
6398(2)
4535(1)
24(1)
C(25)
8833(2)
5592(2)
4443(1)
26(1)
C(26)
9612(1)
5732(2)
4141(1)
26(1)
C(27)
9866(1)
6668(2)
3914(1)
21(1)
N(7)
8943(1)
7110(1)
1875(1)
13(1)
N(8)
8211(1)
7640(1)
1862(1)
14(1)
C(28)
7559(1)
7103(1)
2080(1)
14(1)
C(29)
7884(1)
6160(1)
2257(1)
16(1)
C(30)
8743(1)
6205(1)
2114(1)
16(1)
C(31)
6691(1)
7500(1)
2092(1)
16(1)
C(32)
6207(1)
7727(2)
1336(1)
24(1)
C(33)
5379(1)
8072(2)
1346(2)
31(1)
C(34)
5047(1)
8204(2)
2114(2)
29(1)
C(35)
5531(1)
7984(2)
2861(2)
32(1)
C(36)
6350(1)
7620(2)
2856(2)
28(1)
C(37)
7443(1)
5335(1)
2563(1)
20(1)
N(9)
7104(1)
4681(1)
2836(1)
25(1)
N(10)
10688(1)
5806(1)
1834(1)
18(1)
O(1)
10732(1)
6643(1)
2223(1)
17(1)
O(2)
10232(1)
5726(1)
1152(1)
23(1)
O(3)
11102(1)
5114(1)
2172(1)
31(1)
206
___________________________________________________________________________
Table Q.2 Anisotropic displacement parameters (Å2 x 103) for TpPhCu(HpzPh,4CN)(NO3). The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b*
U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Cu(1)
11(1)
10(1)
13(1)
1(1)
2(1)
0(1)
B(1)
15(1)
12(1)
16(1)
-2(1)
2(1)
0(1)
N(1)
14(1)
13(1)
14(1)
1(1)
2(1)
0(1)
N(2)
14(1)
13(1)
13(1)
0(1)
1(1)
-3(1)
C(1)
16(1)
18(1)
13(1)
2(1)
-2(1)
-4(1)
C(2)
13(1)
21(1)
14(1)
2(1)
0(1)
-2(1)
C(3)
11(1)
17(1)
13(1)
4(1)
1(1)
2(1)
C(4)
13(1)
16(1)
17(1)
5(1)
6(1)
1(1)
C(5)
17(1)
23(1)
19(1)
6(1)
5(1)
2(1)
C(6)
19(1)
23(1)
29(1)
10(1)
8(1)
8(1)
C(7)
28(1)
17(1)
28(1)
1(1)
16(1)
2(1)
C(8)
24(1)
23(1)
21(1)
-3(1)
7(1)
-3(1)
C(9)
15(1)
21(1)
19(1)
3(1)
3(1)
2(1)
N(3)
13(1)
10(1)
14(1)
-1(1)
2(1)
-2(1)
N(4)
15(1)
10(1)
16(1)
-1(1)
4(1)
-1(1)
C(10)
18(1)
11(1)
19(1)
2(1)
7(1)
1(1)
C(11)
16(1)
15(1)
15(1)
2(1)
2(1)
3(1)
C(12)
12(1)
14(1)
12(1)
1(1)
4(1)
1(1)
C(13)
16(1)
16(1)
10(1)
1(1)
4(1)
-2(1)
C(14)
20(1)
20(1)
18(1)
3(1)
1(1)
-1(1)
C(15)
24(1)
32(1)
20(1)
2(1)
-7(1)
-7(1)
C(16)
36(1)
24(1)
16(1)
-3(1)
-1(1)
-11(1)
C(17)
31(1)
18(1)
18(1)
-2(1)
7(1)
-2(1)
C(18)
19(1)
20(1)
14(1)
0(1)
2(1)
-1(1)
N(5)
16(1)
15(1)
14(1)
0(1)
2(1)
-1(1)
N(6)
14(1)
14(1)
16(1)
-3(1)
2(1)
-2(1)
C(19)
20(1)
20(1)
21(1)
-8(1)
5(1)
-2(1)
C(38)
23(1)
24(1)
19(1)
-6(1)
8(1)
-3(1)
C(21)
14(1)
21(1)
11(1)
-2(1)
1(1)
-2(1)
C(22)
21(1)
21(1)
9(1)
0(1)
2(1)
-2(1)
C(23)
21(1)
23(1)
16(1)
-2(1)
4(1)
0(1)
C(24)
26(1)
30(1)
18(1)
0(1)
8(1)
-8(1)
C(25)
40(1)
21(1)
19(1)
5(1)
5(1)
-6(1)
C(26)
35(1)
24(1)
20(1)
6(1)
4(1)
7(1)
C(27)
22(1)
27(1)
14(1)
4(1)
4(1)
3(1)
N(7)
13(1)
12(1)
15(1)
0(1)
4(1)
2(1)
N(8)
13(1)
11(1)
17(1)
2(1)
4(1)
2(1)
C(28)
16(1)
13(1)
14(1)
0(1)
3(1)
-1(1)
C(29)
17(1)
14(1)
19(1)
1(1)
3(1)
-2(1)
C(30)
17(1)
13(1)
19(1)
0(1)
3(1)
0(1)
C(31)
14(1)
13(1)
22(1)
2(1)
4(1)
-2(1)
C(32)
25(1)
27(1)
21(1)
2(1)
3(1)
4(1)
C(33)
25(1)
32(1)
32(1)
4(1)
-7(1)
6(1)
C(34)
16(1)
27(1)
44(1)
4(1)
1(1)
5(1)
C(35)
22(1)
44(1)
31(1)
2(1)
11(1)
10(1)
C(36)
20(1)
39(1)
24(1)
6(1)
4(1)
6(1)
C(37)
17(1)
15(1)
27(1)
0(1)
4(1)
1(1)
N(9)
22(1)
16(1)
39(1)
3(1)
10(1)
0(1)
N(10)
15(1)
18(1)
22(1)
5(1)
7(1)
3(1)
207
O(1)
17(1)
16(1)
19(1)
2(1)
2(1)
1(1)
O(2)
22(1)
28(1)
21(1)
-5(1)
2(1)
1(1)
O(3)
34(1)
19(1)
40(1)
5(1)
0(1)
12(1)
___________________________________________________________________________
Table Q.3 Bond lengths [Å] for TpPhCu(HpzPh,4CN)(NO3).
____________________________________
Cu(1)-O(1)
1.9664(13)
Cu(1)-N(1)
2.0033(15)
Cu(1)-N(3)
2.0206(15)
Cu(1)-N(7)
2.0229(15)
Cu(1)-N(5)
2.2669(16)
B(1)-N(6)
1.528(3)
B(1)-N(2)
1.540(3)
B(1)-N(4)
1.540(3)
N(1)-C(3)
1.345(2)
N(1)-N(2)
1.368(2)
N(2)-C(1)
1.346(2)
C(1)-C(2)
1.374(3)
C(2)-C(3)
1.395(3)
C(3)-C(4)
1.473(3)
C(4)-C(9)
1.384(3)
C(4)-C(5)
1.394(3)
C(5)-C(6)
1.381(3)
C(6)-C(7)
1.378(3)
C(7)-C(8)
1.375(3)
C(8)-C(9)
1.388(3)
N(3)-C(12)
1.341(2)
N(3)-N(4)
1.368(2)
N(4)-C(10)
1.337(2)
C(10)-C(11)
1.371(3)
C(11)-C(12)
1.400(2)
C(12)-C(13)
1.469(3)
C(13)-C(14)
1.393(3)
C(13)-C(18)
1.396(3)
C(14)-C(15)
1.385(3)
C(15)-C(16)
1.385(3)
C(16)-C(17)
1.381(3)
C(17)-C(18)
1.382(3)
N(5)-C(21)
1.345(2)
N(5)-N(6)
1.366(2)
N(6)-C(19)
1.346(2)
C(19)-C(38)
1.372(3)
C(38)-C(21)
1.399(3)
C(21)-C(22)
1.474(3)
C(22)-C(27)
1.391(3)
C(22)-C(23)
1.398(3)
C(23)-C(24)
1.384(3)
C(24)-C(25)
1.387(3)
C(25)-C(26)
1.379(3)
C(26)-C(27)
1.385(3)
N(7)-C(30)
1.327(2)
N(7)-N(8)
1.357(2)
N(8)-C(28)
1.335(2)
C(28)-C(29)
1.391(3)
C(28)-C(31)
1.473(3)
C(29)-C(30)
1.399(3)
208
C(29)-C(37)
1.427(3)
C(31)-C(32)
1.384(3)
C(31)-C(36)
1.385(3)
C(32)-C(33)
1.389(3)
C(33)-C(34)
1.384(3)
C(34)-C(35)
1.369(3)
C(35)-C(36)
1.384(3)
C(37)-N(9)
1.140(2)
N(10)-O(3)
1.229(2)
N(10)-O(2)
1.237(2)
N(10)-O(1)
1.287(2)
__________________________________
Table Q.4 Bond angles [°] for TpPhCu(HpzPh,4CN)(NO3).
__________________________________
O(1)-Cu(1)-N(1)
87.73(6)
O(1)-Cu(1)-N(3)
169.57(6)
N(1)-Cu(1)-N(3)
86.14(6)
O(1)-Cu(1)-N(7)
92.84(6)
N(1)-Cu(1)-N(7)
178.81(6)
N(3)-Cu(1)-N(7)
93.15(6)
O(1)-Cu(1)-N(5)
97.35(6)
N(1)-Cu(1)-N(5)
90.62(6)
N(3)-Cu(1)-N(5)
91.15(6)
N(7)-Cu(1)-N(5)
90.35(6)
N(6)-B(1)-N(2)
110.44(15)
N(6)-B(1)-N(4)
109.02(15)
N(2)-B(1)-N(4)
106.74(15)
C(3)-N(1)-N(2)
107.11(14)
C(3)-N(1)-Cu(1)
136.52(12)
N(2)-N(1)-Cu(1)
115.06(11)
C(1)-N(2)-N(1)
109.16(15)
C(1)-N(2)-B(1)
129.42(15)
N(1)-N(2)-B(1)
121.15(14)
N(2)-C(1)-C(2)
108.69(16)
C(1)-C(2)-C(3)
105.65(17)
N(1)-C(3)-C(2)
109.38(16)
N(1)-C(3)-C(4)
122.25(16)
C(2)-C(3)-C(4)
128.21(17)
C(9)-C(4)-C(5)
118.54(18)
C(9)-C(4)-C(3)
120.94(17)
C(5)-C(4)-C(3)
120.48(18)
C(6)-C(5)-C(4)
120.40(19)
C(7)-C(6)-C(5)
120.40(19)
C(8)-C(7)-C(6)
119.86(19)
C(7)-C(8)-C(9)
120.0(2)
C(4)-C(9)-C(8)
120.83(18)
C(12)-N(3)-N(4)
106.72(14)
C(12)-N(3)-Cu(1)
137.53(12)
N(4)-N(3)-Cu(1)
115.56(11)
C(10)-N(4)-N(3)
109.44(15)
C(10)-N(4)-B(1)
128.96(15)
N(3)-N(4)-B(1)
121.52(14)
N(4)-C(10)-C(11)
109.08(16)
C(10)-C(11)-C(12)
105.05(17)
N(3)-C(12)-C(11)
109.68(16)
N(3)-C(12)-C(13)
123.03(16)
209
C(11)-C(12)-C(13)
127.18(17)
C(14)-C(13)-C(18)
118.65(17)
C(14)-C(13)-C(12)
119.88(17)
C(18)-C(13)-C(12)
121.38(17)
C(15)-C(14)-C(13)
120.36(19)
C(16)-C(15)-C(14)
120.2(2)
C(17)-C(16)-C(15)
120.12(19)
C(16)-C(17)-C(18)
119.77(19)
C(17)-C(18)-C(13)
120.91(19)
C(21)-N(5)-N(6)
105.79(15)
C(21)-N(5)-Cu(1)
137.62(13)
N(6)-N(5)-Cu(1)
111.85(11)
C(19)-N(6)-N(5)
110.34(15)
C(19)-N(6)-B(1)
129.20(16)
N(5)-N(6)-B(1)
119.74(14)
N(6)-C(19)-C(38)
108.36(17)
C(19)-C(38)-C(21)
105.11(17)
N(5)-C(21)-C(38)
110.39(17)
N(5)-C(21)-C(22)
120.77(16)
C(38)-C(21)-C(22)
128.84(17)
C(27)-C(22)-C(23)
118.79(18)
C(27)-C(22)-C(21)
120.87(17)
C(23)-C(22)-C(21)
120.33(17)
C(24)-C(23)-C(22)
120.51(19)
C(23)-C(24)-C(25)
120.04(19)
C(26)-C(25)-C(24)
119.78(19)
C(25)-C(26)-C(27)
120.5(2)
C(26)-C(27)-C(22)
120.37(19)
C(30)-N(7)-N(8)
105.24(14)
C(30)-N(7)-Cu(1)
132.80(13)
N(8)-N(7)-Cu(1)
120.88(11)
C(28)-N(8)-N(7)
112.85(14)
N(8)-C(28)-C(29)
105.72(16)
N(8)-C(28)-C(31)
123.37(16)
C(29)-C(28)-C(31)
130.91(17)
C(28)-C(29)-C(30)
105.75(16)
C(28)-C(29)-C(37)
126.92(18)
C(30)-C(29)-C(37)
127.25(17)
N(7)-C(30)-C(29)
110.44(16)
C(32)-C(31)-C(36)
119.76(19)
C(32)-C(31)-C(28)
120.02(18)
C(36)-C(31)-C(28)
120.20(18)
C(31)-C(32)-C(33)
120.0(2)
C(34)-C(33)-C(32)
119.9(2)
C(35)-C(34)-C(33)
120.0(2)
C(34)-C(35)-C(36)
120.6(2)
C(35)-C(36)-C(31)
119.8(2)
N(9)-C(37)-C(29)
177.6(2)
O(3)-N(10)-O(2)
123.09(17)
O(3)-N(10)-O(1)
117.54(17)
O(2)-N(10)-O(1)
119.36(15)
N(10)-O(1)-Cu(1)
121.00(11)
___________________________________
Symmetry transformations used to generate equivalent atoms:
210
Table R.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2
x 103) for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4. U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Rh(1)
3649(1)
4394(1)
4118(1)
9(1)
C(1)
6277(2)
5791(1)
3471(1)
12(1)
O(1)
4747(1)
5061(1)
2967(1)
14(1)
O(2)
7308(1)
6155(1)
4611(1)
15(1)
C(2)
6986(2)
6364(1)
2592(1)
16(1)
F(1)
6667(1)
7701(1)
2840(1)
32(1)
F(2)
6146(1)
5661(1)
1349(1)
28(1)
F(3)
8770(1)
6288(1)
2786(1)
28(1)
C(3)
6583(2)
2723(1)
4556(1)
13(1)
O(3)
4995(1)
2635(1)
3817(1)
15(1)
O(4)
7542(1)
3772(1)
5456(1)
15(1)
C(4)
7453(2)
1323(1)
4334(1)
19(1)
F(4)
9255(1)
1515(1)
4843(1)
47(1)
F(5)
6740(2)
547(1)
4846(1)
44(1)
F(6)
7101(1)
599(1)
3089(1)
28(1)
N(1)
1159(1)
3296(1)
2519(1)
12(1)
N(2)
1046(1)
2776(1)
1250(1)
12(1)
C(5)
-694(1)
2357(1)
477(1)
11(1)
C(6)
-1198(2)
1837(1)
-972(1)
13(1)
C(7)
427(2)
1234(2)
-1432(1)
23(1)
C(8)
-2828(2)
689(2)
-1565(1)
27(1)
C(9)
-1724(2)
3104(2)
-1388(1)
25(1)
C(10)
-1778(1)
2617(1)
1314(1)
13(1)
C(11)
-3729(2)
2402(1)
1006(1)
17(1)
N(3)
-5294(2)
2279(1)
817(1)
24(1)
C(12)
-550(2)
3200(1)
2566(1)
14(1)
___________________________________________________________________________
Table R.2 Anisotropic displacement parameters (Å2 x 103) for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4.
The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a*
b* U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Rh(1)
6(1)
11(1)
8(1)
2(1)
1(1)
-1(1)
C(1)
11(1)
15(1)
12(1)
5(1)
4(1)
2(1)
O(1)
11(1)
19(1)
11(1)
5(1)
2(1)
-1(1)
O(2)
12(1)
20(1)
12(1)
5(1)
2(1)
-3(1)
C(2)
14(1)
20(1)
15(1)
8(1)
5(1)
1(1)
F(1)
45(1)
23(1)
40(1)
17(1)
23(1)
8(1)
F(2)
28(1)
40(1)
15(1)
10(1)
5(1)
-6(1)
F(3)
15(1)
47(1)
30(1)
22(1)
9(1)
3(1)
C(3)
12(1)
14(1)
14(1)
4(1)
5(1)
2(1)
O(3)
12(1)
13(1)
15(1)
2(1)
1(1)
1(1)
O(4)
10(1)
15(1)
14(1)
2(1)
1(1)
2(1)
C(4)
16(1)
16(1)
20(1)
3(1)
3(1)
4(1)
F(4)
18(1)
25(1)
66(1)
-5(1)
-11(1)
9(1)
F(5)
73(1)
28(1)
56(1)
28(1)
43(1)
23(1)
F(6)
31(1)
23(1)
24(1)
0(1)
9(1)
10(1)
N(1)
9(1)
17(1)
9(1)
2(1)
1(1)
-1(1)
N(2)
7(1)
17(1)
10(1)
2(1)
2(1)
0(1)
211
C(5)
7(1)
14(1)
10(1)
3(1)
1(1)
0(1)
C(6)
10(1)
19(1)
9(1)
3(1)
2(1)
1(1)
C(7)
18(1)
35(1)
14(1)
5(1)
8(1)
9(1)
C(8)
23(1)
34(1)
15(1)
-2(1)
3(1)
-12(1)
C(9)
28(1)
31(1)
18(1)
13(1)
7(1)
11(1)
C(10)
7(1)
18(1)
11(1)
2(1)
2(1)
0(1)
C(11)
11(1)
22(1)
13(1)
1(1)
4(1)
0(1)
N(3)
12(1)
33(1)
19(1)
1(1)
5(1)
-1(1)
C(12)
9(1)
20(1)
11(1)
2(1)
2(1)
-1(1)
___________________________________________________________________________
Table R.3 Bond lengths [Å] for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4.
___________________________________
Rh(1)-O(2)#1
2.0345(8)
Rh(1)-O(3)
2.0352(8)
Rh(1)-O(1)
2.0354(8)
Rh(1)-O(4)#1
2.0400(8)
Rh(1)-N(1)
2.2099(9)
Rh(1)-Rh(1)#1
2.41695(16)
C(1)-O(1)
1.2510(13)
C(1)-O(2)
1.2561(13)
C(1)-C(2)
1.5355(15)
O(2)-Rh(1)#1
2.0345(8)
C(2)-F(3)
1.3175(14)
C(2)-F(1)
1.3264(14)
C(2)-F(2)
1.3315(14)
C(3)-O(3)
1.2510(13)
C(3)-O(4)
1.2538(13)
C(3)-C(4)
1.5400(16)
O(4)-Rh(1)#1
2.0399(8)
C(4)-F(4)
1.3153(15)
C(4)-F(6)
1.3228(14)
C(4)-F(5)
1.3239(16)
N(1)-C(12)
1.3196(14)
N(1)-N(2)
1.3573(12)
N(2)-C(5)
1.3445(13)
C(5)-C(10)
1.3980(14)
C(5)-C(6)
1.5071(15)
C(6)-C(7)
1.5261(16)
C(6)-C(8)
1.5295(17)
C(6)-C(9)
1.5351(17)
C(10)-C(12)
1.4073(15)
C(10)-C(11)
1.4217(15)
C(11)-N(3)
1.1457(15)
____________________________________
Table R.4 Bond angles [°] for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4.
__________________________________
O(2)#1-Rh(1)-O(3)
89.04(3)
O(2)#1-Rh(1)-O(1)
175.51(3)
O(3)-Rh(1)-O(1)
92.10(3)
O(2)#1-Rh(1)-O(4)#1
90.17(3)
O(3)-Rh(1)-O(4)#1
175.68(3)
O(1)-Rh(1)-O(4)#1
88.38(3)
O(2)#1-Rh(1)-N(1)
91.47(3)
O(3)-Rh(1)-N(1)
92.61(3)
212
O(1)-Rh(1)-N(1)
92.82(3)
O(4)#1-Rh(1)-N(1)
91.66(3)
O(2)#1-Rh(1)-Rh(1)#1
88.05(2)
O(3)-Rh(1)-Rh(1)#1
87.79(2)
O(1)-Rh(1)-Rh(1)#1
87.65(2)
O(4)#1-Rh(1)-Rh(1)#1
87.93(2)
N(1)-Rh(1)-Rh(1)#1
179.37(2)
O(1)-C(1)-O(2)
129.19(10)
O(1)-C(1)-C(2)
116.01(9)
O(2)-C(1)-C(2)
114.78(10)
C(1)-O(1)-Rh(1)
117.77(7)
C(1)-O(2)-Rh(1)#1
117.25(7)
F(3)-C(2)-F(1)
108.71(10)
F(3)-C(2)-F(2)
107.62(10)
F(1)-C(2)-F(2)
107.90(10)
F(3)-C(2)-C(1)
111.33(9)
F(1)-C(2)-C(1)
108.96(9)
F(2)-C(2)-C(1)
112.20(10)
O(3)-C(3)-O(4)
129.45(10)
O(3)-C(3)-C(4)
114.55(10)
O(4)-C(3)-C(4)
115.99(10)
C(3)-O(3)-Rh(1)
117.60(7)
C(3)-O(4)-Rh(1)#1
117.14(7)
F(4)-C(4)-F(6)
107.34(11)
F(4)-C(4)-F(5)
108.90(12)
F(6)-C(4)-F(5)
107.83(11)
F(4)-C(4)-C(3)
112.31(10)
F(6)-C(4)-C(3)
111.00(10)
F(5)-C(4)-C(3)
109.34(10)
C(12)-N(1)-N(2)
105.74(9)
C(12)-N(1)-Rh(1)
127.59(7)
N(2)-N(1)-Rh(1)
125.91(7)
C(5)-N(2)-N(1)
113.05(9)
N(2)-C(5)-C(10)
104.88(9)
N(2)-C(5)-C(6)
123.24(9)
C(10)-C(5)-C(6)
131.74(9)
C(5)-C(6)-C(7)
110.90(9)
C(5)-C(6)-C(8)
110.36(9)
C(7)-C(6)-C(8)
108.69(10)
C(5)-C(6)-C(9)
107.12(9)
C(7)-C(6)-C(9)
109.72(10)
C(8)-C(6)-C(9)
110.04(11)
C(5)-C(10)-C(12)
106.11(9)
C(5)-C(10)-C(11)
128.59(10)
C(12)-C(10)-C(11)
125.26(10)
N(3)-C(11)-C(10)
176.56(13)
N(1)-C(12)-C(10)
110.21(9)
___________________________________
Symmetry transformations used to generate equivalent atoms:
#1 -x+1,-y+1,-z+1
213
Table S.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x
103) for (pzPh,4CN)2Ni(cyclam). U(eq) is defined as one third of the trace of the orthogonalized
Uij tensor.
___________________________________________________________________________
x
y
z
U(eq)
___________________________________________________________________________
Ni(1)
10000
5000
10000
19(1)
N(1)
10306(1)
3879(1)
9266(1)
23(1)
N(2)
10564(1)
6338(1)
9464(1)
22(1)
N(3)
8274(1)
5308(1)
9551(1)
21(1)
N(4)
8207(1)
6135(1)
9099(1)
22(1)
N(5)
4261(2)
4829(1)
9003(1)
30(1)
C(1)
10318(2)
2802(2)
9594(1)
26(1)
C(2)
11371(2)
4100(2)
8871(1)
26(1)
C(3)
11308(2)
5221(2)
8548(1)
28(1)
C(4)
11519(2)
6207(2)
8985(1)
25(1)
C(5)
10700(2)
7251(2)
9925(1)
25(1)
C(6)
7226(2)
4828(1)
9583(1)
22(1)
C(7)
6444(2)
5322(1)
9153(1)
20(1)
C(8)
7113(2)
6154(1)
8857(1)
20(1)
C(9)
6762(2)
6978(2)
8377(1)
21(1)
C(10)
5794(2)
6824(2)
7969(1)
28(1)
C(11)
5462(2)
7631(2)
7533(1)
35(1)
C(12)
6088(2)
8598(2)
7495(1)
36(1)
C(13)
7051(2)
8758(2)
7896(1)
33(1)
C(14)
7385(2)
7959(2)
8333(1)
26(1)
C(15)
5242(2)
5049(1)
9070(1)
22(1)
___________________________________________________________________________
Table S.2 Anisotropic displacement parameters (Å2 x 103) for (pzPh,4CN)2Ni(cyclam). The
anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b*
U12 ].
___________________________________________________________________________
U11
U22
U33
U23
U13
U12
___________________________________________________________________________
Ni(1)
16(1)
18(1)
22(1)
1(1)
-3(1)
0(1)
N(1)
20(1)
22(1)
27(1)
-1(1)
-1(1)
-1(1)
N(2)
21(1)
21(1)
24(1)
1(1)
-2(1)
-2(1)
N(3)
20(1)
21(1)
23(1)
2(1)
-4(1)
1(1)
N(4)
19(1)
23(1)
23(1)
2(1)
-4(1)
1(1)
N(5)
23(1)
36(1)
32(1)
2(1)
-3(1)
-4(1)
C(1)
25(1)
21(1)
33(1)
-3(1)
-5(1)
1(1)
C(2)
21(1)
30(1)
27(1)
-5(1)
2(1)
-1(1)
C(3)
24(1)
36(1)
24(1)
0(1)
0(1)
-3(1)
C(4)
20(1)
29(1)
26(1)
7(1)
-1(1)
-4(1)
C(5)
24(1)
20(1)
33(1)
2(1)
-6(1)
-2(1)
C(6)
22(1)
20(1)
23(1)
1(1)
-2(1)
0(1)
C(7)
17(1)
22(1)
21(1)
-2(1)
-2(1)
1(1)
C(8)
17(1)
22(1)
20(1)
-3(1)
-1(1)
2(1)
C(9)
19(1)
26(1)
19(1)
-1(1)
2(1)
5(1)
C(10)
25(1)
34(1)
24(1)
2(1)
-2(1)
2(1)
C(11)
31(1)
49(1)
24(1)
3(1)
-5(1)
11(1)
C(12)
47(1)
37(1)
25(1)
8(1)
3(1)
14(1)
C(13)
44(1)
28(1)
27(1)
3(1)
5(1)
2(1)
C(14)
28(1)
28(1)
22(1)
-1(1)
1(1)
2(1)
C(15)
24(1)
23(1)
20(1)
0(1)
-1(1)
1(1)
___________________________________________________________________________
214
Table S.3 Bond lengths [Å] for (pzPh,4CN)2Ni(cyclam).
____________________________________
Ni(1)-N(1)#1
2.0729(15)
Ni(1)-N(1)
2.0729(15)
Ni(1)-N(2)
2.0787(14)
Ni(1)-N(2)#1
2.0787(14)
Ni(1)-N(3)#1
2.2002(14)
Ni(1)-N(3)
2.2003(14)
N(1)-C(1)
1.482(2)
N(1)-C(2)
1.484(2)
N(2)-C(4)
1.476(2)
N(2)-C(5)
1.477(2)
N(3)-C(6)
1.329(2)
N(3)-N(4)
1.380(2)
N(4)-C(8)
1.339(2)
N(5)-C(15)
1.154(3)
C(1)-C(5)#1
1.526(3)
C(2)-C(3)
1.529(3)
C(3)-C(4)
1.527(3)
C(5)-C(1)#1
1.526(3)
C(6)-C(7)
1.393(3)
C(7)-C(8)
1.410(3)
C(7)-C(15)
1.416(3)
C(8)-C(9)
1.471(2)
C(9)-C(14)
1.397(3)
C(9)-C(10)
1.397(3)
C(10)-C(11)
1.389(3)
C(11)-C(12)
1.384(3)
C(12)-C(13)
1.386(3)
C(13)-C(14)
1.383(3)
_______________________________________
Table S.4 Bond angles [°] for (pzPh,4CN)2Ni(cyclam).
__________________________________
N(1)#1-Ni(1)-N(1)
179.999(1)
N(1)#1-Ni(1)-N(2)
85.27(6)
N(1)-Ni(1)-N(2)
94.73(6)
N(1)#1-Ni(1)-N(2)#1
94.73(6)
N(1)-Ni(1)-N(2)#1
85.27(6)
N(2)-Ni(1)-N(2)#1
180.0
N(1)#1-Ni(1)-N(3)#1
87.45(6)
N(1)-Ni(1)-N(3)#1
92.55(6)
N(2)-Ni(1)-N(3)#1
94.87(6)
N(2)#1-Ni(1)-N(3)#1
85.13(6)
N(1)#1-Ni(1)-N(3)
92.55(6)
N(1)-Ni(1)-N(3)
87.45(6)
N(2)-Ni(1)-N(3)
85.13(6)
N(2)#1-Ni(1)-N(3)
94.87(6)
N(3)#1-Ni(1)-N(3)
180.00(3)
C(1)-N(1)-C(2)
113.92(14)
C(1)-N(1)-Ni(1)
105.02(11)
C(2)-N(1)-Ni(1)
114.70(11)
C(4)-N(2)-C(5)
115.86(14)
C(4)-N(2)-Ni(1)
119.76(11)
C(5)-N(2)-Ni(1)
106.71(11)
C(6)-N(3)-N(4)
108.00(14)
C(6)-N(3)-Ni(1)
134.50(12)
215
N(4)-N(3)-Ni(1)
117.38(11)
C(8)-N(4)-N(3)
108.39(14)
N(1)-C(1)-C(5)#1
109.14(14)
N(1)-C(2)-C(3)
111.43(15)
C(4)-C(3)-C(2)
116.47(15)
N(2)-C(4)-C(3)
111.48(15)
N(2)-C(5)-C(1)#1
107.90(14)
N(3)-C(6)-C(7)
110.30(16)
C(6)-C(7)-C(8)
104.26(15)
C(6)-C(7)-C(15)
126.05(17)
C(8)-C(7)-C(15)
129.64(17)
N(4)-C(8)-C(7)
109.05(15)
N(4)-C(8)-C(9)
120.96(15)
C(7)-C(8)-C(9)
129.95(16)
C(14)-C(9)-C(10)
118.39(17)
C(14)-C(9)-C(8)
119.82(16)
C(10)-C(9)-C(8)
121.77(16)
C(11)-C(10)-C(9)
120.47(19)
C(12)-C(11)-C(10)
120.48(19)
C(11)-C(12)-C(13)
119.48(18)
C(14)-C(13)-C(12)
120.35(19)
C(13)-C(14)-C(9)
120.82(18)
N(5)-C(15)-C(7)
179.8(2)
___________________________________
Symmetry transformations used to generate equivalent atoms:
#1 -x+2,-y+1,-z+2
216