CYANO-SUBSTITUTED POLYPYRAZOLYLBORATE METAL COMPLEXES A Dissertation by Ningfeng Zhao Submitted to the College of Liberal Arts & Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirement for the degree of Doctor of Philosophy December 2005 CYANO-SUBSTITUTED POLYPYRAZOLYLBORATE METAL COMPLEXES I have examined the final copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy with a major in Chemistry. David M. Eichhorn, Committee Chair We have read this dissertation and recommend its acceptance: D. Paul Rillema, Committee Member William C. Groutas, Committee Member Michael J. VanStipdonk, Committee Member Peer H.Moore-Jansen, Committee Member Accepted for the College of Liberal Arts & Sciences William D. Bischoff, Dean Accepted for the Graduate School Susan K. Kovar, Dean ii DEDICATION For My Parents iii ACKNOWLEDGEMENTS The first and the deepest appreciation, with all my heart, should be given to my parents and my wife. My parents are the first instructors of my life and have taught me how to be a man. Without their indoctrination and loving care, I could never achieve so far. There is so much love in my heart that no words can express enough. I wish my parents will be proud of me and I believe they are. My wonderful wife, Liny, is the other half of my life. She is always there with love, encouragement and help. We have been together through a lot and it is my fortune to have her by my side. Dr. David Eichhorn, my advisor, is the one I should give my special thanks and respect. Things could be difficult without him. I believe it is my luck to have David as my director. His intelligence, his patience and his graciousness have impressed me and helped me all along the way. For five years he has always been willing to offer directions, suggestions and, of course, the money. He is the one who leads my way to this Ph.D. degree. I would like to thank all the professors and staff of the Chemistry Department at Wichita State University, especially my committee members: Dr. Rillema, Dr. Groutas, and Dr. Van Stipdonk. They built my knowledge of chemistry and showed me examples of how to be a good scientist and teacher. I would not forget my labmates: Dr. Panja, Christopher Siemer, Curtis Moore and Joshua iv Zimmerman and my best friend here, Wei Huang. We have always been working together and had a lot of fun. They helped to discuss and comment on my results, whether good or bad. I wish you guys good luck in the future. At last, I would like to acknowledge everyone who has helped me on my way to this Ph.D. degree. The past five years in Wichita were great and will be forever in my mind. v ABSTRACT Polypyrazolylborates have become one of the most popular ligands used in inorganic and organometallic chemistry. Because of the electron-withdrawing and potential coordination property of the cyano group, as well as the steric effect of bulky substituents on metal complexes, we were trying to synthesize new trispyrazolylborates carrying both these substituents, which will potentially produce molecular materials with desired electronic and magnetic properties. Successful syntheses of TpPh,4CN, Tpt-Bu,4CN and TpMe2,4CN are reported here. Thallium salts of TpPh,4CN and Tpt-Bu,4CN were made for structure characterization. Steric effects of these bulky groups and short contacts between CN substituents and metal ion were observed. The instability of the TpMe2,4CN ligand was detected. Attempts were also made to produce some heteroscorpionates. Although the desired product was detected, final yields were too random to control. Manganese, iron, cobalt and copper complexes of these new ligands were synthesized and studied by X-ray crystallography. Ligand isomerization was revealed in (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe complexes, possibly due to reaction involving solvent or oxygen. The rearranged pyrazole in the ligand has a much shorter metal-N bond thus reducing the symmetry around the metal ion. Both copper(I) and copper(II) complexes of TpPh,4CN and Tpt-Bu,4CN ligands were synthesized. The cyano substituents in some of vi these complexes show strong electron-withdrawing property by reducing the electron density on the pyrazole rings and the metal center. X-ray crystallography shows that [TpPh,4CNCu]n and [Tpt-Bu,4CNCu]n have 1-dimension polymer structures with one CN substituent coordinate to the neighboring metal. They represent the first crystallographically characterized examples of this kind of cyano bridged polymers. Some metal pyrazole complexes were also isolated due to the decomposition of the ligand. CN-metal contacts were revealed in {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n and (Hpzt-Bu,CN)2CuCl2, reaffirming the coordination potential of the cyano substituent. Attempts were made to construct heterogeneous cyano bridging coordination polymers. Mass spectroscopy demonstrates the formation of a dinuclear copper species although the only isolated crystalline product was TpPhCu(HpzPh,4CN)(NO3). Rh2(CF3COO)4 or Ni(cyclam)(ClO4)2 were used as one building block of the coordination polymer, reacting with TlTpR,4CN. Crystals isolated from these products, instead of the coordination polymers we desired, are metal pyrazole complexes with the ring N atom coordination, suggesting decomposition of the ligand. vii TABLE OF CONTENTS Chapter 1 Introduction…………………………………………………….. 1 1.1 General Introduction………………………………………………………….. 1 1.2 Molecular Materials…………………………………………………………….4 1.3 Conductive Polymers………………………………………………………….. 7 1.4 Polypyrazolylborates………………………………………………………….. 10 1.5 Cyano-substituted Scorpionates………………………………………….. 15 Chapter 2 Polypyrazolylborates………………………………………… 19 2.1 Introduction………………………………………………………………………. 19 2.2 Tris(4-cyano-3-phenylpyrazolyl)borate………………………………… 21 2.2.1 Synthesis of TpPh,4CN……………………………………………………….21 2.2.2 Synthesis and Structure of TlTpPh,4CN……………………………….23 2.3 Tris(4-cyano-3-tert-butylpyrazolyl)borate……………………………..27 2.3.1 Synthesis and structure of Hpzt-Bu,4CN……………………………….27 2.3.2 Synthesis of Tpt-Bu,4CN……………………………………………………..28 2.3.3 Synthesis and Structure of TlTpt-Bu,4CN…………………………….. 29 2.4 Tris(4-cyano-3,5-dimethylpyrazolyl)borate…………………………...32 2.4.1 Synthesis of HpzMe2,4CN……………………………………………………32 2.4.2 Synthesis of TpMe2,4CN……………………………………………………..33 2.5 4-cyano-3-methylpyrazole……………………………………………………35 2.6 Heteroscorpionates……………………………………………………………..36 2.6.1 Heteroscorpionate Introduction………………………………………36 viii 2.6.2 Synthesis of pzPhBpPh,4CN…………………………………………………38 2.7 Conclusion………………………………………………………………………….40 2.8 Experimental………………………………………………………………………42 2.8.1 General Experimental……………………………………………………. .42 2.8.2 Synthesis of Potassium hydrotris(4-cyano-3-phenylpyrazolyl) borate [KTpPh,4CN]…………………………………………………………..43 2.8.3 Synthesis of Thallium(I) hydrotris(3-phenyl-4-cyanopyrazolyl) borate [TlTpPh,4CN]………………………………………………………….44 2.8.4 Synthesis of 4-cyano-3-tert-butylpyrazole [Hpzt-Bu,4CN]…….. 45 2.8.5 Synthesis of Potassium hydrotris(4-cyano-3-tert-butylpyrazolyl) borate [KTpt-Bu,4CN]…………………………………………………………47 2.8.6 Synthesis of Thallium(I) hydrotris(4-cyano-3-tert-butylpyrazolyl) borate [TlTpt-Bu,4CN]………………………………………………………..48 2.8.7 Synthesis of 4-cyano-3,5-dimethylpyrazole [HpzMe2,4CN]……48 2.8.8 Synthesis of Potassium hydrotris(4-cyano-3,5-dimethylpyrazolyl) borate [KTpMe2,4CN]…………………………………………………………49 2.8.9 Synthesis of 4-cyano-3-methylpyrazole [HpzMe,4CN]………….. 49 2.8.10 Synthesis of pzPhBpPh,4CN…………………………………………………50 Chapter 3 Scorpionate Metal Complexes……………………………..51 3.1 Introduction………………………………………………………………………. 51 3.2 TpR,4CN Complexes of Cobalt, Manganese and Iron………………… 54 3.2.1 (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe……………….54 ix 3.2.2 Tpt-Bu,4CN Metal Complexes………………………………………………65 3.2.3 TpMe2,4CN Metal Complexes………………………………………………66 3.3 TpR,4CN Copper Complexes……………………………………………………68 3.3.1 [TpPh,4CNCu]n and TpPh,4CNCuX…………………………………………68 3.3.2 [Tpt-Bu,4CNCu]n and Tpt-Bu,4CNCuX……………………………………..70 3.3.3 TpPh,4CNCu(CO) and TpPhCu(CO)……………………………………..72 3.3.4 (TpMe2,4CN)2Cu………………………………………………………………..74 3.3.5 TpPhCu(NO3)………………………………………………………………….74 3.4 Metal Pyrazole Complexes……………………………………………………77 3.4.1 HpzPh,4CN Copper Complex………………………………………………77 3.4.2 Hpzt-Bu,4CN Metal Complexes……………………………………………79 3.4.3 HpzMe2 Copper Complex…………………………………………………86 3.5 Conclusion…………………………………………………………………………88 3.6 Experimental………………………………………………………………………90 3.6.1 General Experimental……………………………………………………..90 3.6.2 Synthesis of Bis(hydrobis(4-cyano-3-phenylpyrazolyl) (4-cyano-5-phenylpyrazolyl)borato)cobalt(II) [(TpPh,4CN)*2Co]………………………………………………………………90 3.6.3 Synthesis of Bis(hydrobis(4-cyano-3-phenylpyrazolyl) (4-cyano-5-phenylpyrazolyl)borato)manganese(II) [(TpPh,4CN)*2Mn]……………………………………………………………. 91 x 3.6.4 Synthesis of Bis(hydrobis(4-cyano-3-phenylpyrazolyl) (4-cyano-5-phenylpyrazolyl)borato)iron(II) [(TpPh,4CN)*2Fe]……………………………………………………………… 92 3.6.5 Synthesis of Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato) cobalt(II) [(Tpt-Bu,4CN)2Co]……………………………………………… 93 3.6.6 Synthesis of Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato) manganese(II) [(Tpt-Bu,4CN)2Mn]………………………………………93 3.6.7 Synthesis of Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato) iron(II) [(Tpt-Bu,4CN)2Fe]…………………………………………………. 94 3.6.8 Synthesis of Bis(hydrotris(4-cyano-3,5-dimethylpyrazolyl) borato)cobalt(II) [(TpMe2,CN)2Co]……………………………………. 94 3.6.9 Synthesis of Hydrotris(4-cyano-3-phenylpyrazolyl)borato {[TpPh,4CNCu]n} copper(I) and Hydrotris(4-cyano-3-phenylpyrazolyl)boratocopper(II) perchlorate [TpPh,4CNCu(ClO4)]………………………………………..95 3.6.10 Synthesis of Hydrotris(4-cyano-3-tert-butylpyrazolyl)borato copper(I) {[Tpt-Bu,CNCu]n} and Hydrotris(4-cyano-3-tert-butylpyrazolyl)boratocopper(II) trifluoromethylsulfonate [Tpt-Bu,CNCu(CF3SO3)]……………….. 96 3.6.11 Synthesis of Hydrotris(4-cyano-3-phenylpyrazolyl)borato copper(I) carbonyl [TpPh,4CNCu(CO)]………………………………. 97 xi 3.6.12 Synthesis of Hydrotris(3-phenylpyrazolyl)boratocopper(I) carbonyl [TpPhCu(CO)]………………………………………………….. 97 3.6.13 Synthesis of Bis(hydrotris(4-cyano-3,5-dimethylpyrazolyl) borato)copper(II) [(TpMe2,4CN)2Cu]………………………………….. 98 3.6.14 Synthesis of Hydrotris(3-phenylpyrazolyl)boratocopper(II) nitrate [TpPhCu(NO3)]…………………………………………………….98 3.6.15 Synthesis of Dichlorotetrakis(4-cyano-3-tert-butylpyrazole) cobalt(II) [(Hpzt-Bu,4CN)4CoCl2]……………………………………….. 99 3.6.16 Synthesis of Diaquabis(4-cyano-3-tert-butylpyrazole)bis (trifluoromethylsulfonato)manganese(II) [(Hpzt-Bu,4CN)2Mn(CF3SO3)2(H2O)2]………………………………….99 3.6.17 Synthesis of Dichlorobis(4-cyano-3-tert-butylpyrazole)copper(II) [(Hpzt-Bu,CN)2CuCl2]……………………………………………………….. 100 Chapter 4 Coordination Polymers……………………………………… 101 4.1 Introduction………………………………………………………………………. 101 4.2 TpPhCu(NO3)-(HpzPh,4CN)2M(NO3)2……………………………………….104 4.3 TlTpR,4CN-Rh2(CF3COO)4…………………………………………………….. 110 4.4 TlTpPh,4CN-[Ni(cyclam)][ClO4]2……………………………………………. 113 4.5 Conclusion………………………………………………………………………… 116 4.6 Experimental…………………………………………………………………….. 117 4.6.1 General Experimental……………………………………………………. 117 4.6.2 TpPh,4CNCu(NO3)-(HpzPh,4CN)2Co(NO3)2…………………………… 117 xii 4.6.3 TpPh,4CNCu(NO3)-(HpzPh,4CN)2Cu(NO3)2…………………………… 118 4.6.4 TlTpPh,4CN-Rh2(CF3COO)4………………………………………………. 119 4.6.5 TlTpt-Bu,4CN-Rh2(CF3COO)4…………………………………………….. 119 4.6.6 TlTpPh,4CN-Ni(cyclam)(ClO4)2…………………………………………. 120 Chapter 5 Conclusions……………………………………………………… 121 References………………………………………………………………………… 123 Appendix (Crystallographic Data)……………………………………..... 129 xiii LIST OF TABLES Table 2.2.1 Bond Distances and Angles for TlTpPh,4CN……………………… 24 Table 2.2.2 Tl-N Bond Distances in Scorpionate Complexes…………….. 26 Table 2.3.1 Bond Distances and Angles for Hpzt-Bu,4CN…………………….. 27 Table 2.3.2 Bond Distances and Angles for TlTpt-Bu,4CN……………………. 31 Table 3.2.1 Bond Distances and Angles for (TpPh,4CN)*2Co……………….. 58 Table 3.2.2 Structural Data for “Sandwich” Metal Complexes………….. 59 Table 3.2.3 Bond Distances and Angles for (TpPh,4CN)*2Mn………………. 60 Table 3.2.4 Bond Distances and Angles for (TpPh,4CN)*2Fe………………… 63 Table 3.3.1 Bond Distances and Angles for [TpPh,4CNCu]n………………… 69 Table 3.3.2 Bond Distances and Angles for [Tpt-Bu,4CNCu]n………………..71 Table 3.3.3 Structural Data for TpR,4CN Copper(I) Complexes…………… 72 Table 3.3.4 Carbonyl Stretching Frequency in Tp Copper(I) Complexes……………………………………………………………………………………….. 73 Table 3.3.5 Bond Distances and Angles for TpPhCu(NO3)………………… 75 Table 3.4.1 Bond Distances and Angles for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n…………………………………………………… 78 Table 3.4.2 Structural Data for Copper Pyrazole Complexes…………….. 78 Table 3.4.3 Bond Distances and Angles for (Hpzt-Bu,4CN)4CoCl2………….80 Table 3.4.4 Structural Data for Cobalt Pyrazole Complexes……………… 81 Table 3.4.5 Bond Distances and Angles for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O………………………………………………………… 82 xiv Table 3.4.6 Structural Data for Manganese Pyrazole Complexes………. 83 Table 3.4.7 Bond Distances and Angles for (Hpzt-Bu,4CN)2CuCl2………… 84 Table 3.4.8 Bond Distances and Angles for (HpzMe2)2CuCl2……………… 86 Table 4.2.1 Bond Distances and Angles for TpPhCo(HpzPh,4CN)(NO3)… 107 Table 4.2.2 Bond Distances and Angles for TpPhCu(HpzPh,4CN)(NO3)… 108 Table 4.2.3 Structural Data for TpPh Metal Complexes……………………. 109 Table 4.3.1 Bond Distances and Angles for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4………………………………………………………………. 111 Table 4.4.1 Bond Distances and Angles for (pzPh,4CN)2Ni(cyclam)………123 Appendix A: Complete Crystallographic Data……………………………. 130 Table A Crystallographic Data…………………………………………………..130 Table B.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for TlTpPh,4CN…………………………………………………………………… 139 Table B.2 Anisotropic Displacement Parameters for TlTpPh,4CN……… 139 Table B.3 Bond Lengths for TlTpPh,4CN………………………………………….139 Table B.4 Bond Angles for TlTpPh,4CN…………………………………………… 140 Table C.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for Hpzt-Bu,4CN………………………………………………………………….. 141 Table C.2 Anisotropic Displacement Parameters for Hpzt-Bu,4CN…….. 141 Table C.3 Bond Lengths for Hpzt-Bu,4CN………………………………………… 141 Table C.4 Bond Angles for Hpzt-Bu,4CN………………………………………….. 141 Table D.1 Atomic Coordinates and Equivalent Isotropic Displacement xv Parameters for TlTpt-Bu,4CN…………………………………………………………………. 143 Table D.2 Anisotropic Displacement Parameters for TlTpt-Bu,4CN……. 143 Table D.3 Bond Lengths for TlTpt-Bu,4CN……………………………………….. 143 Table D.4 Bond Angles for TlTpt-Bu,4CN…………………………………………. 144 Table E.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for (TpPh,4CN)*2Co…………………………………………………………….. 145 Table E.2 Anisotropic Displacement Parameters for (TpPh,4CN)*2Co… 146 Table E.3 Bond Lengths for (TpPh,4CN)*2Co…………………………………… 148 Table E.4 Bond Angles for (TpPh,4CN)*2Co…………………………………….. 149 Table F.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for (TpPh,4CN)*2Mn……………………………………………………………. 153 Table F.2 Anisotropic Displacement Parameters for (TpPh,4CN)*2Mn..154 Table F.3 Bond Lengths for (TpPh,4CN)*2Mn………………………………….. 156 Table F.4 Bond Angles for (TpPh,4CN)*2Mn……………………………………. 157 Table G.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for (TpPh,4CN)*2Fe……………………………………………………………… 161 Table G.2 Anisotropic Displacement Parameters for (TpPh,4CN)*2Fe… 162 Table G.3 Bond Lengths for (TpPh,4CN)*2Fe…………………………………….164 Table G.4 Bond Angles for (TpPh,4CN)*2Fe……………………………………… 166 Table H.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for [TpPh,4CNCu]n……………………………………………………………… 171 Table H.2 Anisotropic Displacement Parameters for [TpPh,4CNCu]n…. 171 xvi Table H.3 Bond Lengths for [TpPh,4CNCu]n……………………………………. 172 Table H.4 Bond Angles for [TpPh,4CNCu]n……………………………………… 173 Table I.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for [Tpt-Bu,4CNCu]n……………………………………………………………. 176 Table I.2 Anisotropic Displacement Parameters for [Tpt-Bu,4CNCu]n.. 176 Table I.3 Bond Lengths for [Tpt-Bu,4CNCu]n………………………………….. 177 Table I.4 Bond Angles for [Tpt-Bu,4CNCu]n……………………………………. 178 Table J.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for TpPhCu(NO3)……………………………………………………………… 180 Table J.2 Anisotropic Displacement Parameters for TpPhCu(NO3)…. 180 Table J.3 Bond Lengths for TpPhCu(NO3)……………………………………. 181 Table J.4 Bond Angles for TpPhCu(NO3)……………………………………… 182 Table K.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n……………………………..185 Table K.2 Anisotropic Displacement Parameters for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n…………………………………………………… 185 Table K.3 Bond Lengths for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n….. 186 Table K.4 Bond Angles for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n……..186 Table L.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for (Hpzt-Bu,4CN)4CoCl2……………………………………………………… 188 Table L.2 Anisotropic Displacement Parameters for (Hpzt-Bu,4CN)4CoCl2…………………………………………………………………………….. 188 xvii Table L.3 Bond Lengths for (Hpzt-Bu,4CN)4CoCl2……………………………. 189 Table L.4 Bond Angles for (Hpzt-Bu,4CN)4CoCl2……………………………… 190 Table M.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O…………………………………. 192 Table M.2 Anisotropic Displacement Parameters for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O………………………………………………………… 192 Table M.3 Bond Lengths for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O……….. 193 Table M.4 Bond Angles for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O…………. 193 Table N.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for (Hpzt-Bu,CN)2CuCl2……………………………………………………….. 195 Table N.2 Anisotropic Displacement Parameters for (Hpzt-Bu,CN)2CuCl2……………………………………………………………………………… 195 Table N.3 Bond Lengths for (Hpzt-Bu,CN)2CuCl2………………………………195 Table N.4 Bond Angles for (Hpzt-Bu,CN)2CuCl2……………………………….. 196 Table O.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for (HpzMe2)2CuCl2…………………………………………………………… 198 Table O.2 Anisotropic Displacement Parameters for (HpzMe2)2CuCl2…………………………………………………………………………………. 198 Table O.3 Bond Lengths for (HpzMe2)2CuCl2…………………………………. 198 Table O.4 Bond Angles for (HpzMe2)2CuCl2…………………………………… 199 Table P.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for TpPhCo(HpzPh,4CN)(NO3)……………………………………………… 201 xviii Table P.2 Anisotropic Displacement Parameters for TpPhCo(HpzPh,4CN)(NO3)…………………………………………………………………….. 202 Table P.3 Bond Lengths for TpPhCo(HpzPh,4CN)(NO3)……………………. 203 Table P.4 Bond Angles for TpPhCo(HpzPh,4CN)(NO3)……………………… 204 Table Q.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for TpPhCu(HpzPh,4CN)(NO3)……………………………………………… 206 Table Q.2 Anisotropic Displacement Parameters for TpPhCu(HpzPh,4CN)(NO3)……………………………………………………………………..207 Table Q.3 Bond Lengths for TpPhCu(HpzPh,4CN)(NO3)……………………. 208 Table Q.4 Bond Angles for TpPhCu(HpzPh,4CN)(NO3)……………………… 210 Table R.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4……………………………………….. 211 Table R.2 Anisotropic Displacement Parameters for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4……………………………………………………………… 211 Table R.3 Bond Lengths for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4……………… 212 Table R.4 Bond Angles for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4……………….. 212 Table S.1 Atomic Coordinates and Equivalent Isotropic Displacement Parameters for (pzPh,4CN)2Ni(cyclam)………………………………………………….. 214 Table S.2 Anisotropic Displacement Parameters for (pzPh,4CN)2Ni(cyclam)…………………………………………………………………………. 214 Table S.3 Bond Lengths for (pzPh,4CN)2Ni(cyclam)………………………… 215 Table S.4 Bond Angles for (pzPh,4CN)2Ni(cyclam)………………………….. 215 xix LIST OF FIGURES Figure 1.1.1 Polypyrazolylborate……………………………………………………..1 Figure 1.1.2 Cyano-Scorpionate Ligand Coordination Mode……………… 2 Figure 1.4.1 Dihydrobispyrazolylborate (Bp), Hydrotrispyrazolylborate (Tp), and Tetrakispyrazolylborate (pzTp)……………………………………………. 11 Figure 1.4.2 “Sandwich” Complex…………………………………………………… 13 Figure 1.4.3 “Half-Sandwich” Complex…………………………………………… 13 Figure 1.5.1 Multinuclear Trispyrazolylborate Metal Complex………….. 17 Figure 1.5.2 Cyano Bridged Coordination Polymer…………………………… 18 Figure 2.2.1 Synthesis Route of 4-cyano-3-R pyrazoles…………………….. 21 Figure 2.2.2 Synthesis of Bis and Tris(4-cyano-3-R-pyrazolyl)borate…. 22 Figure 2.2.3 MS of TpPh,4CN…………………………………………………………….. 23 Figure 2.2.4 ORTEP Drawing of TlTpPh,4CN……………………………………….24 Figure 2.2.5 Raster 3D Diagram Showing the Close Contacts Between Tl and Cyano Groups of Adjacent Pyrazoles in TlTpPh,4CN…………………………..25 Figure 2.3.1 ORTEP Drawing of Hpzt-Bu,4CN……………………………………… 27 Figure 2.3.2 MS of Tpt-Bu,4CN…………………………………………………………… 29 Figure 2.3.3 ORTEP Drawing of TlTpt-Bu,4CN…………………………………….. 30 Figure 2.4.1 Synthesis of Tris(4-cyano-3,5-dimethylpyrazolyl)borate… 32 Figure 2.4.2 MS of TpMe2,4CN…………………………………………………………… 34 Figure 2.6.1 Bis-heteroscorpionate…………………………………………………. 36 Figure 2.6.2 Cyano Tris-heteroscorpionate……………………………………… 37 xx Figure 2.6.3 MS of Heteroscorpionate 1……………………………………………38 Figure 2.6.4 MS of Heteroscorpionate 2………………………………………….. 39 Figure 3.2.1 Ligand Isomerization in Scorpionate Metal Complexes….. 55 Figure 3.2.2 1,2-Boratropic Shift…………………………………………………….. 56 Figure 3.2.3 ORTEP Drawing of (TpPh,4CN)*2Co………………………………… 58 Figure 3.2.4 ORTEP Drawing of (TpPh,4CN)*2Mn……………………………….. 61 Figure 3.2.5 ORTEP Drawing of (TpPh,4CN)*2Fe………………………………….63 Figure 3.3.1 ORTEP Drawing of One Asymmetric Unit [TpPh,4CNCu]n….68 Figure 3.3.2 Raster 3D Diagram Showing the Extended Structure of [TpPh,4CNCu]n……………………………………………………………………………………..70 Figure 3.3.3 ORTEP Drawing of One Asymmetric Unit of [Tpt-Bu,4CNCu]n……………………………………………………………………………………71 Figure 3.3.4 ORTEP Drawing of TpPhCu(NO3)…………………………………. 75 Figure 3.4.1 ORTEP Drawing of the Cationic Repeat Unit of {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n…………………………………………………… 77 Figure 3.4.2 Raster 3D Diagram Showing the Extended Structure of Cationic Part of {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n…………………………… 79 Figure 3.4.3 ORTEP Drawing of (Hpzt-Bu,4CN)4CoCl2…………………………. 80 Figure 3.4.4 ORTEP Drawing of (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O…….. 82 Figure 3.4.5 Mercury Diagram Showing the Hydrogen Bonding Network of (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O………………………………………………………… 84 xxi Figure 3.4.6 ORTEP Drawing of Two Inversion Related Molecules of (Hpzt-Bu,4CN)2CuCl2……………………………………………………………………………..85 Figure 3.4.7 ORTEP Drawing of (HpzMe2)2CuCl2………………………………. 87 Figure 4.1.1 Proposed Structure of (BpPh,4CN)2Cu-Rh2(CF3COO)2 Coordination Polymer……………………………………………………………………….. 103 Figure 4.2.1 MS of TpPhCu(NO3)-(HpzPh,4CN)2Cu(NO3)2……………………..105 Figure 4.2.2 Magnification of Peak m/z = 1097 from Figure 4.2.1………. 106 Figure 4.2.3 ORTEP Drawing of TpPhCo(HpzPh,4CN)(NO3)…………………. 107 Figure 4.2.4 ORTEP Drawing of TpPhCu(HpzPh,4CN)(NO3)…………………. 108 Figure 4.3.1 ORTEP Drawing of (Hpzt-Bu,4CN)2-Rh2(CF3COO)4…………… 111 Figure 4.4.1 ORTEP Drawing of (pzPh,4CN)2Ni(cyclam)……………………… 114 xxii Chapter 1 Introduction 1.1 General Introduction Polypyrazolylborates have become among the most important ligands in organometallic and bioinorganic chemistry today. They consist of a tetrasubstituted boron atom attached to two or more pyrazoles through one N atom of the ring (Figure 1.1.1). The other N atoms of the pyrazole rings become the donor atoms of the ligand. Because they always adopt a polypyrazolylborates multi-dentate are also 4 5 mode, known as “scorpionate” ligands, and have a wide range of Hn B 3 N N 1 2 4-n Figure 1.1.1 Polypyrazolylborate applications including reaction catalysis, enzyme modeling and C-H bond activation.1 It is relatively easy to synthesize substituted polypyrazolylborates, so-called 2nd generation polypyrazolylborates, with different ring substituents. They result in molecules with varied structural and electronic properties. Studies involving these 2nd generation scorpionate ligands have concentrated on substitution at the 3- or 5-position of the pyrazole ring. It has been shown that substituents at these positions can affect reactivities and electronic properties of metal complexes.2 Transition metals can easily form coordination complexes with polypyrazolylborates. Scorpionate metal complexes have involved a number of 1 elements from almost every group in the periodic table. The research described in this dissertation focuses on the synthesis and characterization of new cyano-substituted polypyrazolylborates and their transition metal complexes, with the ultimate goal of synthesis of coordination polymers. These polypyrazolylborate ligands carry both bulky and electronically active substituents. These substituents are shown to affect the molecular structures and electronic properties of the metal complexes. Thus they are potentially useful in producing new molecular materials with desired physical properties. The cyano group, itself, is also a good Hn B ligand for transition metals. This is the N C N N M2 4-n M1 property we want to explore to make multinuclear species and conductive R Figure 1.1.2 Cyano-Scorpionate Ligand Coordination Mode coordination polymers. The cyano-scorpionate ligand is thus capable of coordinating metals through two types of N atoms – the pyrazole N and the cyano N atom (Figure 1.1.2). The cyano-coordinated metal ions, therefore, link up metalloscorpionate “monomers” to form a coordination polymer. In this polymer different metal moieties can “talk” to each other, allowing for electronic communication and magnetic interactions. This will enable electron mobility along the multi-dimensional polymer chains; potentially producing a conductive material. The metal-metal communication in the coordination 2 polymer will also affect the magnetic characteristics of the complex, potentially producing cooperative effects in the compound resulting in bulk magnetic properties. The results described in this dissertation represent a continuation of work presented in my M.S. thesis “Cyano-Substituted Polypyrazolylborates”. The earlier results will be summarized where appropriate. 3 1.2 Molecular Materials As the core of the chemistry technology in the new century, materials science is a multidisciplinary field focusing on functional materials, whether the function served is structural, electronic, thermal, chemical, magnetic, optical, or some combination of these. It uses those parts of chemistry and physics to deal with the properties of materials, as well as scientific techniques that probe materials structures. Traditional materials are atomic-based, usually metals, alloys, semiconductors and ceramics. While possessing some desirable electronic properties, they have quite a few deficiencies. These materials require vast inputs of capital and energy to synthesize and process. Also they are limited by their physical natures, as they are generally heavy and opaque. Therefore a new generation of molecule-based materials is appearing. Molecular materials are normally comprised of organic and/or organometallic molecular fragments. Contrasted with atomic materials, molecular materials have some distinct advantages which are crucial today. They are durable, flexible and cheap to mass-produce. Made up primarily of lightweight atoms such as carbon, hydrogen and nitrogen, molecular materials are much lighter than the traditional materials. Also, the molecular components of these materials can be altered individually, by standard chemical processes, to potentially imbue these materials with desirable physical properties such as solubility, transparency or flexibility. There are a wide range of potential 4 applications for these new materials. Research into the optical, electronic and magnetic properties of organic and molecular materials is thriving, and has led to a new generation of electronic devices and displays. It is little wonder that many of the leading electronics companies are embracing this expanding field of research. Product designers are dreaming up giant video screens that can be rolled up and carried from room to room, mobile phones with all-plastic circuitry that will not break when dropped and lightweight luminous panels that could replace the bulky light fittings in aircraft and cars. Conductivity and magnetism are the key properties of molecular materials.3-6 In fact, molecular magnets have attracted interest over decades.6 Traditional magnetic materials share the generic attributes of being atom-based, having d- or f-orbital spin sites, and possessing extended network magnetic "bonding" in at least two dimensions. Molecule-based organic/polymeric magnetic materials are prepared from organic, organometallic, and coordination metal synthetic chemistry, such that either one type of spin site is a molecular orbital made up of s and/or p atomic orbitals or the molecular orbital is crucial in mediating the magnetic interaction. In single molecule magnets (SMM’s) permanent magnetization is achieved as a purely one-molecule phenomenon. The first SMM has been reported as a dodecanuclear manganese complex.7 To date, a number of important discoveries have been made such as the synthesis of room-temperature 5 molecular magnets8 and the synthesis of a molecule based magnetic superconductor.9 From all these advantages and applications of molecular materials we can conclude that they will play an increasingly important role in material science. More and more of these materials are being discovered and their properties are being studied. They are coming into our everyday life. 6 1.3 Conductive Polymers Conductors are materials that allow the flow of electricity. The charge carriers can be either electrons or holes. When an electric potential difference is impressed across separate points on a conductor, the mobile charges within the conductor are forced to move, and an electric current appears. Metals are good conductors because they have unfilled space in the valence energy band. When an electric field is applied, electrons gain a small amount of energy and move freely in the metals to form electrical current. While most conductors are metals, there are many non-metallic conductors as well, including all plasmas.10 Conductive polymers are usually organic materials with extended delocalized bonds. This delocalization can be accomplished by forming a conjugated backbone of continuous overlapping orbitals. Continuous strings of orbitals create degeneracy in the frontier molecular orbitals (HOMO and LUMO) which leads to the filled and unfilled bands. Not until an electron is removed from the valence band or added to the conduction band does a conducting polymer become highly conductive. In fact almost all known conductive polymers are semiconductors and their mobility, until very recently, was dramatically lower than their inorganic counterparts. In the 1970’s, McGinness, Corry, and Proctor reported that partially oxidized polyacetylene exhibits conductivity which is significantly greater than that of the unoxidized 7 polymer.11 This discovery marked the start of the study of conductive polymers. The chemistry Nobel Prize in 2000 was awarded to Shirakawa, MacDiarmid and Heeger for the discovery and study of conducting polymers. To date there are quite a few organic conductive polymers including polyacetylene,12 polyphenylene,13 polyaniline,14 polythiophene,15 polypyrrole,16 and polyphthalocyanine.17 Partial oxidization or reduction of these materials will provide unfilled bands to show considerable conductivity as high as 104 S cm-1, which compares favorably with that of silver metal (106 S cm-1).3 Recently, research interests have started to focus on conductive coordination polymers containing transition metals. Metal atoms in these coordination polymers can have their partially filled d-orbitals overlapped with molecular orbitals from the ligands, providing a pathway for the electrons to migrate. The attractive feature of conductive coordination polymers is their potential variability. Unlike the organic polymers, which are limited by their inherent reduction potentials, potentials of coordination polymers can be varied by changing either metal ions or ligand substituents on the polymer chain. Two examples of conductive coordination polymers are TPT[FeIITPT]n (PF6)2n(TPT= terpyridine-phenyl-terpyridine) and CTPCT[FeIICTPCT]n(PF6)2n (CTPCT=chiral terpyridine-phenyl-chiral terpyridine).18 There are a number of applications for conductive polymers. The first obvious 8 advantage is their light weight, making them attractive alternatives to metals in any application where conductivity is necessary and weight is an issue. For example, it has been recently reported that a battery can be made using electrodes comprised of fluorophenylthiophenes.19 Currently, conductive polymers are found most commonly in anti-static applications and lightweight/rechargeable battery technology.20 Future applications include such things as electromagnetic interference shielding and chemical sensors. 9 1.4 Polypyrazolylborates Polypyrazolylborates were first discovered by Trofimenko in 1966.21 They have attracted a number of research interests since then in organometallic chemistry, analytical chemistry, organic synthesis, catalysis, and materials science.1 Polypyrazolylborate ligands generally have been used as molecular vises to keep the metal ion in a firm multi-dentate grip, so that chemical operations could be performed at the remaining coordination sites. A recent book by Trofimenko describes the advances in polypyrazolylborate chemistry over the past 30 years.1 Generally there are three kinds of polypyrazolylborates consisting of 2, 3 or 4 pyrazoles bound to the boron through one nitrogen atom of the pyrazole ring. The remaining sites of the tetrasubstituted boron are occupied by hydrogen atoms. These three molecules are dihydrobispyrazolylborate (Bp), hydrotrispyrazolylborate (Tp), and tetrakispyrazolylborate (pzTp) (Figure 1.4.1). All polypyrazolylborates carry a single negative charge. There are some other attractive features of polypyrazolylborates besides their multi-dentate function and molecular rigidity. These ligands are stable and relatively easy to synthesize. The 3, 4 and 5-positions of the pyrazole ring (Figure 1.1.1) can carry a wide variety of substituents to modify the ligand-metal bonding properties. For example, in hydrotrispyrazolylborate there are nine substitutable positions on the Tp ligand, imparting a tremendous versatility. 10 H2 B - N - N N N N N N B N N N N N N - N H B N N N N Figure 1.4.1 Dihydrobispyrazolylborate (Bp), Hydrotrispyrazolylborate (Tp), and Tetrakispyrazolylborate (pzTp) At this point, it is necessary to discuss the standard abbreviation system devised by Trofimenko to represent different substituted polypyrazolylborates. As mentioned before, Bp, Tp and pzTp are the three basic forms. TpR is used to express a Tp ligand containing monosubstituted pyrazoles with the R group in the 3-position of the pyrazole ring. For example, hydrotris(3-phenylpyrazolyl)borate would be abbreviated as TpPh (Ph=phenyl). If there are identical substituents in the 3- and 5- positions then it will be abbreviated as TpR2; hydrotris(3,5-dimethylpyrazolyl)borate is denoted as TpMe2. In case the substituents are different on all the three positions, they can be expressed separately as 3R1, 4R2 and 5R3, and the superscripts are separated by commas. Thus hydrotris(4-cyano-3-methyl-5-phenylpyrazolyl)borate will be Tp3Me,4CN,5Ph. Bispyrazolylborates are treated in exactly the same way; with the unsubstituted bispyrazolylborate being abbreviated as Bp. Substituents in the 3-, 4-, and 5- positions follow the same rules as stated above. This convention will be used in this dissertation. 11 Early work involving polypyrazolylborates included the synthesis of the substituted ligands and transition metal complexes.22 The magnetic moments and different spectra of Tp complexes were determined.23, 24 Trispyrazolylborate metal complexes can have either 2:1 or 1:1 ligand-to-metal ratio, so-called “sandwich” (Figure 1.4.2) and “half-sandwich” (Figure 1.4.3) compounds. This nomenclature follows from an analogy between the Tp ligands and cyclopentadienyl (Cp) ligands, both of which are monoanionic face-capping ligands. Churchill reported the first structure of an octahedral homoscorpionate complex, Tp2Co, by X-ray crystallography.25 Examples of these sandwich type complexes are known for almost all first-row transition metals, many others from the second and third rows, and some actinides and lanthanides.26 Also, half-sandwich type complexes TpM(X)(Y)(Z) have been prepared where M is metal atom and X, Y and Z are diverse other co-ligands.27, 28 In all polypyrazolylborate complexes, typical B-H stretching frequencies of the ligands lie in the region 2230-2460 cm-1 (absent for tetrakispyrazolylborate) and usually occur at higher energies when bonded with a metal atom. The absence of other bands in this region makes it particularly useful for monitoring the synthesis of Tp compounds. 12 R2 R2 H B N N R2 N R 1 N R R1 M R1 N N R1 M N X R2 N R1 R1 NN B H R2 R2 N N R1 R1 N N H B N N N 1 R2 R2 N Y Z 2 R Figure 1.4.3 "Half-Sandwich" Complex Figure 1.4.2 "Sandwich" Complex Because of the relative ease of adding substituents on the pyrazole ring, research moved forward to the second generation Tp ligands – TpR, where R is a bulky substituent such as tert-butyl or aryl groups.29, 30 With bulky substituents these ligands can exert considerable steric effects over the surroundings of the coordinated metal. Examples here include Tpt-BuBe(CH3),31 Tpt-Bu,MeCo(O2)32 and Tpt-BuCu(NO2).33 It has been shown that the substitution of bulky groups in the 3-position on the pyrazole ring can result in significant changes in the electronic properties of the coordinated metal.34, 35 These effects have been attributed to the longer metal-nitrogen bond distances which result in a weaker ligand field. The bulky groups form a “pocket”, or cone-angle around the metal ion. Tp2Fe, (TpMe2)2Fe,23, 24, 36 and (TpPh)2Fe35 are three examples carrying increasingly bulky substituents in the 3-position. The Fe-N bond length increases significantly from 1.975 Å in Tp2Fe to 2.248 Å for (TpPh)2Fe. The increase of the metal-nitrogen bond length results in the redox potential of the FeII/III couple of these complexes going up 13 from 0.47 V to 1.09 V, and a change from a spin-transition complex to a fully high-spin compound was observed. Since it has been shown that bulky substituents on the pyrazole ring can have not only steric but also electronic effects on the metal complexes, scientists have become more interested in employing electronically active substituents to observe variation of electronic properties of the metal complexes. The notable works involving electronically active substituents are the trifluoromethyl-substituted scorpionates utilized most widely by Dias37, 38 and the cyano-substituted bispyrazolylborates reported by Eichhorn39 and Trofimenko.40 The CF3 substituent, as a good electron-withdrawing group, has been shown to have a large effect on the electronic properties of the coordinated metal. For example, the CO stretching frequency of 2137 cm-1 in Tp(CF3)2Cu(CO) represents a significant increase over those for TpCu(CO) (2083 cm-1) and TpMe2Cu(CO) (2066 cm-1). Because of the electron-withdrawing effect of the CF3 groups, back donation of electrons from copper d-orbitals to the CO anti-bonding orbitals is reduced dramatically so that the CO stretching frequency approaches that of free CO (2143 cm-1).38 The cyano group is another well known electron-withdrawing substituent. Research involving the CN substituent on polypyrazolylborate metal complexes is discussed below. 14 1.5 Cyano-substituted Scorpionates It has been known for a long time that the cyano group carries electron-withdrawing properties and can form coordination bonds in transition metal complexes such as Prussian blue. There are also reported results describing constitution of CN bridged multinuclear complexes.41, 42 In materials comprised of charge-transfer salts of decamethylmetallocenium cations (Cp*2M+) and the organic radical anions tetracyanoquinodimethanide (TCNQ-)43 and tetracyanoethylenide (TCNE-),44 a transition to a ferromagnetically ordered phase at temperatures ranging from 3 to 8 K was observed. The ferromagnetic ordering of these materials comes from the intermolecular couplings. A similar type of mechanism is shown in the Prussian blue systems, in which metal ions with different spins are bridged by CN groups in a 3-dimensional network, again yielding a molecular ferrimagnet.45 Trofimenko first published the Bp4CN ligand with no other substituents on the pyrazole ring in 2000.40 Although the electron-withdrawing effect of the CN substituent has not yet been fully explored, intractable polymer formation was noticed, presumably due to coordination between CN and metal atoms. Prior work in the Eichhorn group has focused on polypyrazolylborates with bulky alkyl substituents in the 3-position and a CN group in the 4-position. (BpPh,4CN)2Cu, (BpPh,4CN)2Co and (BpPh,4CN)2(H2O)Co have been successfully 15 synthesized and structurally characterized.39 The structures of these cobalt and copper complexes are very similar to related complexes without CN groups, showing only differences that can be attributed to the substituents in the 3-position. This demonstrates that the CN substituent does not significantly affect the structure of the metal complex. However, the electron-withdrawing properties of CN group have not been fully studied yet. Another result from the Eichhorn group involved the synthesis of a cyanoscorpionate-containing coordination polymer.46 After mixing (BpPh,4CN)2Cu with Rh2(CF3COO)4 in CH2Cl2, a red precipitate formed which had two CN stretches: 2258 and 2234 cm-1. The mass spectrum of this product shows four major peaks: m/z = 761 corresponds to (BpPh,4CN)2Cu, while peaks at m/z = 1418, 2075 and 2732 correspond to (BpPh,4CN)2Cu plus one, two and three Rh2(CF3COO)4 units. This appears to indicate coordination of the CN group to Rh ion and the formation of a polymer. The research characterization described of new here concentrates cyano-substituted on the synthesis trispyrazolylborate and metal complexes. There are three stages of this project. The first stage is synthesis and characterization of new ligands with substituents at the 3 and 4-positions of the pyrazole ring. Phenyl, tert-butyl and methyl groups are employed here as the bulky 3-position substituents and there is also a cyano substituent at the 4-position. After successful synthesis of the ligands, transition metal 16 complexes are made in the second stage with either sandwich (TpR,4CN)2M or half-sandwich (TpR,4CN)M(XYZ) structures. With these ligands we expect to observe steric effects initiated by bulky substituents as well as inductive effects brought by the CN group on the electronic properties of the metal. In addition, there is the potential for the cyano substituents to coordinate or at least have some short contacts with other metal centers from some small metal compounds, producing multinuclear species as shown in Figure 1.5.1. These small metal compounds (M’L) are “capping” the trispyrazolylborate ligands and give us the chance to study magnetic interactions between the metal ions. R2 R2 LM' LM' H B N N C N N C N N C N N R1 R2 M'L N R1 R1 M Figure 1.5.1 Multinuclear Trispyrazolylborate Metal Complex The third stage is the formation of coordination polymers by linking the multinuclear species together as shown in Figure 1.5.2. Communication between Tp-coordinated metals and cyano-ligated metals can provide a fully conjugated pathway for electrons to migrate, so as to provide molecular 17 materials with desired magnetic and electronic properties. N C H B N N N C H B N N C N NM N M' N N C N N C N conjug ated pa thway N MN Figure 1.5.2 Cyano Bridged Coordination Polymer 18 N C N Chapter 2 Polypyrazolylborates 2.1 Introduction Second generation polypyrazolylborates carrying alkyl or aryl substituents have been introduced for decades.29 They are capable of steric control over metal complexes. The overwhelming majority of scorpionate ligands feature substitution on the pyrazole rings by relatively electronically innocent alkyl or aryl groups. Among the numerous substituents are phenyl, tert-butyl and methyl groups.30 They belong to the very first group of substituents introduced to polypyrazolylborates. Even with these ligands, substantial effects on the electronic properties of the coordinated metal ion are realized simply as a function of the steric requirements of the substituents, especially that in the 3-position.23, 34, 35 Later the trifluoromethyl group and cyano group have been introduced as electron-withdrawing substituents to the polypyrazolylborate metal complexes. The CF3 substituent has been shown to affect metal complex electronic properties dramatically.37, 38 For the cyano group, although its electronic activity has not been fully explored, it is noted to have the potential to form coordination polymers. Previous research work in the Eichhorn group focused on dihydrobis(4-cyano-3-phenylpyrazolyl)borate and metal complexes of this ligand. Siemer and Eichhorn reported a successful high yield synthesis of the 19 ligand and crystal structures of Co(II) and Cu(II) complexes.39 In order to move forward with this research project, we first made trispyrazolylborate ligands with a bulky substituent in the 3-position and a cyano group in the 4-position of the pyrazole ring. The bulky substituents here include phenyl, tert-butyl, and methyl groups. They will allow us to explore a new series of ligands which can exert both steric and electronic effects on metal complexes, as well as some heteroscorpionate compounds. A number of syntheses have been reported for pyrazoles with CN substituents at the 4-position.39, 47, 48 However, these syntheses require the use of extreme reaction conditions or highly toxic reagents such as cyanoform or dimethyl sulfate. The cyano-substituted pyrazole syntheses described here use relatively straightforward methods that avoid these extreme conditions and dangerous materials. 20 2.2 Tris(4-cyano-3-phenylpyrazolyl)borate 2.2.1 Synthesis of TpPh,4CN The synthesis of 4-cyano-3-phenylpyrazole was accomplished by Siemer using a modification of a literature preparation by Tupper and Bray.48 This preparation (Figure 2.2.1, R = Phenyl) involves attack of benzoyl chloride on t-butylcyanoacetate, followed by decarboxylation, formation of the 2-benzoyl-3-dimethylamino-acrylonitrile, and reaction with hydrazine to form the pyrazole.39 O O O + t R O Bu Cl O NaH Toluene O pTSA Toluene O Bu t R R DMF.DMA Toluene CN CN O CN NC NH R = phenyl, tBu, Me N R H2NNH2 Methanol R N CN Figure 2.2.1 Synthesis Route of 4-cyano-3-R pyrazoles The standard synthesis of scorpionates involves the heating of the pyrazole with KBH4, either in a high boiling solution or in a solventless melt. Formation of Bp or Tp is dependent on stoichiometry of the two reagents and 21 the reaction temperature. The synthesis of KBpPh,4CN and KTpPh,4CN are accomplished in a melt at the temperatures indicated in Figure 2.2.2. H2 B N N - K+ N NH 1/3 KBH4 210oC 1/2 KBH4 150oC N N R R NC R H B N N C N N C N N N R -K+ C N N R R t Figure 2.2.2 Synthesis of Bis and Tris(4-cyano-3-R-pyrazolyl)borate, R = Phenyl, Bu The melting point of 4-cyano-3-phenylpyrazole is 138 oC. Reaction of this pyrazole with KBH4 in a 2:1 ratio at 150 oC produces KBpPh,4CN as the major product, while a 4:1 ratio of pyrazole to KBH4 at 230 oC yields KTpPh,4CN as the major product, leaving a small amount of unreacted pyrazole and byproduct of potassium tetrakis(4-cyano-3-phenylpyrazolyl)borate. The IR spectrum shows a strong CN stretching absorption at 2230 cm-1 and a medium BH bond absorption at 2456 cm-1. There are three major peaks in the ESI-mass spectrum (Figure 2.2.3): m/z = 168, 516 and 1055, which correspond to [pzPh,4CN]-, [TpPh,4CN]- and [TpPh,4CN2Na]- respectively. This 1055 peak is interesting, as it may indicate TpPh,4CN bonding to a Na ion through the CN group. 22 120 168.1 [pzPh,4CN]- 100 516.3 [TpPh,4CN]- 80 60 1055.0 [TpPh,4CN2Na]- 40 20 0 0 500 1000 1500 2000 2500 Figure 2.2.3 MS of TpPh,4CN 2.2.2 Synthesis and Structure of TlTpPh,4CN Purification of scorpionates by preparation of the thallium salts is a relatively common practice.49-51 These thallium salts have been used successfully in the synthesis of transition metal complexes. TlTpPh,4CN was made by mixing thallium nitrate with KTpPh,4CN in a methanol/water solution. Purification of the product was accomplished by washing with water to yield TlTpPh,4CN as a yellow powder. X-ray quality crystals of TlTpPh,4CN were grown by slow diffusion of the two starting materials. An ORTEP drawing of TlTpPh,4CN is shown in Figure 2.2.4. Selected bond distances and angles are shown in Table 2.2.1. 23 Figure 2.2.4 ORTEP Drawing of TlTpPh,4CN Shown at the 50% Probability Level. H Atoms Have Been Omitted and Only N, B, Tl Atoms Are Labeled for Clarity. Table 2.2.1 Bond Distances (Å) and Angles (deg.) for TlTpPh,4CN Tl - N B-N C≡N 2.804(5) 1.537(6) 1.134(8) N - Tl - N N-B-N C-C≡N 72.7(2) 111.3(4) 178.5(8) TlTpPh,4CN crystallizes in the trigonal space group P 3 , with both Tl and B atoms situated on a crystallographic three-fold axis. The Tl ion is coordinated by the three available N atoms of the Tp ligand. An area of electron density situated ca. 4.372 Å off the phenyl ring could not be modeled and is assigned to a region of disordered H2O, consistent with the elemental analysis which was fit with four H2O molecules per TlTpPh,4CN. In addition the TlTpPh,4CN structure shows short contacts between the Tl atom and N atoms (Tl…N 3.211 Å) from the CN substituents of three adjacent Tp ligands (Figure 2.2.5). 24 Figure 2.2.5 Raster 3D Diagram Showing the Close Contacts Between Tl and Cyano Groups of Adjacent Pyrazoles in TlTpPh,4CN. There is also a short contact between the Tl atom and the BH group of the Tp ligand directly beneath it (Tl…B 3.071 Å). Aside from the intermolecular interactions with TlTpPh,4CN, the structures of the thallium salts are very similar to those reported for Tl salts of other Tp ligands,49-52 with a pyramidal coordination geometry around the Tl atom. The Tl-N bonds, however, are significantly longer than those in the Tl salts of the analogous non-cyano ligands (Table 2.2.2), with a bond length of 2.804 Å in TlTpPh,4CN (compared with 2.605 Å in TlTpPh). 51 A similar relationship is present in the t-butyl system (discussed below) and between the structures of TlTpMe2 fluorinated analog TlTp(CF3)2,54 indicating the effect 53 and its of the electron-withdrawing substituent on the Tl-N bond length. Interestingly, such 25 a relationship appears not to be present in transition metal complexes of BpPh,4CN 40 or Bp(CF3)2 54 for which the M-N bond lengths are essentially unchanged from the related non-cyano or non-fluorinated ligands. Table 2.2.2 Tl-N Bond Distances (Å) in Scorpionate Complexes TlTpPh,4CN TlTpPh TlTpt-Bu,4CN TlTpt-Bu TlTp(CF3)2 TlTpMe2 Tl - N 2.804 2.605 2.714 2.583 2.691 2.516 References This Work 51 This Work 52 54 53 26 2.3 Tris(4-cyano-3-tert-butylpyrazolyl)borate 2.3.1 Synthesis and structure of Hpzt-Bu,4CN With a goal of exploring new ligands with common bulky alkyl substituents, we tried to apply 4-cyano-3-phenylpyrazole the same synthetic procedure used to make 4-cyano-3-tert-butylpyrazole for with trimethylacetyl chloride as the starting material instead of benzolyl chloride (Figure 2.2.1). A pale yellow solid is isolated in good yield, characterized by 1H-NMR. X-ray quality crystals of this pyrazole were grown by slow evaporation of a CH2Cl2 solution. An ORTEP drawing is shown in Figure 2.3.1 with selected bond distances and angles in Table 2.3.1. Figure 2.3.1 ORTEP Drawing of Hpzt-Bu,4CN Showing 50% Thermal Ellipsoids, H Atoms Have Been Omitted for Clarity. Table 2.3.1 Bond Distances (Å) and Angles (deg.) for Hpzt-Bu,4CN N(1) - N(2) C(4) - N(3) 1.358(3) 1.143(4) C(1) - N(2) - N(1) N(2) - N(1) - C(3) C(2) - C(4) - N(3) 27 104.9(2) 113.3(2) 179.2(3) Hpzt-Bu,4CN crystallizes in the monoclinic space group C2/m with the pyrazole ring and one methyl group (C6) coincident with a crystallographic mirror plane. The nitrogen atom further away from the tert-butyl substituent is protonated. As seen in crystal structures of other pyrazoles, two symmetry-related pyrazole molecules form a hydrogen-bound dimer, with the protonated pyrazole N atom on one pyrazole, N(2), interacting with the unprotonated pyrazole N atom, N(1), on the other pyrazole (N…N 2.864 Å). The length of this hydrogen bond (2.292 Å) is significantly longer than the 1.993 Å reported in the structure of Hpz3,5-t-Bu.55 This is, perhaps, a reflection of the reduced ring electron-density due to the electron-withdrawing CN group. 2.3.2 Synthesis of Tpt-Bu,4CN Tpt-Bu is one of the classic examples of ligands with large steric hindrance, characterized by predominant formation of tetrahedral Tpt-BuMX complexes, and by the inability to form (Tpt-Bu)2M species.30, 56, 57 Tpt-Bu,4CN was made in a similar manner to that used for TpPh,4CN (Figure 2.2.2). 4-cyano-3-tert-butylpyrazole was melted in the presence of sodium or potassium borohydride with the stoichiometry of 4-cyano-3-tert-butylpyrazole has a lower melting point (~125 4:1. As oC) than 4-cyano-3-phenylpyrazole, the temperature was increased to no more than 210 oC. After purification in boiling toluene, KTpt-Bu,4CN is collected as a light 28 yellow powder. There is some unreacted pyrazole, Bpt-Bu,4CN and pzt-Bu,4CNTpt-Bu,4CN detected as byproducts. The IR spectrum shows a strong CN stretch at 2231 cm-1 and medium BH bond absorption at 2460 cm-1. ESI-mass spectroscopy shows the major peaks at m/z = 456.4, corresponding to [Tpt-Bu,4CN]- and 148.3, corresponding to the deprotonated pyrazole (Figure 2.3.2). Minor peaks representing the bis- and tetrakispyrazolylborates are evident, as well as those corresponding to addition of two scorpionate ions and one sodium ion. 120 456.4 [Tpt-Bu,4CN]- 100 148.3 [pzt-Bu,4CN]- 80 603.5 [pzt-Bu,4CNTpt-Bu,4CN]- 60 40 934.9 [NaTp2t-Bu,4CN]- 788.1 [NaBpt-Bu,4CNTpt-Bu,4CN]- 20 309.5 [Bpt-Bu,4CN]- 0 0 200 400 600 800 1000 1200 Figure 2.3.2 MS of Tpt-Bu,4CN 2.3.3 Synthesis and Structure of TlTpt-Bu,4CN Thallium hydrotris(3-tert-butyl-4-cyanopyrazolyl)borate was made by the same procedure described above using Tl(NO3) and KTpt-Bu,4CN, in order to 29 purify the ligand and characterize the structure. Colorless X-ray quality crystals were grown by layering a methanol solution of the ligand on top of the methanol/water solution of thallium nitrate. ORTEP drawings of TlTpt-Bu,4CN are shown in Figure 2.3.3, with selected bond distances and angles in Table 2.3.2. TlTpt-Bu,4CN crystallizes in the rhombohedral space group R3m. Both the Tl and B atoms are situated on positions with 3m symmetry such that each pyrazole ring is coplanar with a crystallographic mirror plane that also contains the central C atom and one methyl group of the tert–butyl substituent. As mentioned above, the Tl-N bond length is significantly longer than that in TlTpt-Bu 52(Table 2.2.2). Figure 2.3.3 ORTEP Drawing of TlTpt-Bu,4CN Shown at the 50% Probability Level. H Atoms Have Been Omitted and Only B, N, Tl Atoms Are Labeled for Clarity. 30 Table 2.3.2 Bond Distances (Å) and Angles (deg.) for TlTpt-Bu,4CN Tl - N B-N C≡N 2.714(4) 1.544(5) 1.150(9) N - Tl - N N-B-N C-C≡N 76.3(1) 112.2(3) 179.6(8) Unlike the crystal structure of TlTpPh,4CN, there are no obvious intermolecular interactions involving the Tl atom in TlTpt-Bu,4CN. Although the cyano N atoms from neighboring Tp ligands are still situated between the pyrazole rings, the distance between Tl and these N atoms is increased to 3.854 Å. As has been seen before with the analogous non-cyano Tp ligands,30 the steric demands of the tert-butyl substituent reduce the accessibility of the coordinated metal with respect to the somewhat less bulky phenyl substituent. 31 2.4 Tris(4-cyano-3,5-dimethylpyrazolyl)borate 2.4.1 Synthesis of HpzMe2,4CN Pyrazoles with methyl substituents are among the first substituted pyrazoles that have been synthesized and characterized. The synthesis of 4-cyano-3,5-dimethylpyrazole has been reported,58 but we have developed a new, more straightforward synthesis of this compound. Belot and co-workers reported the synthesis of 3-cyano-2,4-pentanedione by the reaction of 2,4-pentanedione with chlorosulfonylisocyanate.59 Reaction of this compound with hydrazine monohydrate produces the desired 4-cyano-3,5-dimethylpyrazole in good yield (Figure 2.4.1). O 2.0 eq. O O + 1.0 eq. ClSO2NCO O 2.0 eq.DMF CH2Cl2 H2NNH2 CH3OH NH NC N N C N C N _ K+ H B N N N N 1/3 KBH4 200oC CN C N THF Ethyl Ether N Figure 2.4.1 Synthesis of Tris(4-cyano-3,5-dimethylpyrazolyl)borate Unlike the phenyl and t-butyl pyrazoles, 4-cyano-3,5-dimethylpyrazole appears to be unstable upon exposure to air. Mass spectroscopy recorded 32 immediately after synthesis shows only one major peak at m/z = 120, which is the anion of 4-cyano-3,5-dimethylpyrazole. After exposure to air for a couple of days, a peak begins to grow in at m/z = 95, consistent with 3,5-dimethylpyrazole (i.e., loss of the CN group). Another major peak appears at m/z = 125 with almost the same intensity as that at 120. The peak at 125 is consistent with 3-cyano-2,4-pentanedione. This indicates that 4-cyano-3,5-dimethylpyrazole may be unstable in the air, and the pyrazole ring decomposes with a mechanism that may include reaction with H2O in the air. Samples stored under a nitrogen atmosphere do not exhibit this decomposition. 2.4.2 Synthesis of TpMe2,4CN Tris(4-cyano-3,5-dimethylpyrazolyl)borate was made by a similar procedure as above by melting 4-cyano-3,5-dimethylpyrazole in the presence of sodium or potassium borohydride with a 4:1 stoichiometry. Since this pyrazole has a much lower melting point (~120 oC) than the phenyl or tert-butyl substituted pyrazoles, the temperature was increased to under 200 oC. The product was dissolved in THF and then crashed out with ethyl ether for purification. The final yield of the yellow solid TpMe2,4CN is about 63%. The IR spectrum shows a CN stretch at 2224 cm-1 and a BH peak at 2426 cm-1. ESI-mass spectroscopy shows peaks for [pzMe2,4CN]- at m/z = 120.3, [pzMe2,4CN]2- at m/z = 241.2 and [TpMe2,4CN]- at m/z = 372.5 (Figure 2.4.2). 33 120 120.3 [pzMe2,4CN]100 80 60 40 20 241.2 [pzMe2,4CN]2- 372.5 [TpMe2,4CN]- 0 50 100 150 200 250 300 350 400 450 500 Figure 2.4.2 MS of TpMe2,4CN Tris(4-cyano-3,5-dimethylpyrazolyl)borate also seems to be unstable in the air. This ligand was used to make some cobalt and copper complexes. The only crystal isolated from the dichloromethane solution, instead of (TpMe2,4CN)2Cu, is bis(3-cyano-2,4-pentanedionato)copper, which has already be reported.59 34 2.5 4-cyano-3-methylpyrazole We tried to employ the same synthetic procedure to make 4-cyano-3-methylpyrazole as for 4-cyano-3-phenylpyrazole and 4-cyano-3tert-butylpyrazole, using acetyl chloride as the starting material (Figure 2.2.1). Unfortunately, we were only able to isolate 4-cyano-3-methyl pyrazole at a very low yield (~5%). It appears the presence of the α-hydrogen makes the reaction much less effective. A new synthetic route has to be found to make this substituted pyrazole. 35 2.6 Heteroscorpionates 2.6.1 Heteroscorpionate Introduction Heteroscorpionates are polypyrazolylborates carrying different pyrazole groups and other alkyl or aryl groups bonded to the boron atom. The attractive feature of heteroscorpionates lies in their greater variety. While possessing the same options of containing different 3-, 4-, and 5-substituents on the pyrazole ring, it has at least two groups on boron that can be varied. Yet this sub-area of polypyrazolylborate ligands remains new and needs more research attention. c R'Z R The first heteroscorpionate was c' B N reported in 1966 by Trofimenko,21 N b' b N a and N the known heteroscorpionate types ligands of are a' mostly bispyrazolylborates which Figure 2.6.1 Bis-heteroscorpionate can be expressed as R(R’Z)B(pzxpzy) (Figure 2.6.1). R and R’ can be H, alkyl, or aryl groups and Z is a heteroatom (O, S, NR’). The two pyrazole rings either bond to boron through different nitrogen atoms or they carry different substituents. Heteroscorpionate metal complexes have also been reported.60-62 When polypyrazolylborates bond with the metal atom, the 3- and 5-positions of the pyrazole ring are not identical any more. If there are substituents on 36 these two positions, it is possible for rearrangement and the formation of heteroscorpionates. Examples of this kind of complexes include HB[(pz3Me,5i-Pr)(pz5Me,3i-Pr)2]Mo(NO)I2,60 [HB(pz3Me,4Br)2(pz5Me,4Br)]Co(NCS),61 [{η3-HB(pz3Ph)2(pz5Ph)}2Al][AlCl4],62 [HB(pz3Ph)2(pz5Ph)]2Fe63 and [HB(pz3Ph)2(pz5Ph)]2Co. 64 Heteroscorpionates can play an important role in this research project. The goal is to make conductive coordination polymers by linking different multinuclear metal complexes via the cyano substituents. Homoscorpionates such as TpPh,4CN will potentially produce 2- or 3-dimensional polymer matrices, which are hard to control and construct. Heteroscorpionates such as pzR,4CNBpR and pzRBpR,4CN (Figure H B 2.6.2) carry only one or two cyano substituents. They can be used to build R 1-dimensional polymer chains. Also, pzR,4CNBpR can act as a chain terminus, N N N N CN n R 3-n pzRBpR,4CN, n=1 pzR,4CNBpR, n=2 allowing for control over the length of Figure 2.6.2 Cyano Tris-heteroscorpionate growing polymer chains. 37 2.6.2 Synthesis of pzPhBpPh,4CN The first attempt to synthesize pzPhBpPh,4CN was simply to mix 4-cyano-3-phenylpyrazole, 3-phenylpyrazole and KBH4 with a stoichiometry of 2:2:1. The temperature was increased to 230 oC with an oil bath. After purification the final product was a darker yellow color solid which is similar to TpPh,4CN. Mass spectroscopy showed the desired product (m/z = 491) along with many other byproducts (Figure 2.6.3). 120 516.4 [TpPh,4CN]- 100 633.4 [(pzPh)2(BpPh,4CN)]- 491.6 [pzPhBpPh,4CN]- 80 658.4 [pzPhTpPh,4CN]- 168.2 [pzPh,4CN]- 60 608.3 [pzPh,4CNTpPh]- 40 466.4 [pzPh,4CNBpPh]- 20 0 0 200 400 600 800 1000 Figure 2.6.3 MS of Heteroscorpionate 1 Given the stoichiometry and the temperature of the reaction, there could be quite a few possibilities for the formation of not only trispyrazolylborates, but also tetrakispyrazolylborates (pzTp), including both homo and heteroscorpionates. Mass spectroscopy showed a wide range of products, including the homotrispyrazolylborate TpPh,4CN, the heterotrispyrazolylborates 38 pzPhBpPh,4CN and pzPh,4CNBpPh, and the heterotetrakispyrazolylborates pzPh,4CNTpPh, pzPh TpPh,4CN and (pzPh)2BpPh,4CN. Although this method results in the synthesis of the desired heteroscorpionate, it is too random to give a pure product. Since pzPhBpPh,4CN is the one of greatest interest, we thought that it would be much better for the synthesis by making BpPh,4CN first and then let it react with 3-phenylpyrazole in the right ratio. The synthesis of BpPh,4CN has already been reported.39 BpPh,4CN and 3-phenylpyrazole were melted together with a stoichiometry of 1:1 in the oil bath at 230 oC. Unfortunately, the mass spectroscopy still showed a significant amount of scrambling (Figure 2.6.4). It seems to be necessary to find a new way by which the reaction could be better controlled. 120 168.2 [pzPh,4CN]- 100 80 516.5 [TpPh,4CN]- 60 491.6 [pzPh,BpPh,4CN]- 40 633.3 [(pzPh,4CN)2(BpPh)]- 20 0 0 100 200 300 400 500 600 Figure 2.6.4 MS of Heteroscorpionate 2 39 700 800 2.7 Conclusion The ability to synthesize pyrazoles with a variety of substituents creates versatility of polypyrazolylborates. Cyano-substituted scorpionate ligands have been reported before. We extended the range to trispyrazolylborates carrying the cyano substituent in the 4-position and bulky substituents such as phenyl, tert-butyl and methyl groups in the 3-position. Successful syntheses have been developed for all pyrazoles except HpzMe,4CN. The instability of the 4-cyano-3,5-dimethylpyrazole in air has been noticed, but the mechanism of this decomposition still needs to be determined. Thallium trispyrazolylborates were made in order to purify the ligands and characterize the structures. X-ray crystal structures of thallium salts were determined and the electron-withdrawing property of the CN substituent is shown. Compared with reported data for the analogous non-cyano ligands, the TlTpR,4CN structures show significantly longer Tl-N bonds. There are short contacts between the Tl atom and CN substituents of adjacent Tp ligands in TlTpPh,4CN, as well as between the Tl atom and the B-H group of the Tp ligand directly beneath it. Theses short contacts are absent in TlTpt-Bu,4CN structure. Because the tert-butyl substituent is more bulky than the phenyl group, Tpt-Bu,4CN allows less access to the coordinated metal than does the phenyl-substituted ligand, TpPh,4CN. 40 The synthesis of heteroscorpionates is another focus of the research on polypyrazolylborates due to the greater versatility they provide. Two different ways have been attempted for making pzPhBpPh,4CN. Clearly it is possible to make heteroscorpionates containing cyano-substituted pyrazoles and their non-cyano analogs, but further work is necessary on purification of the final product and finding a better way to control the reaction. 41 2.8 Experimental 2.8.1 General Experimental This section will serve as general information regarding laboratory procedures, chemicals used, and techniques used for experimental procedures. Unless otherwise stated, all solvents and reagents were used as received from TCI (tert-butylcyanoacetate), Aldrich, Acros, and Fisher Scientific without further purification. Dry solvents were distilled from sodium/benzophenone for tetrahydrofuran, toluene and hexanes. Calcium hydride was used for methylene chloride, acetonitrile and dimethylformamide. Degassed solvents were dried first, and then purged with nitrogen. Air-sensitive compounds were manipulated in a Vacuum Atmospheres Inc. Nexus One drybox, equipped with a variable temperature freezer, or on a double manifold Schlenk line using standard Schlenk techniques. NMR spectra were obtained using either Varian Mercury 300MHz NMR or Varian Inova 400MHz NMR, both equipped with Oxford magnets. IR spectra were obtained using a Nicolet Avatar 360 FTIR. Electrospray Ionization Mass Spectroscopy was obtained by Dr. Michael Van Stipdonk (Wichita State University) with a Finnigan LCQ DECA. Elemental analyses were obtained from M-H-W Laboratories, Phoenix, AZ. X-ray crystal structures were determined using an Enraf-Nonius CAD4 diffractometer (Mo Kα, λ=0.71069 Å) equipped with an Oxford Cryosystems Cryostream 700 low-temperature apparatus. Suitable crystals were identified 42 using a polarizing microscope, affixed to a glass fiber using Paratone-N oil (Exxon) and were immediately transferred to the cold stream of the diffractometer. The unit cells were determined from the setting angles of 24 reflections with 20o<2θ<24o. The data were processed and the structures solved and refined using the WinGX software package.65 The data were corrected for Lorentz and polarization effects, secondary extinction, and an empirical absorption correction based on azimuthal scans of three intense reflections or using the DIFABS program66 was applied. The structures were solved by direct methods67 and refined by full-matrix least-squares techniques68 with values for ∆f' and ∆f" from Creagh and McAuley.69 All non-hydrogen atoms were refined with anisotropic temperature factors. Hydrogen atoms were included at idealized positions, but were not refined. TlTpt-Bu,4CN crystallographic data were collected by Charlotte Stern (Northwestern University) with a Bruker SMART-1000 CCD diffractometer equipped with a graphite-monochromated Mo Kαradiation source; the structure was solved and refined as described above. 2.8.2 Synthesis of Potassium hydrotris(4-cyano-3-phenylpyrazolyl)borate [KTpPh,4CN] The synthesis of 4-cyano-3-phenylpyrazole has been reported before.39 To 0.700 g (4.14 mmol) of 4-cyano-3-phenylpyrazole was added 0.056 g (1.04 mmol) of KBH4. The two solids were ground together by means of a mortar 43 and pestle, and placed into a round bottom flask equipped with a water-cooled condenser. The flask was placed in an oil bath, which was heated slowly to 230 oC. As the pyrazole melted and reacted with KBH4, hydrogen bubbles were released. The reaction was continued for 2 hours. After cooling, the solid product was washed with CH3CN and boiling toluene to yield KTpPh,4CN as a pale yellow solid (0.479 g, 0.86 mmol, 82.7%). IR (cm-1, KBr pellet): 695(s), 773(s), 2230(νCN, s), 2456(νBH, m). 1H NMR (d6-DMSO, δ downfield of TMS): 7.45(m, 3H), 7.90(m, 2H), 8.30(s, 1H). ESI-MS (THF, negative detection): (m/z) = 168.1 [pzPh,4CN]-, 516.3 [TpPh,4CN]-, 1055.0 [Na(TpPh,4CN)2]-. 2.8.3 Synthesis of Thallium(I) hydrotris(3-phenyl-4-cyanopyrazolyl)borate [TlTpPh,4CN] To a solution of KTpPh,4CN (1.740 g, 3.11 mmol) in 20 mL of methanol was added a solution of TlNO3 (0.830 g, 3.11 mmol) in 20 mL of 50/50 methanol/water. The mixture was stirred for an hour. Concentration of the solution on a rotary evaporator resulted in a yellow precipitate of TlTpPh,4CN, which was collected and washed with water to give 1.842 g (2.56 mmol, 82.6%) of light yellow powder. IR (KBr, cm-1): 2226(νCN, s), 2448 (νBH, m). ESI-MS (CH3OH, positive detection): m/z = 744.1 [TlTpt-Bu,4CN]Na+. Elemental Analysis, Found (Calc’d for C30H19N9BTl·4H2O): C, 45.62 (45.45); H, 3.35 (3.43); N, 14.29 (15.90). X-ray quality crystals were grown by layering a solution of KTpPh,4CN in methanol on top of a solution of TlNO3 in 44 water/methanol. After allowing the solutions to diffuse together for a week, the top was removed and the solvent allowed to slowly evaporate, producing light yellow crystals. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table B1-4. 2.8.4 Synthesis of 4-cyano-3-tert-butylpyrazole [Hpzt-Bu,4CN] The compound was prepared by using a method similar to that used for 4-cyano-3-phenylpyrazole.39 A suspension of sodium hydride (60% dispersion in mineral oil, 2.812 g, 70.30 mmol) in 150 mL dry toluene was put under nitrogen and cooled by means of an ice/water bath. To this suspension a solution of tert-butylcyanoacetate (10 mL, 70.3 mmol) in 10 mL of dry toluene was added dropwise with bubbles appearing immediately. The mixture was stirred for 18 hours. The solution became viscous, and to this solution was added, dropwise, trimethylacetyl chloride (8.65 mL, 70.30 mmol) in 10 mL of dry toluene. The solution immediately became less viscous and slightly yellow. After stirring overnight, 100 mL of aqueous 0.2 M sodium hydroxide was added and the aqueous layer was separated from the organic layer. The organic layer was extracted with two more portions (100 mL each) of 0.2 M sodium hydroxide. The yellow aqueous layers were combined and washed once with ethyl ether. The aqueous solution was acidified with 100 mL of 2 M HCl - an amount that neutralizes the NaOH used for extraction, and provides 45 two additional equivalents to fully protonate the product. A white precipitate came out immediately with the addition of HCl. The acidified solution with precipitate (pH ~ 1) was then extracted with three portions of ethyl ether (100 mL each), which were combined, and dried over magnesium sulfate. After filtration, the solvent was removed under reduced pressure to yield 6.690 g (29.72 mmol, 42.3%) of tert-butyl-2-cyano-3-oxo-4,4-dimethylpentanoate. The product was then dissolved in dry toluene (150 mL), to which was added p-toluenesulfonic acid (0.565 g, 2.97 mmol). This solution was heated at reflux for 18 hours and then filtered to remove some insoluble material. The solvent was removed under reduced pressure to yield 3-oxo-4,4-dimethylpentanenitrile (4.702 g, 26.70 mmol, 90.0%), as a yellow solid. This product was redissolved in 150 mL of dry toluene and 3.90 mL (29.37 mmol) of DMF-dimethylacetal was added. The mixture was stirred for 18h under nitrogen. The solvent was removed under reduced pressure, and the product was chromatographed using a silica gel column (100-200 mesh) with CH2Cl2 as the mobile phase. The desired product had a very low retention time, and almost all other products adsorbed onto the silica very strongly. Eluent from the column was evaporated under reduced pressure, yielding 2-tert-butyl-3-dimethylaminoacrylonitrile as a yellow solid (4.175 g, 23.21 mmol, 86.8%). This product was dissolved in 100 mL of methanol and was treated with hydrazine monohydrate (2.25 mL, 46.44 mmol). This mixture was stirred for 18 hours, resulting in slightly lighter color. The solvent was 46 removed under reduced pressure and the product was chromatographed using a silica gel column (100-200 mesh) with 50/50 ethyl acetate/hexanes to give 4-cyano- 3-tert-butylpyrazole (very light yellow solution) as the first fraction. The solvent was removed under reduced pressure, yielding 4-cyano3-tert-butylpyrazole as a pale yellow solid (1.954 g, 13.12 mmol, 56.4%). IR (KBr, cm-1): 1366(m), 2226(νCN, vs). 1H NMR (CDCl3): 1.45(s, 9H), 7.82(s, 1H). ESI-MS (THF, negative detection): m/z = 148.3 [pzt-Bu,4CN]-. Elemental Analysis, Found (Calc’d for C8H11N3): C, 64.16 (64.40); H, 7.56 (7.43); N, 26.70 (28.16). X-ray quality crystals were grown by slow evaporation of a toluene solution. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table C1-4. 2.8.5 Synthesis of Potassium hydrotris(4-cyano-3-tert-butylpyrazolyl)borate [KTpt-Bu,4CN] Potassium borohydride (0.064 g, 1.7 mmol) and 4-cyano-3-tert-butylpyrazole (1.000 g, 6.7 mmol) were combined in a round-bottom flask fitted with a reflux condenser and slowly heated to 210 oC for one hour. The reaction mixture was allowed to cool, and the resulting powder was washed with CH3CN and boiling toluene to yield KTpt-Bu,4CN as a pale yellow solid (0.593 g, 1.19 mmol, 70.0%). IR (KBr, cm-1): 2231(νCN, s), 2460 (νBH, m). ESI-MS (THF, negative detection): m/z = 148.3 [pzt-Bu,4CN]-, 456.4 [Tpt-Bu,4CN]-, 309.5 47 [Bpt-Bu,4CN]-, 603.5 [pzt-Bu,4CNTpt-Bu,4CN]-, 788.1 [NaBpt-Bu,4CNTpt-Bu,4CN]-, 934.9 [NaTp2t-Bu,4CN]-. 2.8.6 Synthesis of Thallium(I) hydrotris(4-cyano-3-tert-butylpyrazolyl)borate [TlTpt-Bu,4CN] Same procedure as used to make TlTpPh,,4CN was applied here with 1.082 g (2.18 mmol) KTpt-Bu,4CN and 0.583 g (2.18 mmol) TlNO3. Yield: (1.201 g, 1.82 mmol, 83.4%) TlTpt-Bu,4CN. IR (KBr, cm-1): 2221(νCN, s), 2452 (νBH, m). ESI-MS (CH3OH, positive detection): m/z = 458.2 [H2Tpt-Bu,4CN]+, 662.0 [TlTpt-Bu,4CN]H+. Elemental Analysis, Found (Calc’d for C30H19N9BTl·3H2O): C, 40.48 (40.33); H, 4.22 (5.22); N, 15.85 (17.64). X-ray quality crystals were grown as for TlTpPh,4CN. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table D1-4. 2.8.7 Synthesis of 4-cyano-3,5-dimethylpyrazole [HpzMe2,4CN] Synthesis of 3-cyano-2,4-pentanedione has been reported before.59 To a solution of 0.251 g (2 mmol) of 3-cyano-2,4-pentanedione in methanol was added 0.100 g (2 mmol) hydrazine monohydrate, giving a lighter yellow color after stirring overnight. After drying over Na2SO4, the solvent was removed under reduced pressure yielding 4-cyano-3,5-dimethylpyrazole as a white powder (0.212 g, 86.5%). IR (cm-1, KBr pellet): 631(s), 984(s), 1093(m), 48 1148(m), 1379(m), 1547(s), 1638(s), 2192(νCN, s). 1H NMR (CDCl3): 2.40(s). ESI-MS (THF, negative detection): m/z = 120.3 [pzMe2,4CN]-. 2.8.8 Synthesis of Potassium hydrotris(4-cyano-3,5-dimethylpyrazolyl)borate [KTpMe2,4CN] Potassium borohydride (0.263 g, 6.82 mmol) and 4-cyano-3,5-dimethylpyrazole (3.274 g, 27.00 mmol) were combined in a round-bottom flask fitted with a reflux condenser and slowly heated to 200 oC. The reaction was continued for one hour. After cooling, the solid product was dissolved in THF, precipitated with ethyl ether, filtered, and washed with boiling toluene to yield KTpMe2,4CN as a pale yellow solid (1.414 g, 3.41 mmol, 63.1%). IR (KBr, cm-1): 2224(νCN, s), 2426 (νBH, m). ESI-MS (THF, negative detection): m/z = 120.3 [pzMe2,4CN]-, 241.2 [pzMe2,4CN]2-, 372.5 [TpMe2,4CN]-. 2.8.9 Synthesis of 4-cyano-3-methylpyrazole [HpzMe,4CN] The same procedure was used as for 4-cyano-3-tert-butylpyrazole, except acetyl chloride (5.02 ml, 70.3 mmol) replaced trimethylacetyl chloride as the starting material. The final product was a yellow solid in only about 5% yield. IR (cm-1, KBr pellet): 668(s), 951(m), 1098(s), 1520(s), 1651(m), 2236(νCN, vs). 1H NMR (CDCl3): 2.48(s, 3H), 7.82(m, 1H), 10.70(N-H, broad). 49 2.8.10 Synthesis of pzPhBpPh,4CN Attempt 1. 4-cyano-3-phenylpyrazole (1.022 g, 6.06 mmol), 3-phenylpyrazole (0.873 g, 6.06 mmol) and KBH4 (0.160 g, 3.03 mmol) were mixed together and placed into a round bottom flask equipped with a water-cooled condenser. The flask was placed in an oil bath, which was heated slowly to 230 oC. As the pyrazoles melted and reacted with KBH4, hydrogen bubbles were released. The reaction was continued for 2 hours. The solid product was dissolved in 5 mL THF. After filtration, the product was precipitated using ethyl ether and filtered. The solid was dried in vacuum to give the final product as a yellow powder (1.171 g, 2.37 mmol, 78.3%). IR (cm-1, KBr pellet): 697(s), 832(m), 944(s), 1710(s), 2215(νCN, s), 2460(νBH, w). ESI-MS (THF, negative detection): m/z = 168.4 [pzPh,CN]-, 466.4 [HB(pzPh,4CN)(pzPh)2]-, 491.6 [HB(pzPh,4CN)2(pzPh)]-, 516.4 [TpPh,4CN]-, 633.4 [pzPh2BpPh,4CN]- and 658.4 [pzPhTpPh,4CN]-. Attempt 2. KBpPh,4CN was synthesized as previously described.39 KBpPh,4CN (0.590 g, 1.52 mmol) and 3-phenylpyrazole (0.211 g, 1.52 mmol) were heated together to 230 oC in an oil bath for 2-3 hours. Then, as with TpPh,4CN, the product was cooled down and washed with CH3CN and boiling toluene to yield a yellow powder (0.474 g, 0.96 mmol, 63.2%). IR (cm-1, KBr pellet): 697(s), 832(m), 944(s), 1710(s), 2211(νCN, s), 2457(νBH, w). ESI-MS (THF, negative detection): m/z = 168.4 [pzPh,CN]-, 491.6 [HB(pzPh,4CN)2(pzPh)]-, 516.5 [TpPh,4CN]- and 633.3 [pzPh2BpPh,4CN]-. 50 Chapter 3 Scorpionate Metal Complexes 3.1 Introduction Trispyrazolylborate metal complexes with the 2:1 ligand-to-metal ratio, so-called “sandwich” compounds, were among the first scorpionate compounds isolated.21 The Tp ligands usually coordinate in tridentate fashion, forming octahedral complexes Tp2M. This type of complex involves metals from almost every group in the periodic table such as Tp2Cu23 and [NaTp2]-,70 and most of them have been studied by X-ray crystallography and spectroscopy. The second generation trispyrazolylborates carry substituents at the 3-, 4and/or 5-positions of the pyrazole ring, as well as on the boron atom. These substituents have a wide range of selections from phenyl, tert-butyl and methyl groups to bromo and trifluoromethyl groups. Research on metal complexes of these ligands concentrates on the effects of substituents on the metal ion as well as the whole molecule, including shifts of coordination bond lengths and angles, changes in electronic and magnetic properties, ligand rearrangements and metal-metal communication. Because of the steric hindrance introduced by the bulky substituents, substituted trispyrazolylborate metal complexes increasingly favor a “half-sandwich” formula with a 1:1 ligand-to-metal ratio,30 such as seen in PhTpt-BuFe(CO)71 51 and Tp(CF3)2Cu(CO).38 Polypyrazolylborate metal complexes have a large variety of applications especially in catalytic reactions and enzyme modeling. They are known to display catalytic effect in polymerization,72 oligomerization,73 carbene and nitrene transfer,74 oxidation75 and decarboxylation.76 Scorpionate ligands have been used by many scientists in modeling studies for various bioinorganic systems, in particular for enzymes in which the metal is coordinated by three imidazolyl nitrogen atoms from three histidine ligands. Substituents at the 3-position of the pyrazole ring can provide a hydrophobic pocket and adjust the geometry of the compounds. Important examples here include [TpFe]2(µ-O)(µ-OOCR2)2 (R = H, Me and Ph) in modeling hemerythrin, an oxo-bridged diiron enzyme77 and TpPh2Cu(NO), modeling a possible intermediate in nitrite reduction by copper nitrite reductase.78 Furthermore, heteroscorpionates combining both N and S donors have been used to mimic the coordination by histidines and methionine or cysteines coordinated to the biologically active metal ion.1 CF3 and CN groups are the only two strong electronically active substituents known so far for polypyrazolylborate metal complexes. The electron-withdrawing CF3 substituent has been shown to reduce the electron density on the coordinated metal and significantly alter its reactivity.38 For the 52 cyano substituent, the electronic activity has not yet been fully explored although its potential to form coordination polymers has been noticed.40 Previous work in the Eichhorn group has involved bis(4-cyano-3-phenylpyrazolyl)borate-metal complexes such as (BpPh,4CN)2Cu, (BpPh,4CN)2Co and (BpPh,4CN)2(H2O)Co, concentrating on synthesis and structure characterization.39 Described below is a continuation of this effort with the synthesis of related trispyrazolylborate complexes with transition metals such as Mn, Fe, Co and Cu. Structural information and physical properties observation are used to identify steric and electronic effects of the substituents, as well as the potential of the CN group for constructing coordination polymers. 53 3.2 TpR,4CN Complexes of Cobalt, Manganese and Iron 3.2.1 (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe Cobalt trispyrazolylborate complexes were some of the earliest metal scorpionate complexes (TpMe2)2Co.21-23, 28 reported, For including Tp2Co,25 phenyl-substituted (pzTp)2Co, and trispyrazolylborates, TpPhCo(NCS)(THF) has been made and studied by X-ray crystallography by Trofimenko.30 There are some unusual examples of cobalt complexes with TpPh ligands: [(η3-TpPh)(η2-TpPh)Co]79, (TpPh)*2Co64 and (Tpi-Pr)*2Co.61 In the first compound, one of the two TpPh ligands acts in a bidentate manner, giving a compound similar to BpPhTpPhCo.80 In the last two, (TpPh)*2Co and (TpiPr)*2Co, only two of the substituents on each ligand are in the 3-position of the pyrazole, pointing “down” towards the other ligand. The third pyrazole ring shifts such that the substituent is in the 5-position, pointing “up” and away from the other ligand. These two molecules have inversion symmetry as the “up” pyrazoles are trans to each other (Figure 3.2.1). In (TpiPr)*2Co, the Co-N bond between cobalt and the “up” pyrazole is only 2.102 Å, a little shorter than those between cobalt and two “down” pyrazoles (2.164 Å). This ligand isomerization is probably due to the steric hindrance brought by the bulky substituents on the pyrazole rings. 54 H B H B R N N N N 2 N N N N 2 R R R M M R R R N N N N N 2 B H N N 2 B H N R Figure 3.2.1 Ligand Isomerization in Scorpionate Metal Complexes Manganese(II) and manganese(IV) complex of Tp ligands were both reported. Tp2Mn,22 (TpPh)2Mn35 and [(TpMe2)2Mn][ClO4]281 have been structurally characterized by X-ray crystallography. Dinuclear manganese Tp complexes have also been synthesized as possible models for some manganese enzymes.82 Octahedral complexes Tp2Fe, (TpMe2)2Fe34 and (TpPh)2Fe35 have been structurally characterized. The bond lengthening in going from low-spin to high-spin in (TpMe2)2Fe was found to be one of the largest known.34 It is also interesting to notice the ligand isomerization of (TpPh)2Fe when treated with m-chloroperoxybenzoic acid.63 The Fe-N bond between iron and the “up” pyrazole in (TpPh)*2Fe is only 2.080 Å, similar to that in Tp2Fe and much shorter than the other two Fe-N bonds which are similar to those found in (TpPh)2Fe. 55 The mechanism of this isomerism is unclear although it is also reported in Tpi-Pr complexes with NiII, FeII, CuII and ZnII 61 and Tp3i-Pr,5MeMo(NO)I2.60 It has been suggested that it occurs via a “1,2-boratropic shift” (Figure 3.2.2). The boron shifts from one of the pyrazole nitrogen atoms to the other, resulting in an apparent interchanging of the 3- and 5-positions. This could be facilitated by oxygen atom or solvent molecules such as methanol through formation of transient coordination bond with the metal. In this intermediate one of the pyrazoles is no longer bound to the metal and thus can undergo a 1,2-shift and recoordinate back to the metal, eliminating the oxygen or solvent molecules. R R N-N N-N M R X BH N-N R X = O or Solvent M BH N-N N-N N-N R R R N-N X R M R N-N BH N-N R M N-N N-N R R Figure 3.2.2 1,2-Boratropic Shift 56 BH N-N Cobalt usually forms octahedral complexes with six coordination bonds. We tried to make (TpPh,4CN)2Co by mixing two equivalents of KTpPh,4CN with one equivalent of either Co(NO3)2·6H2O or Co(ClO4)2·6H2O. Products of the reaction with Co(NO3)2·6H2O in THF solution were hard to purify. Mass spectroscopy of the product did not show any evidence for (TpPh,4CN)2Co. Instead, there are peaks at m/z = 805.3 and 972.1, which correspond to (TpPh,4CN)Co(pzPh,4CN)(NO3) and (pzPh,4CNTpPh,4CN)Co(pzPh,4CN)(NO3). With Co(ClO4)2·6H2O, on the other hand, the pink solution of the metal salt in CH3OH/CH2Cl2 turned to purple right after the addition of KTpPh,4CN. The reaction generated a minor precipitate which has not been identified. After filtration and evaporation of solvent the product was extracted with CH2Cl2, in which neither of the starting materials would dissolve, resulting in a purple solid material. The IR spectrum shows CN and BH bonds absorption at 2233 cm-1 and 2480 cm-1, without any characteristic peaks of the ClO4 group. Elemental analysis of this product is consistent with calculation of (TpPh,4CN)2Co·CH3OH. X-ray quality crystals were grown by slow diffusion of the solutions of two starting materials. The compound characterized by X-ray crystallography turned out to be (TpPh,4CN)*2Co – a structure with an isomerized ligand. An ORTEP drawing of this complex is given in Figure 3.2.3 with selected bond distances and angles in Table 3.2.1. 57 Figure 3.2.3 ORTEP Drawing of (TpPh,4CN)*2Co Showing 50% Thermal Ellipsoids, H Atoms Are Omitted and Only B, N, Co Atoms Are Labeled for Clarity. Table 3.2.1 Bond Distances (Å) and Angles (deg.) for (TpPh,4CN)*2Co Co - N(1a) Co - N(1b) Co - N(1c) B(1) - N(2a) B(1) - N(2b) B(1) - N(2c) C(3a) - N(3a) C(3b) - N(3b) C(3c) - N(3c) 2.229(3) 2.222(3) 2.042(4) 1.523(7) 1.546(5) 1.546(6) 1.145(5) 1.144(5) 1.133(4) N(2a) - B(1) - N(2b) N(2b) - B(1) - N(2c) N(2c) - B(1) - N(2a) N(1a) - Co - N(1b) N(1b) - Co - N(1c) N(1c) - Co- N(1a) C(2a) - C(3a) - N(3a) C(2b) - C(3b) - N(3b) C(2c) - C(3c) - N(3c) 58 108.2(4) 110.1(3) 108.2(3) 79.5(1) 89.3(1) 89.7(1) 178.4(6) 178.4(6) 178.3(6) The compound crystallizes on a general position in the monoclinic space group P21/n. Among the six substituted pyrazoles number (c) and number (f) have their phenyl substituents in the 5-position, pointed “up”, away from the other ligand. Since the steric phenyl substituents are away from the metal ion, the “up” position pyrazoles have much shorter Co–N bonds (2.042 Å) - even less than that in unsubstituted Tp2Co (2.128 Å) (Table 3.2.2). The other two Co-N bond lengths are 2.222 Å and 2.229 Å, close to those in (TpPh)*2Co (2.224 Å). The symmetry around the cobalt atom is reduced from octahedral to D4h. The lowering of the symmetry is further reflected in the angles around cobalt. While the N-Co-N angle between the “up” pyrazole and each of the “down” pyrazoles is about 90o, the angle between the two “down” pyrazoles is only 80o. Cyano groups have no considerable steric effect on the structure. Although there are intermolecular contacts between CN substituents and protons of phenyl substituent and the pyrazole ring (N(3A)…C(1C) 3.286 Å, N(3C)…C(9F) 3.231 Å), no further CN-Co contacts are noticed. Table 3.2.2 Structural Data (Å and deg.) for “Sandwich” Metal Complexes Tp2Co (TpPh)*2Co (TpPh,4CN)*2Co Tp2Mn (TpPh)2Mn (TpPh,4CN)*2Mn Tp2Fe (TpPh)2Fe (TpPh)*2Fe (TpPh,4CN)*2Fe Metal - N 2.128 2.224/2.056 2.226/2.042 2.242 2.316 2.309/2.160 1.975 2.248 2.257/2.080 2.256/2.043 N-M-N 85.4 89.7/80.1 89.5/79.5 83.1 86.9 87.4/78.0 88.2 89.1 89.4/80.9 89.6/80.1 59 References 25 64 This Work 22 35 This Work 34 35 63 This Work (TpPh,4CN)2Mn was made under an inert atmosphere using KTpPh,4CN and Mn(CF3SO3)2·2CH3CN in a 2:1 ratio in THF solution. The product was purified by redissolving in CH2Cl2. Evaporation of the solvent yielded a white powder, which is stable in the air. The IR spectrum shows CN and BH bond absorptions at 2234 cm-1 and 2520 cm-1, without any characteristic peaks of the triflate group, indicating formation of the (TpPh,4CN)2Mn complex. Elemental analysis matches with this formula. X-ray quality crystals were grown by slow diffusion of CH3OH/CH2Cl2 solutions of the ligand and Mn(OTf)2·2CH3CN, producing pale yellow crystals. Ligand isomerization is also revealed in this crystal structure similar to (TpPh,4CN)*2Co. An ORTEP drawing of this complex is given in Figure 3.2.4 with selected bond distances and angles in Table 3.2.3. Table 3.2.3 Bond Distances (Å) and Angles (deg.) for (TpPh,4CN)*2Mn Mn - N(1a) Mn - N(1b) Mn - N(1c) B(1) - N(2a) B(1) - N(2b) B(1) - N(2c) C(3a) - N(3a) C(3b) - N(3b) C(3c) - N(3c) 2.311(5) 2.306(5) 2.160(6) 1.525(10) 1.562(8) 1.555(8) 1.145(8 1.147(8) 1.148(10) N(2a) - B(1) - N(2b) N(2b) - B(1) - N(2c) N(2c) - B(1) - N(2a) N(1a) - Mn - N(1b) N(1b) - Mn - N(1c) N(1c) - Mn- N(1a) C(2a) - C(3a) - N(3a) C(2b) - C(3b) - N(3b) C(2c) - C(3c) - N(3c) 60 109.1(6) 110.0(5) 109.8(5) 78.0(2) 86.9(2) 87.9(2) 179.1(9) 178.6(8) 177.5(10) Figure 3.2.4 ORTEP Drawing of (TpPh,4CN)*2Mn Showing 50% Thermal Ellipsoids, H Atoms Are Omitted and Only B, N, Mn Atoms Are Labeled for Clarity. The compound crystallizes on a general position in the monoclinic space group P21/n. Among the six coordinated pyrazoles, “up-down-down” ligand isomerization reduces the Mn-N bonds lengths from around 2.310 Å to 2.160 Å in number (c) and (f) pyrazoles. Also, similar to what has been seen in the (TpPh,4CN)*2Co structure, the N-Mn-N angle between the two “down” pyrazoles is only 78.00. Compared with the structure of (TpPh)2Mn which does not involve ligand rearrangement, the two “down” pyrazoles in (TpPh,4CN)*2Mn 61 have similar Mn-N bond length and N-Mn-N angle which implies that the CN substituents have no considerable steric effect on the molecular structure (Table 3.2.2). The CN substituents in this structure also have contacts with protons of the phenyl substituent and the pyrazole ring ((N(3A)…C(1C) 3.352 Å, N(3C)…C(9F) 3.187 Å). We were trying to make (TpPh,4CN)2Fe in the inert atmosphere by using KTpPh,4CN and Fe(CF3SO3)2·2CH3CN in a 2:1 stoichiometry. The light yellow solution of Fe(CF3SO3)2·2CH3CN in THF turned to green upon addition of the ligand. After the solvent was removed the product was redissolved in CH2Cl2 to remove any precipitate. The final product is a light green powder which is stable in the air. The IR spectrum shows CN and BH bond absorptions at 2235 cm-1 and 2517 cm-1, without any characteristic peaks of the triflate group. X-ray quality crystals were grown by slow diffusion of CH3OH/CH2Cl2 solutions of the ligand and Fe(CF3SO3)2·2CH3CN, producing light yellow crystals. The crystal structure revealed a complex of the isomerized ligand again, (TpPh,4CN)*2Fe. An ORTEP drawing of this complex is given in Figure 3.2.5 with selected bond distances and angles in Table 3.2.4. 62 Figure 3.2.5 ORTEP Drawing of (TpPh,4CN)*2Fe Showing 50% Thermal Ellipsoids, H Atoms Are Omitted and Only B, N, Fe Atoms Are Labeled for Clarity. Table 3.2.4 Bond Distances (Å) and Angles (deg.) for (TpPh,4CN)*2Fe Fe - N(1a) Fe - N(1b) Fe - N(1c) B(1) - N(2a) B(1) - N(2b) B(1) - N(2c) C(3a) - N(3a) C(3b) - N(3b) C(3c) - N(3c) 2.259(6) 2.252(6) 2.043(7) 1.511(10) 1.555(9) 1.559(10) 1.134(8) 1.152(8) 1.153(10) N(2a) - B(1) - N(2b) N(2b) - B(1) - N(2c) N(2c) - B(1) - N(2a) N(1a) - Fe - N(1b) N(1b) - Fe - N(1c) N(1c) - Fe - N(1a) C(2a) - C(3a) - N(3a) C(2b) - C(3b) - N(3b) C(2c) - C(3c) - N(3c) 63 108.6(8) 108.3(6) 110.1(7) 80.1(2) 88.6(3) 90.6(3) 176.7(10) 178.9(10) 176.8(10) The compound crystallizes on a general position in the monoclinic space group P21/n. Among the six substituted pyrazoles number (c) and number (f) have their phenyl substituents in the 5-position. In fact, (TpPh,4CN)*2Fe has a quite similar structure to (TpPh)*2Fe.63 Since the bulky phenyl substituents are away from the metal ion, the “up” position pyrazoles have much shorter Fe–N bonds (2.043 Å) which is close to that in unsubstituted Tp2Fe (1.975 Å) (Table 3.2.2). The other two Fe-N bonds lengths are 2.252 Å and 2.259 Å, similar to those in (TpPh)2Fe and (TpPh)*2Fe. The D4h symmetry around the iron atom reduces the angle between the two “down” pyrazoles to around 80o. Cyano substituents here are shown to have no considerable effect on the structure. However, it is interesting that the isomerization is apparently more facile in the cyano substituted complex. Although there are intermolecular contacts between CN and protons of phenyl substituent and the pyrazole ring (N(3A)…C(1C) 3.306 Å, N(3B)…C(1A) 3.284 Å, N(3C)…C(9A) 3.545 Å, N(3C)…C(7C) 3.375 Å), no further CN-Fe contacts are noticed. (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe are isostructural. They have the same ligand isomerization, similar decrease of the metal-N bond length as well as the lowering symmetry. Although (TpPh)2Co, (TpPh)2Mn and (TpPh)2Fe have all been isolated and structurally characterized, initial ligand isomerization was only revealed in the cobalt complex. The iron complex showed isomerization only after treatment with m-chloroperoxybenzoic acid. 64 It is apparent that the TpPh,4CN ligand can isomerize more easily, possibly due to electronic activity of the CN substituents. 3.2.2 Tpt-Bu,4CN Metal Complexes It is known that the tert-butyl group is a more bulky substituent with larger steric hindrance than the phenyl group, as shown in the structures of, e.g., TlTpR,4CN (section 2.3.3) and TpRCo(SCN) (R = Ph, t-Bu).30 In the latter examples, the phenyl-substituted ligand resulted in a five-coordinate complex with a coordinated THF, while the tert-butyl-substituted ligand resulted in a four-coordinate complex. Ligands with tert-butyl substituents are normally able to form tetrahedral Tpt-BuMX complexes instead of (Tpt-Bu)2M species.30 Initial attempts to make Tpt-Bu,4CNCoX complexes such as Tpt-Bu,4CNCoCl, Tpt-Bu,4CNCo(NO3) and Tpt-Bu,4CNCo(ClO4) resulted in a product which shows a peak in the mass spectrum at m/z = 972.5, corresponding unexpectly to [(Tpt-Bu,4CN)2Co]H+. This result may suggest that, in the case of Tpt-Bu,4CN, the CN substituent effects different types of complexes, allowing for the formation of (Tpt-Bu,4CN)2M, which is unknown for Tpt-Bu. Purification and crystal growth of Tpt-Bu,4CN cobalt complexes has, to date, been unsuccessful. As with the cobalt complexes, we were trying to make (Tpt-Bu,4CN)2Mn by mixing the ligand with Mn(CF3SO3)2·2CH3CN in a 2:1 ratio under inert atmosphere. The synthesis resulted in isolation of a white powder which is 65 soluble in CH2Cl2 and shows IR stretches consistent with BH and CN groups. Since none of the starting materials have good solubility in CH2Cl2, this product appears likely to have the “sandwich” type of formula such as (TpMe2)2Mn,83 which is known to be soluble in dichloromethane. Crystallization of (Tpt-Bu,4CN)2Mn has, to date, been unsuccessful. Synthesis of (Tpt-Bu,4CN)2Fe was attempted by reacting the ligand with Fe(CF3SO3)2·2CH3CN in THF under inert atmosphere. After evaporation of the solvent and purification by CH2Cl2 the product is a green solid. The IR spectrum shows CN and BH bond absorptions at 2252 cm-1 and 2508 cm-1 and no characteristic peaks of triflate group, indicating the formation of the desired complex. However, crystallization of this compound was problematic. After exposure to the air for a few days, the BH stretch disappeared in the IR spectrum. It seems that the ligand decomposed again as we have seen before for other Tpt-Bu,4CN metal complexes. 3.2.3 TpMe2,4CN Metal Complexes (TpMe2)2Co is known to exist.28 Attempts to reproduce this chemistry with TpMe2,4CN were made by adding the ligand to THF solutions of cobalt(II) nitrate. An immediate color change was observed. Purification and crystal growth of this metal complex has been problematic, presumably due to the instability of the ligand. The only positive result regarding the formation of a 66 TpMe2,4CN cobalt complex comes from mass spectroscopy, showing a peak at m/z = 637.2, corresponding to [(TpMe2,4CN)Co(HpzMe2,4CN)(NO3)]Na+. 67 3.3 TpR,4CN Copper Complexes 3.3.1 [TpPh,4CNCu]n and TpPh,4CNCuX Some of the first homoscorpionate complexes of copper were Tp2Cu, (pzTp)2Cu, and (TpMe2)2Cu, which were studied by spectroscopy.23 Reaction of the TpPh,4CN ligand with Cu(ClO4)2·6H2O or Cu(CF3SO3)2 in air produces both a yellow Cu(I) product and a green Cu(II) product. The Cu(II) products show IR peaks characteristic of ClO4- or CF3SO3- and are most likely to be tetrahedral complexes of the form TpPh,4CNCuX (X = ClO4 or CF3SO3). Elemental analysis matches with this formula. The Cu(I) product was crystallographically characterized to be a 1-dimensional coordination polymer [TpPh,4CNCu]n. An ORTEP drawing of the asymmetric unit is shown in Figure 3.3.1, with selected bond distances and angles in Table 3.3.1. Figure 3.3.1 ORTEP Drawing of One Asymmetric Unit of [CuTpPh,4CN]n Showing 50% Ellipsoids. H Atoms Have Been Omitted and only B, N and Cu Atoms Are Labeled for Clarity. 68 Table 3.3.1 Bond Distances (Å) and Angles (deg.) for [TpPh,4CNCu]n Cu - N(2) Cu - N(5) Cu - N(8) B - N(1) B - N(4) B - N(7) C(4) - N(3) C(14) - N(6) C(30) - N(9) Cu - N(9’) Cu…Cu’ 2.044(7) 2.100(7) 2.079(7) 1.556(1) 1.527(1) 1.556(1) 1.137(10) 1.132(9) 1.148(9) 1.864(7) 8.575(6) N(2) - Cu - N(5) N(2) - Cu - N(8) N(5) - Cu - N(8) N(2) - Cu - N(9’) N(5) - Cu - N(9’) N(8) - Cu - N(9’) Cu - N(9’) - C(30) N(1) - B - N(4) N(1) - B - N(7) N(4) - B - N(7) C(2) - C(4) - N(3) C(12) - C(14) - N(6) C(22) - C(30) - N(9) 91.86(3) 86.21(3) 96.08(3) 120.76(3) 125.50(3) 125.76(3) 169.50(7) 109.46(7) 108.97(8) 108.36(7) 176.02(8) 178.18(8) 177.78(7) This complex crystallizes in the monoclinic space group P21/n. The tetrahedral coordination environment of the Cu(I) ion includes the three pyrazole N atoms of a TpPh,4CN ligand and is completed by a cyano N atom of another TpPh,4CN ligand. A one-dimensional polymer is thus formed, as shown in Figure 3.3.2, in which only one cyano group from a given ligand is coordinated to a neighboring Cu. While the formation of this type of polymer has been mentioned by Trofimenko and coworkers with Bp4CN and by us with BpPh,4CN, [TpPh,4CNCu]n represents the first crystallographically characterized example. The polymer displays a zigzag motif, with approximately 90o corners defined by the angle between the coordinated CN group and its symmetry-related partner within the asymmetric unit. Cu-N bond distances are well within the range found for other Cu(I)-Tp complexes.84-86 69 Figure 3.3.2 Raster 3D Diagram Showing the Extended Structure of [CuTpPh,4CN]n. This Cu(I) complex can also be synthesized directly by using CuCl or [Cu(CF3SO3)]2·benzene as starting materials under an inert atmosphere. Crystals were grown and showed the same unit cell parameters by X-ray crystallography. 3.3.2 [Tpt-Bu,4CNCu]n and Tpt-Bu,4CNCuX Reaction of the Tpt-Bu,4CN ligand with CuCl2·2H2O or Cu(CF3SO3)2 in air also produces both yellow Cu(I) and green Cu(II) products as for TpPh,4CN. The Cu(II) products are most likely to be tetrahedral complexes of the form Tpt-Bu,4CNCuX (X = Cl or CF3SO3) with IR and elemental analysis evidence. The Cu(I) product has been structurally characterized to be [Tpt-Bu,4CNCu]n. An ORTEP drawing of the asymmetric unit is shown in Figure 3.3.3, with selected bond distances and angles in Table 3.3.2 70 Figure 3.3.3 ORTEP Drawing of One Asymmetric Unit of [Tpt-Bu,4CNCu]n Showing 50% Thermal Ellipsoids, H Atoms Have Been Omitted and Only B, N, and Cu Atoms Are Labeled for Clarity. Table 3.3.2 Bond Distances (Å) and Angles (deg.) for [Tpt-Bu,4CNCu]n Cu - N(2) Cu - N(4) Cu - N(6) B - N(1) B - N(3) B - N(5) C(4) - N(7) C(14) - N(8) C(24) - N(9) Cu - N(9’) Cu … Cu’ 2.054(10) 2.025(8) 2.017(2) 1.540(2) 1.524(1) 1.541(1) 1.176(2) 1.136(1) 1.134(1) 2.016(2) 9.806(2) N(2) - Cu - N(4) N(2) - Cu - N(6) N(4) - Cu - N(6) N(2) - Cu - N(9’) N(4) - Cu - N(9’) N(6) - Cu - N(9’) Cu - N(9’) - C(24) N(1) - B - N(3) N(1) - B - N(5) N(3) - B - N(5) C(2) - C(4) - N(7) C(12) - C(14) - N(8) C(22) - C(24) - N(9) 92.9(8) 99.9(9) 97.6 (8) 116.6(9) 124.1(9) 119.8(9) 169.5(7) 110.9(8) 107.6(8) 111.3(9) 177.8(9) 175.1(8) 176.8(9) The compound crystallizes in the monoclinic space group I2/c with a CH3CN molecule of solvation. The Cu(I) ion has a tetrahedral coordination 71 environment from three pyrazole N atoms of a Tpt-Bu,4CN ligand and a cyano N atom of another ligand to form the 1-dimensional polymer. This coordination polymer has a similar structure to [TpPh,4CNCu]n. Compared with [TpPh,4CNCu]n, there are obvious increases of bond length between Cu and the CN substituent and N-Cu-N angle, as well as the copper-copper distance, indicating the tert-butyl group as a more space-hindered substituent than the phenyl group. Other than that, these two structures are close to each other (Table 3.3.3). [Tpt-Bu,4CNCu]n can also be made from Cu(I) salts CuCl or [Cu(CF3SO3)]2·benzene. Table 3.3.3 Structural Data (Å and deg.) for TpR,4CN Copper(I) Complexes [TpPh,4CNCu]n [Tpt-Bu,4CNCu]n Cu - N 2.074 2.032 Cu - CN 1.864 2.016 Cu … Cu’ 8.575 9.806 N - Cu - N 91.4 96.8 3.3.3 TpPh,4CNCu(CO) and TpPhCu(CO) Tp(CF3)2Cu(CO) was synthesized by Dias and co-workers in order to observe the effect of the electron-withdrawing CF3 substituent on the coordinated metal.38 It showed that the CF3 groups reduce the electron density of the copper significantly as evidenced by the shift in the CO stretching frequency compared to that in TpMe2Cu(CO). To compare the electronic activity of the CN substituent, attempt was made to produce TpPh,4CNCu(CO) and TpPhCu(CO). Carbon monoxide gas was bubbled into a THF solution of [TpPh,4CNCu]n to make TpPh,4CNCu(CO). After filtration of some minor 72 precipitate, the solvent was removed and a yellow-green solid was obtained. TpPhCu(CO) was made by mixing THF solutions of the ligand with [Cu(CF3SO3)]2·benzene under a carbon monoxide atmosphere. After stirring overnight, a yellow precipitate came out of the green solution. This yellow solid was washed by CH3CN to give the final product. A comparison of the CO stretching frequencies from different Tp copper(I) complexes is shown in Table 3.3.4. The IR spectrum of TpPhCu(CO) shows the CO stretch at 2078 cm-1, indicating the phenyl substituents do not have much influence on the molecular electron density. The IR spectrum of TpPh,4CNCu(CO) shows a CO stretch at 2096 cm-1, a 20 cm-1 shift from the non-cyano compound. Compared with the CO peaks from Tp(CF3)2Cu(CO)38 (2137 cm-1), TpCu(CO)87 (2083 cm-1) and TpMe2Cu(CO)88 (2066 cm-1), it shows the electron-withdrawing property of the CN substituent. Although not as effective as the CF3 group, the CN substituents also reduce the electron density on the copper atom significantly, causing electron donation from copper d-orbitals to the CO anti-bonding orbitals to decrease. The CO bond vibration thus occurs at a higher frequency. Table 3.3.4 Carbonyl Stretching Frequency in Tp Copper(I) Complexes Free CO Tp(CF3)2Cu(CO) TpPh,4CNCu(CO) TpCu(CO) TpPhCu(CO) TpMe2Cu(CO) νCO (cm-1) 2143 2137 2096 2083 2078 2066 References 38 38 This Work 87 This Work 88 73 3.3.4 (TpMe2,4CN)2Cu Attempts to produce (TpMe2,4CN)2Cu were made by adding the ligand to THF solutions of copper(II) nitrate. An immediate color change was observed. Purification of the metal complexes has been problematic. Mass spectroscopy shows a peak at m/z = 618.2 which corresponds to TpMe2,4CNCu(HpzMe2,4CN)(NO3). The only X-ray quality crystals isolated from a CH2Cl2 solution of the (TpMe2,4CN)2Cu reaction unfortunately turned out to be bis(3-cyano-2,4-pentanedione)copper, which has previously been reported by Belot and coworkers.59 The isolation of this crystal is further confirmation that 4-cyano-3,5-dimethylpyrazole decomposes in air. 3.3.5 TpPhCu(NO3) In order to compare structures and electronic properties, analogous non-cyano substituted trispyrazolylborate copper complexes were synthesized. The TpPh ligand has been reported before.30, 35 Reaction of this ligand with Cu(NO3)2.2.5H2O in THF resulted in TpPhCu(NO3) which was structurally characterized. This blue plate crystal was grown by slow evaporation of a CH2Cl2 solution. An ORTEP drawing of the structure is shown in Figure 3.3.4, with selected bond distances and angles in Table 3.3.5. 74 Figure 3.3.4 ORTEP Drawing of TpPhCu(NO3) Showing 50% Thermal Ellipsoids, H Atoms Are Omitted and Only B, N, O, Cu Atoms Are Labeled for Clarity. Table 3.3.5 Bond Distances (Å) and Angles (deg.) for TpPhCu(NO3) N(2) - Cu N(4) - Cu N(6) - Cu O(1) - Cu O(2) - Cu B - N(1) B - N(3) B - N(5) N(2) - Cu N(4) - Cu 1.982(7) 1.897(8) 2.181(8) 1.968(7) 2.023(7) 1.53(1) 1.55(1) 1.54(1) N(2) - Cu - N(4) N(2) - Cu - N(6) N(4) - Cu -N(6) N(2) - Cu - O(1) N(4) - Cu - O(1) N(6) - Cu - O(1) N(2) - Cu - O(2) N(4) - Cu - O(2) N(6) - Cu - O(2) O(1) - Cu - O(2) 90.3(3) 96.2(3) 89.7(3) 98.4(3) 169.0(3) 96.0(3) 145.9(3) 104.6(3) 113.9(3) 64.5(3) TpPhCu(NO3) crystallized in the P21/n space group. The copper atom is in the center with three pyrazoles bonding to it as a triangle from above and the 75 bidentate nitrate group on the other side. The geometry of the structure is a distorted square-pyramid with two nitrogen atoms from the Tp and two oxygen atoms from the nitrate group in the basal plane and the third Tp nitrogen in the apical position. The Cu-O and Cu-N bonds in the basal plane are all around 2 Å. The Cu-N(6) bond (2.181 Å) is longer; as expected due to the Jahn-Teller distortion. The small NO3 bite angles of 64.5o leads to the significant deviations from the ideal 90o N-Cu-N angles in the basal plane. Our group has previously reported the crystallographic characterization of TpPh complexes of copper with the monodentate anions SCN- and Cl-.80 Both of these complexes complete a five-coordinate geometry with the addition of a neutral pyrazole. The bidentate NO3- is less bulky than the combination of HpzPh and a monodentate anion, thus the Cu-N distances in TpPhCu(NO3) are smaller than in TpPhCu(HpzPh)(SCN) (2.071 Å) and TpPhCu(HpzPh)Cl (2.082 Å). Also because the latter two structures have two ligands besides the TpPh including the bulky HpzPh group, N-Cu-N angles are relatively larger (104.0o and 104.1o). 76 3.4 Metal Pyrazole Complexes 3.4.1 HpzPh,4CN Copper Complex Crystallization attempts with TpPh,4CNCu(ClO4) resulted instead in the isolation of crystals which were found by X-ray crystallography to be {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n. It likely comes from decomposition of the TpPh,4CN ligand as seen above for Tpt-Bu,4CN. This compound has a coordination polymer structure bridged by the cyano-pyrazole. An ORTEP drawing of {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n is shown in Figure 3.4.1, with selected bond distances and angles in Table 3.4.1. Figure 3.4.1 ORTEP Drawing of the Cationic Repeat Unit of {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n Showing 50% Ellipsoids. H Atoms Have Been Omitted for Clarity. 77 Table 3.4.1 Bond Distances (Å) and Angles (deg.) {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n Cu - N(1) 1.983(2) N(1) - Cu - N(3’) 88.9(9) Cu - N(3’) 2.347(8) N(1) - Cu - CH3CN 89.9(8) 2.019(3) N(3’) - Cu - CH3CN 89.6(7) Cu - CH3CN C(4) - N(3) 1.134(6) C(2) - C(4) - N(3) 177.1(4) … 8.897(5) Cu - N(4’) - C(4’) 156.3(2) Cu Cu’ for The compound crystallizes on an inversion center in the monoclinic space group P21/a, along with a disordered solvent water molecule. The octahedral coordination of the copper atom comes from two symmetry related pyrazole N atoms, two N atoms from CN substituents of neighboring pyrazoles and two solvent N atoms (CH3CN). The N atom of the pyrazole ring and the CN substituent thus coordinate to different copper atoms to form the coordination polymer (Figure 3.4.2). Although the Cu-NC bond distance is a bit longer (2.347 Å) than a regular Cu-N coordination bond, there is clearly contact between them. It is also indicated by the C(2)–C(4)–N(3) angle. Due to the coordination of the CN group to another metal, it bends to 177 degrees instead of being rigorously linear. Structural data of some copper pyrazole complexes (discussed below) are shown in Table 3.4.2. Table 3.4.2 Structural Data (Å and deg.) for Copper Pyrazole Complexes Cu - N Cu - CN N – Cu - N 1.983 1.993 2.008 2.006 2.007 2.347 2.808 N/A N/A N/A 89.5 179.3 90.0 89.2 105.9 {[(HpzPh,4CN)2Cu(CH3 CN)2][ClO4]2}n (Hpzt-Bu,4CN)2CuCl2 (Hpzt-Bu)4CuCl2 (Hpzt-Bu)4CuBr2 (HpzMe2)2CuCl2 78 References This Work This Work 92 93 This Work Figure 3.4.2 Raster 3D Diagram Showing the Extended Structure of the Cationic Part of {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n. 3.4.2 Hpzt-Bu,4CN Metal Complexes Pyrazole complexes with 2:1 or 4:1 ligand-to-metal ratios have been reported with substituents at the 3- or 5-position of the pyrazole ring.89 The only crystal isolated from a (Tpt-Bu,4CN)2Co solution of toluene/hexane turned out to be (Hpzt-Bu,4CN)4CoCl2. This compound was suggested to come from the decomposition of the Tpt-Bu,4CN ligand. Similar decomposition has been noticed before as in TpPhCu(HpzPh)Cl and TpPhCu(HpzPh)(SCN).80 The complex can also be made directly from 4-cyano-3-tert-butyl pyrazole and Co(ClO4)2·6H2O. An ORTEP drawing of (Hpzt-Bu,4CN)4CoCl2 is given in Figure 3.4.3, with selected bond distances and angles in Table 3.4.3. 79 Figure 3.4.3 ORTEP Drawing of (Hpzt-Bu,4CN)4CoCl2 Showing 50% Thermal Ellipsoids, H Atoms Have Been Omitted for Clarity. Table 3.4.3 Bond Distances (Å) and Angles (deg.) for (Hpzt-Bu,4CN)4CoCl2 Co - N(1) Co - N(3) Co - Cl N(1) - N(2) N(3) - N(4) C(4) - N(5) C(14) - N(6) 2.131(3) 2.130(5) 2.450(6) 1.351(4) 1.345(9) 1.141(6) 1.139(4) N(1) - Co - N(3) N(1) - Co - Cl N(3) - Co - Cl C(2) - C(4) - N(5) C(12) - C(14) - N(6) 87.67(9) 88.18(8) 90.37(8) 176.51(7) 179.03(5) The compound crystallizes on an inversion center in the monoclinic space group P21/n. Four pyrazoles are bound to the metal through the nitrogen atom with less steric hindrance. The Co atom and the four nitrogen atoms are in the 80 same plane with two chlorides in the apical positions. There is a disordered toluene molecule in the crystal structure, which agrees with the results of elemental analysis. Compared with structures of two other cobalt complexes (HpzR,R’)2CoCl2 (R = CH3, R’ = CH3 or C6H5),90, 91 (Hpzt-Bu,4CN)4CoCl2 has much larger Co-N bonds lengths (2.131 Å as opposed to 2.002~2.031 Å); while the Co-Cl bonds (2.450 Å) are also longer than those in the other two complexes. (Table 3.4.4) The increase in Co-N bond length is likely due to the steric effects of the tert-butyl substituent as well as the electron-withdrawing effects of the CN group. While the tert-butyl group is a more bulky substituent than the methyl or phenyl groups, the CN group reduces the electron density of the pyrazole ring, resulting in a weaker ligand field and longer coordination bonds. Although CN substituents have short contacts with either a tert-butyl proton (2.652 Å) or the carbon proton from another pyrazole ring (2.555 Å), no metal-CN interactions are noticed here. Table 3.4.4 Structural Data (Å and deg.) for Cobalt Pyrazole Complexes (HpzMe2)2CoCl2 (Hpz3Ph,5Me)2CoCl2 (Hpzt-Bu,4CN)4CoCl2 Co - N 2.005 2.020 2.131 Co - Cl 2.235 2.237 2.450 N - Co - N 105.6 103.3 87.67 References 88 89 This Work There are only a few structures published for manganese pyrazole complexes including (Hpz)4Mn·2H2O92 and (Hpz)4MnCl2.93 (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O crystallized out as a byproduct when the 81 crystal sample of (Tpt-Bu,4CN)2Mn was exposed to the air, possibly due to the reaction and dissociation of the ligand with the moisture in the air. The complex can also be made directly from 4-cyano-3-tert-butyl pyrazole and Mn(CF3SO3)2·2CH3CN. An ORTEP drawing of (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O is given in Figure 3.4.4 with selected bond distances and angles in Table 3.4.5. Figure 3.4.4 ORTEP Drawing of (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O Showing 50% Thermal Ellipsoids, H Atoms Have Been Omitted for Clarity. Table 3.4.5 Bond Distances (Å) and t-Bu,4CN (Hpz )2Mn(CF3SO3)2·2H2O Mn - N(1) 2.272(2) N(1) - Mn - O(3) Mn - O(3) 2.167(2) N(1) - Mn - O(4) Mn - O(4) 2.149(2) C(2) - C(4) - N(3) N(1) - N(2) 1.364(3) C(4) - N(3) 1.145(3) 82 Angles 84.5(7) 86.0 (7) 177.7 (3) (deg.) for The compound crystallizes on an inversion center in the triclinic space group P 1 with the manganese atom binding to two pyrazole nitrogen atoms, two triflate oxygen atoms and two water oxygen atoms. There are only two pyrazoles coordinated to the metal instead of four as seen in other manganese pyrazole complexes. This difference may be due to the CN substitution on the pyrazole ring or it may be due to the size of the triflate ligand making coordination of two more pyrazole rings sterically unfavorable. Compared with (Hpz)4Mn·2H2O and (Hpz)4MnCl2, (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O has much longer Mn-N bond lengths and smaller N-Mn-O angles as shown in Table 3.4.6, while the Mn-O bonds lengths stay in the same region. A hydrogen bonding network is built up consisting of interactions between the CN group and one of the water protons (N...O 2.946 Å) and between a triflate O atom and the other water proton (O...O 2.745 Å) as shown in Figure 3.4.5. Table 3.4.6 Structural Data (Å and deg.) for Manganese Pyrazole Complexes (Hpz)4Mn·2H2O (Hpz)4MnCl2 (Hpzt-Bu,4CN)2Mn(CF3SO3)2 ·2H2O Mn - N 2.254 2.242 2.272 Mn - O* 2.148 2.579 2.158 * Cl takes the place of O in (Hpz)4MnCl2 83 N - Mn - O* 90.0 90.0 85.3 References 90 91 This Work Figure 3.4.5 Mercury Diagram Showing the Hydrogen Bonding Network of (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O. Crystallization attempts with Tpt-Bu,4CNCuCl resulted in isolation of crystals of (Hpzt-Bu,4CN)2CuCl2, possibly due to the decomposition of the ligand as seen before. The complex can also be made using 4-cyano-3-tert-butylpyrazole and anhydrous CuCl2. This compound crystallizes in the triclinic space group P 1 as shown in Figure 3.4.6 with selected bond distances and angles shown in Table 3.4.7. Table 3.4.7 Bond Distances (Å) and Angles (deg.) for (Hpzt-Bu,4CN)2CuCl2 Cu - N(1) Cu - N(3) Cu - Cl(1) Cu - Cl(2) N(1) - N(2) N(3) - N(4) C(4) - N(5) C(14) - N(6) N(6) - Cu’ 1.990(2) 1.997(2) 2.254(1) 2.259(1) 1.354(3) 1.358(3) 1.143(3) 1.143(3) 2.808(7) N(1) - Cu - N(3) Cl(1) - Cu - Cl(2) N(1) - Cu - Cl(1) N(1) - Cu - Cl(2) N(3) - Cu - Cl(1) N(3) - Cu - Cl(2) C(2) - C(4) - N(5) C(12) - C(14) - N(6) 84 179.3(8) 166.1(3) 89.9(7) 90.0(7) 89.5(7) 90.5(7) 179.5(3) 176.4(3) Figure 3.4.6 ORTEP Drawing of Two Inversion Related Molecules of (Hpzt-Bu,4CN)2CuCl2 Showing 50% Thermal Ellipsoids, H Atoms Are Omitted and Only N, Cl, Cu Atoms Are Labeled for Clarity. The structure of the molecule is slightly distorted square-planar, with an almost linear N(1)-Cu-N(3) angle (179.3 0), but a Cl(1)-Cu-Cl(2) angle of 166.1o. This distortion is caused by a short contact between Cu and a N atom (N(6)) from one of the cyano groups on an inversion-related Cu complex (Cu…N 2.812 Å). This creates a pseudodimer with each Cu atom displaying square-pyramidal coordination geometry when the CN…Cu interaction is included. The infrared spectrum of this complex shows the expected splitting of the CN stretching frequency, with bands at 2229 and 2238 cm-1 representing the non-coordinated and coordinated CN groups. Cu-N and Cu-Cl bond lengths are similar to those seen in other Cu(II)-pyrazole complexes, including (Hpzt-Bu)4CuCl294 and (Hpzt-Bu)4CuBr295 as shown in 85 Table 3.4.2. 3.4.3 HpzMe2 Copper Complex The compound (TpMe2)2Cu has already been reported by Trofimenko.23 We also tried to make this non-cyano analog of (TpMe2,4CN)2Cu for comparison. Reaction of TpMe2 in a THF solution with CuCl2·2H2O showed an immediate color change. Attempts to grow crystals of (TpMe2)2Cu by the slow evaporation of a CH2Cl2 solution resulted instead in the isolation of X-ray quality crystals of (HpzMe2)2CuCl2. An ORTEP drawing of the structure is shown in Figure 3.4.7, with selected bond distances and angles in Table 3.4.8. The complex crystallizes in the monoclinic C2/c space group. The tetrahedral copper atom is in the center bonded to two dimethyl pyrazoles with two chlorides occupying the other two coordination sites. Cu-N bond lengths are similar to those seen in other Cu(II)-pyrazole complexes as shown in Table 3.4.8. Table 3.4.8 Bond Distances (Å) and Angles (deg.) for (HpzMe2)2CuCl2 N(2) - Cu(1) N(4) - Cu(1) Cl(1) - Cu(1) Cl(2) - Cu(1) 2.009(6) 2.006 (6) 2.230(2) 2.239(2) N(2) - Cu(1) - N(4) N(2) - Cu(1) - Cl(1) N(2) - Cu(1) - Cl(2) N(4) - Cu(1) - Cl(1) N(4) - Cu(1) - Cl(2) Cl(1) - Cu(1) - Cl(2) 86 105.9(3) 115.6(2) 101.2(2) 100.8(2) 115.4(2) 117.91(9) Figure 3.4.7 ORTEP Drawing of (HpzMe2)2CuCl2 Showing 50% Thermal Ellipsoids, H Atoms Are Omitted for Clarity. 87 3.5 Conclusion Metal complexes of three new cyano-substituted trispyrazolylborates TpPh,4CN, Tpt-Bu,4CN and TpMe2,4CN - were synthesized. Molecular structures of some of these complexes were studied by X-ray crystallography. In spite of the bulky substituents, both TpPh,4CN and Tpt-Bu,4CN are able to form “sandwich” type complexes with cobalt, manganese and iron. For copper both Cu(I) and Cu(II) species have been isolated. Purification of TpMe2,4CN metal complexes turned to be problematic, possibly due to the instability of the ligand. The bulky substituents at the 3-postion of the pyrazole ring showed steric effects in these complexes. Tert-butyl substituents brought more space hindrance than phenyl groups so as to reduce the accessibility to the metal atom for other ligands. Metal-nitrogen coordination bonds were lengthened in these complexes compared with their non-substituted analogs. Electron-withdrawing effects of CN substituents were also detected. They reduced the electron density of the metal ion significantly. In some of these complexes it is shown that the metal can be bound not only by the pyrazole N atoms, but also the cyano substituents N atoms from an adjacent Tp ligand to form coordination polymers. It reaffirmed the ability of this class of ligands to be used in the synthesis of coordination polymers through secondary coordination of the cyano substituents. 88 Ligand isomerization was observed in (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe. In these complexes the “up” pyrazole has much shorter metal-N bond than its counterparts. Surprisingly, these isomerized species are isolated, in contrast to results with TpPh ligand, with which non-isomerized “sandwich” complexes of Fe and Mn are isolated and only subsequent treatment with m-chloroperoxybenzoic acid results in isomerization of the (TpPh)*2Fe compound. The symmetry around the metal ion is also reduced from octahedral to D4h. Ligand decomposition is also noticed in some trispyrazolylborate metal compounds. Similar decomposition has been reported before in other trispyrazolylborate complexes and suggested to involve the reaction with solvent molecules or the moisture in the air. While scorpionate ligands are generally stable, attention should be paid later with synthesis and research of trispyrazolylborate complexes. Physical properties of these trispyrazolylborate metal compounds have not been fully explored. Since the CN substituent has shown the potential to form coordination polymers, we are interested in studying the electrical communication between metals from different coordination environments as well as the molecular magnetism. This will be the focus of this research project in the future. 89 3.6 Experimental 3.6.1 General Experimental For general experimental details see section 2.8.1. (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe crystallographic data were collected by Charles Campana and Cary Bauer at Bruker AXS Inc. The first two were collected at 100 K on a Bruker PROTEUM R / Pt135 CCD area detector system equipped with Montel optics and a Cu Kα rotating anode (λ = 1.5418 Å) operated at 2.7 kW power (45 kV, 60 mA). The detector was placed at a distance of 5.033 cm from the crystals. The last one was collected at 100 K on a Bruker SMART APEX II CCD area detector system equipped with a graphite monochromator and a Cu Kα fine-focus sealed tube (λ = 1.5418 Å) operated at 1.5 kW power (50 kV, 30 mA). The detector was placed at a distance of 5.043 cm from the crystal. All structures were solved and refined as described in section 2.8.1. 3.6.2 Synthesis of Bis(hydrobis(4-cyano-3-phenylpyrazolyl) (4-cyano-5-phenylpyrazolyl)borato)cobalt(II) [(TpPh,4CN)*2Co] To a 50 mL solution of Co(ClO4)2.6H2O (0.185 g, 0.50 mmol) in 50/50 CH3OH/CH2Cl2 was added KTpPh,4CN (0.561 g, 1.01 mmol). The pink solution turned purple immediately. The mixture was stirred for an hour until all the ligand had dissolved. The solvent was removed under reduced pressure to give 90 a deep purple solid, which was redissolved in about 50 mL CH2Cl2. The solution was filtered to remove any precipitate left, and the solvent was removed under reduced pressure. The final product was a purple solid (0.342 g, 0.31 mmol, 62.3%). IR (cm-1, KBr pellet): 696(s), 774(s), 2233(νCN, s), 2480(νBH, w). Elemental Analysis, Found (Calc’d for C60H38N18B2Co·CH3OH): C, 65.63 (66.02); H, 3.51 (3.43); N, 22.92(23.10). X-ray quality crystals were grown by layering a solution of KTpPh,4CN in methanol on top of a solution of Co(ClO4)2.6H2O in methanol/dichloromethane. After allowing the solutions to diffuse together for a week, the top was removed and the solvent allowed to slowly evaporate, producing light purple crystals. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table E1-4. 3.6.3 Synthesis of Bis(hydrobis(4-cyano-3-phenylpyrazolyl) (4-cyano-5-phenylpyrazolyl)borato)manganese(II) [(TpPh,4CN)*2Mn] Mn(CF3SO3)2.2CH3CN (0.187 g, 0.43 mmol) was dissolved in 10 mL dry THF under N2, and KTpPh,4CN (0.483 g, 0.86 mmol) was added in. The colorless solution turned light yellow immediately. The mixture was stirred for an hour. The solvent was removed under reduced pressure to give a colorless solid, which was redissolved in 50 mL CH2Cl2. The solution was filtered to remove any precipitate, and the solvent was removed under vacuum to give pale yellow solid (0.351 g, 0.32 mmol, 75.6%). IR (cm-1, KBr pellet): 696(s), 774(s), 91 2234(νCN, s), 2520(νBH, w). Elemental Analysis, Found (Calc’d for C60H38N18B2Mn·2CH2Cl2): C, 59.35 (59.22); H, 4.50 (3.37); N, 18.79 (20.05). X-ray quality crystals were grown by layering a solution of KTpPh,4CN in methanol on top of a solution of Mn(CF3SO3)2.2CH3CN in methanol/dichloromethane. After allowing the solutions to diffuse together for a week, the top was removed and the solvent allowed to slowly evaporate, producing pale yellow crystals. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table F1-4. 3.6.4 Synthesis of Bis(hydrobis(4-cyano-3-phenylpyrazolyl) (4-cyano-5-phenylpyrazolyl)borato)iron(II) [(TpPh,4CN)*2Fe] To a solution of Fe(CF3SO3)2.2CH3CN (0.583 g, 1.33 mmol) in 20 mL dry methanol was added KTpPh,4CN (1.483 g, 2.67 mmol) under N2. The light yellow solution turned green immediately. The mixture was stirred for an hour and the solvent was removed under reduced pressure to give a green solid, which was redissolved in about 20 mL CH2Cl2. The solution was filtered to remove any precipitate, and the solvent was removed under reduced pressure. The final product was a light green solid (1.194 g, 1.09 mmol, 82.3%). IR (cm-1, KBr pellet): 696(s), 774(s), 2235(νCN, s), 2517(νBH, w). Elemental Analysis, Found (Calc’d for C60H38N18B2Fe·CH3OH): C, 65.76 (65.38); H, 4.67 (3.78); N, 22.59 (22.50). X-ray quality crystals were grown by layering a solution of 92 KTpPh,4CN in methanol on top of a solution of Fe(CF3SO3)2.2CH3CN in methanol/dichloromethane. After allowing the solutions to diffuse together for a week, the top was removed and the solvent allowed to slowly evaporate, producing light yellow crystals. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table G1-4. 3.6.5 Synthesis of Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato) cobalt(II) [(Tpt-Bu,4CN)2Co] Same procedure as for (TpPh,4CN)*2Co was followed, using 0.300 g KTpt-Bu,4CN (0.61 mmol) and 0.112 g Co(ClO4)2.6H2O (0.30 mmol). The initial pink solution turned brown upon addition of the ligand. Final product is a brown solid (0.164 g, 0.17 mmol, 56.2%). IR (cm-1, KBr pellet): 534(s), 819(s), 1135(s), 1527(m), 2230(νCN, vs), 2463(νBH, w). ESI-MS (THF, positive detection): m/z = 515.5 [Tpt-Bu,4CNCo]+, 664.7 [Tpt-Bu,4CNCopzt-Bu,4CN]+, 972.5 [Tpt-Bu,4CN2Co]H+. 3.6.6 Synthesis of Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato) manganese(II) [(Tpt-Bu,4CN)2Mn] Same procedure as for (TpPh,4CN)*2Mn was followed, using 0.500 g KTpt-Bu,4CN (1.01 mmol) and 0.282 g Mn(CF3SO3)2.2CH3CN (0.50 mmol), The initial colorless solution turned light yellow upon addition of the ligand. Final product is a colorless solid (0.323 g, 0.33 mmol, 66.2%). IR (cm-1, KBr pellet): 93 536(s), 821(s), 1137(s), 2235(νCN, vs), 2488(νBH, w). 3.6.7 Synthesis of Bis(hydrotris(4-cyano-3-tert-butylpyrazolyl)borato)iron(II) [(Tpt-Bu,4CN)2Fe] Same procedure as for (TpPh,4CN)*2Fe was followed, using 0.300 g KTpt-Bu,4CN (0.61 mmol) and 0.171 g Fe(CF3SO3)2.2CH3CN (0.30 mmol), The initial light yellow solution turned green upon addition of the ligand. Final product is a light green solid (0.223 g, 0.23 mmol, 76.2%). IR (cm-1, KBr pellet): 534(s), 825(s), 1135(s), 2252(νCN, vs), 2508(νBH, w). 3.6.8 Synthesis of Bis(hydrotris(4-cyano-3,5-dimethylpyrazolyl) borato)cobalt(II) [(TpMe2,CN)2Co] Co(NO3)2.6H2O (0.182 g, 0.63 mmol) was dissolved in 20 mL THF, and KTpMe2,4CN (0.512 g, 1.25 mmol) was added. The pink solution turned purple immediately. The mixture was stirred for an hour. The solvent was removed under reduced pressure to give a deep brown oily solid, which was redissolved in 50 mL CH2Cl2. The solution was filtered to remove some white precipitate, and the solvent was removed under vacuum to give a purple solid. IR (cm-1, KBr pellet): 799(m), 1023(m), 1384(s), 1626(s), 2198(νCN, s), 2227(νCN, s), 2426(νBH, w), 2462(νBH, w). ESI-MS (THF, positive detection): m/z = 637.2 [TpMe2,4CNCo(HpzMe2,4CN)(NO3)]Na+. 94 3.6.9 Synthesis of Hydrotris(4-cyano-3-phenylpyrazolyl)boratocopper(I) {[TpPh,4CNCu]n} and Hydrotris(4-cyano-3-phenylpyrazolyl)boratocopper(II) perchlorate [TpPh,4CNCu(ClO4)] To a solution of KTpPh,4CN (0.500 g, 0.91 mmol) in 5 mL of methanol was added a solution of Cu(ClO4)2.6H2O (0.330 g, 0.91 mmol) in 50 mL of 50/50 CH3OH/CH2Cl2. The mixture was stirred for half an hour and [TpPh,4CNCu]n was filtered off as a yellow precipitate from a green solution of TpPh,4CNCu(ClO4). [TpPh,4CNCu]n was purified by washing thoroughly with methanol and water to give 0.198 g (0.34 mmol, 37.8%) of yellow powder. IR (KBr, cm-1): 2226(νCN, s), 2472(νBH, m). Elemental Analysis, Found (Calc’d for C30H19N9BCu·4H2O): C, 55.74 (55.27); H, 3.25 (4.17); N, 17.23 (19.34). X-ray quality crystals were grown by layering a solution of KTpPh,4CN in methanol on top of a solution of Cu(ClO4)2.6H2O in methanol/dichloromethane. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table H1-4. The green TpPh,4CNCu(ClO4) solution was concentrated on rotary evaporator resulting in precipitation of a green powder. Further purification was accomplished by washing with water, THF/methanol to remove unreacted starting materials. The final product is a green solid (0.341 g, 0.50 mmol, 55.6%). IR (KBr, cm-1): 2230(νCN, s), 2486(νBH, m), 1080(νClO4, s), 2017(νClO4, m). Elemental Analysis, Found (Calc’d for C30H19N9BCuClO4·THF): C, 55.26 (54.34); H, 3.62 (4.47); N, 16.14 (16.78). X-ray data collection and 95 structure solution parameters of {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table K1-4. 3.6.10 Synthesis of Hydrotris(4-cyano-3-tert-butylpyrazolyl)boratocopper(I) {[Tpt-Bu,CNCu]n} and Hydrotris(4-cyano-3-tert-butylpyrazolyl)boratocopper(II) trifluoromethylsulfonate [Tpt-Bu,CNCu(CF3SO3)] KTpt-Bu,4CN (0.400 g, 0.82 mmol) was dissolved in 5 mL of methanol and to this solution was added 50 mL CH3OH/CH2Cl2 (50/50) solution of Cu(CF3SO3)2 (0.292 g, 0.82 mmol). The mixture was stirred for half an hour. [Tpt-Bu,4CNCu]n was collected as a yellow precipitate by filtration and washed with methanol and water (0.151 g, 0.29 mmol, 36.3%). IR (KBr, cm-1): 2230(νCN, s), 2466(νBH, m). Elemental Analysis, Found (Calc’d for C24H31N9BCu·H2O): C, 54.28 (53.59); H, 6.07 (6.18); N, 22.71 (23.43). X-ray quality crystals were grown by layering a solution of KTpt-Bu,4CN in methanol on top of a solution of Cu(CF3SO3)2 in methanol/dichloromethane. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table I1-4. Tpt-Bu,4CNCu(CF3SO3) remained in the reaction solution and was condensed and washed by water and THF/methanol to yield a green solid (0.297 g, 0.44 mmol, 55.0%). IR (KBr, cm-1): 2229(νCN, s), 2447(νBH, m), 639(νCF3SO3, m), 1032(νCF3SO3, s). Elemental Analysis, Found (Calc’d for 96 C24H31N9BCuCF3SO3·2H2O): C, 42.57 (42.59); H, 4.63 (5.00); N, 18.25 (17.88). 3.6.11 Synthesis of Hydrotris(4-cyano-3-phenylpyrazolyl)boratocopper(I) carbonyl [TpPh,4CNCu(CO)] 70.00 mg of [TpPh,4CNCu]n (0.12 mmol) was dissolved in dry THF under carbon monoxide atmosphere. The solution was stirred for 12 hours with CO gas bubbled in. After filtration of some green precipitate the solvent was removed on rotary evaporator resulting in dark yellow solid TpPh,4CNCu(CO) (45.622 mg, 0.075 mmol, 62.5%). IR (KBr, cm-1): 695(s), 775(s), 2096(νCO, m), 2230(νCN, s), 2471(νBH, m). 3.6.12 Synthesis of Hydrotris(3-phenylpyrazolyl)boratocopper(I) carbonyl [TpPhCu(CO)] 0.250 g of KTpPh (0.52 mmol) was dissolved in dry THF and bubbled with carbon monoxide for an hour. The solution turned dark yellow when [Cu(CF3SO3)]2.benzene (0.125 g, 0.25 mmol) was added in. The mixture was stirred under carbon monoxide atmosphere for 12 hours. A yellow precipitate was filtered out from the solution and purified by washing with CH3CN. The final product is a yellow solid (0.181 g, 0.34 mmol, 65.4%). IR (cm-1, KBr pellet): 694(s), 751(s), 2078(νCO, m), 2432(νBH, w). 97 3.6.13 Synthesis of Bis(hydrotris(4-cyano-3,5-dimethylpyrazolyl)borato) copper(II) [(TpMe2,4CN)2Cu] Cu(NO3)2.2.5H2O (0.199 g. 0.85 mmol) was dissolved in 20 mL THF, and KTpMe2,4CN (0.700 g, 1.72 mmol) was added in. The mixture was stirred for an hour. The solvent was removed under reduced pressure to give a deep green oily solid, which was redissolved in 50 mL CH2Cl2. The solution was filtered and the solvent was removed under vacuum to give a green solid. IR (cm-1, KBr pellet): 801(s), 1026(m), 2228(νCN, s), 2480(νBH, w). ESI-MS (THF, negative detection): m/z = 372.2 [TpMe2,4CN]-, 618.2 [TpMe2,4CNCu(HpzMe2,4CN)(NO3)]-. 3.6.14 Synthesis of Hydrotris(3-phenylpyrazolyl)boratocopper(II) nitrate [TpPhCu(NO3)] To a THF solution of Cu(NO3)2.2.5H2O (0.156 g, 0.67 mmol) was added KTpPh,4CN (0.370 g, 0.67 mmol). The blue solution turned green immediately. The mixture was stirred for an hour until all the ligand had dissolved. The solvent was removed under reduced pressure to give a deep green oily solid, which was redissolved in about 50 mL CH2Cl2. The solution was filtered to remove some precipitate, and the solvent was removed under reduced pressure. Final product was a purple solid. IR (cm-1, KBr pellet): 696(s), 774(s), 2485(νBH, w). X-ray quality crystals were grown from slow evaporation of CH2Cl2 solution. X-ray data collection and structure solution parameters are 98 listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table J1-4. 3.6.15 Synthesis of Dichlorotetrakis(4-cyano-3-tert-butylpyrazole)cobalt(II) [(Hpzt-Bu,4CN)4CoCl2] Anhydrous CoCl2 (0.800 g, 6.15 mmol) and Hpzt-Bu,4CN (3.670 g, 24.60 mmol) were mixed together in 20 mL dry THF solution and stirred for an hour. The solvent was evaporated and the product was redissolved in toluene. The solution was filtered and (Hpzt-Bu,4CN)4CoCl2 was collected as pink solid after solvent was removed (3.332 g, 4.59 mmol, 74.6%). IR (KBr, cm-1): 2235(νCN, s). Elemental Analysis, Found (Calc’d for C32H44N12CoCl2·H2O·toluene): C, 55.42 (55.98); H, 5.88 (6.50); N, 20.99 (20.09). X-ray quality crystals were grown by slow evaporation from the toluene solution. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table L1-4. 3.6.16 Synthesis of Diaquabis(4-cyano-3-tert-butylpyrazole)bis (trifluoromethylsulfonato)manganese(II) [(Hpzt-Bu,4CN)2Mn(CF3SO3)2(H2O)2] Under N2 protection to a solution of Mn(CF3SO3)2.2CH3CN (0.200 g, 0.46 mmol) in 10 mL dry THF was added 10 mL dry THF solution of Hpzt-Bu,4CN (0.141 g, 0.92 mmol). The mixture was stirred for an hour. The solvent was evaporated and the resulting solid was redissolved in toluene. The solution 99 was filtered and (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O was collected as white solid after toluene was removed (0.233 g, 0.33 mmol, 72.1%). IR (KBr, cm-1): 2233(νCN, s). Elemental Analysis, Found (Calc’d for C18H26N6O8F6S2Mn·toluene): C, 37.94 (38.51); H, 4.93 (4.40); N, 12.61 (10.78). X-ray quality crystals were grown by slow evaporation from the toluene solution. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table M1-4. 3.6.17 Synthesis of Dichlorobis(4-cyano-3-tert-butylpyrazole)copper(II) [(Hpzt-Bu,CN)2CuCl2] To a solution of anhydrous CuCl2 (0.900 g, 6.69 mmol) in 10 mL dry THF was added 10 mL dry THF solution of Hpzt-Bu,4CN (1.990 g, 13.42 mmol). The mixture was stirred for an hour. The solvent was evaporated and the resulting solid was redissolved in toluene. The solution was filtered and (Hpzt-Bu,4CN)2CuCl2 was collected as a blue solid after toluene was removed (2.003 g, 4.62 mmol, 69.1%). IR (KBr, cm-1): 2229(νCN, s), 2238(νCN, s). Elemental Analysis, Found (Calc’d for C16H22N6Cl2Cu): C, 44.55 (44.40); H, 5.29 (5.12); N, 19.35 (19.42). X-ray quality crystals were grown by slow evaporation from the toluene solution. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table N1-4. 100 Chapter 4 Coordination Polymers 4.1 Introduction Coordination polymers are a new class of organic-inorganic hybrid material. They represent a new and expanding research area that combines the fields of coordination chemistry, polymer synthesis and solid state chemistry. In 1987, Lehn first pointed out the concept of supramolecular architecture, which is often constructed from small molecular and ionic subunits by coordinate covalent bonds, hydrogen bonds and π-π interactions.96, 97 Recently, there has been increasing research interest in coordination polymers as a route to materials that possess attractive properties, such as zeolite-like characteristics, catalytic activity, magnetism and non-linear optical behavior.98, 99 To this end, a wide variety of coordination solids that form 1-, 2-, and 3-dimensional networks have been prepared and studied.100-102 Attempts to control the dimensionality and topology of coordination polymers have focused on the selection of multidentate ligands with metal ions of the appropriate coordination geometry. Typically the structures consist of rigid, symmetric ligands bound to metal centers or metal clusters.103-105 Suitable choices of metals and ligands based on their coordination habits and geometric preferences will produce novel materials with interesting and specific properties. A useful and popular approach for this purpose consists of assembling two building blocks that frequently are transition metal complexes, 101 one with terminal ligands capable of acting as bridges and another with empty or available coordination sites. Trispyrazolylborate ligands have a rigid C3V symmetry and usually keep the coordinated metal in a firm tridentate grip. One of the reasons we introduced CN substituents on this ligand is to construct coordination polymers by using pyrazole N atoms and CN groups to coordinate to different metal atoms. A fully conjugated pathway between metal centers, consisting of the pyrazole ring and the CN group, will be established. If significant metal-metal communication can be realized along this pathway molecular bulk magnetism may be obtained; we can thus produce new electronic and magnetic molecular materials. This potential of cyano-substituted polypyrazolylborates to form coordination polymers has been shown before, although no crystal structures have been characterized.40 Early work in the Eichhorn group involving bis(4-cyano-3-phenylpyrazolyl)borates found another indication of the formation of coordination polymer.46 A red material coming from reaction of (BpPh,4CN)2Cu with Rh2(CF3COO)4 showed two CN stretches: 2258 cm-1 and 2234 cm-1. The mass spectrum of this product has four major peaks: m/z = 761, 1418, 2075 and 2732. The first one is (BpPh,4CN)2Cu, while the last three correspond to (BpPh,4CN)2Cu plus one, two and three Rh2(CF3COO)4 units. It appears that the CN substituents are coordinating to the rhodium centers and a coordination polymer chain may form as below (Figure 4.1.1). 102 CF3 CF3 O O H2 B O N O Rh O O N N C Rh N C O O Ph Ph N N Cu N O C O N Ph Ph CF3 F3C N N B H2 O O Rh Rh C N N CF3 CF3 O O CF3 O O CF3 n Ph,4CN Figure 4.1.1 Proposed Structure of (Bp )2Cu-Rh2(CF3COO)2 Coordination Polymer Cyano-substituted trispyrazolylborate complexes should also be capable of forming coordination polymers with similar structures. Actually among those trispyrazolylborate complexes which have been discussed in chapter 2 and chapter 3, some have already shown coordination polymer structures such as [TpPh,4CNCu]n and [Tpt-Bu,4CNCu]n, others indicate short contacts between the metal ion and the CN substituents from other adjacent ligands, such as TlTpPh,4CN and (Hpzt-Bu,4CN)2CuCl2. Here we tried to rationally construct the coordination polymers by reacting different trispyrazolylborate metal complexes directly with other small metal compounds such as Rh2(CF3COO)4 and Ni(cyclam)(ClO4)2 (cyclam = 1,4,8,11-tetraazacyclotetradecane). These small compounds have available coordination sites and accessibility on the metal center, which can be bound to the cyano substituent to form 1-, 2-, or 3-dimensional coordination polymers. 103 4.2 TpPhCu(NO3)-(HpzPh,4CN)2M(NO3)2 TpPh,4CN metal complexes have rigid structures and at least three CN substituents capable of binding to other metal atoms to form coordination polymers. This could cause difficulty to control the polymer dimensions and structures. To simplify the problem, initially we used (HpzPh,4CN)2Co(NO3)2 or (HpzPh,4CN)2Cu(NO3)2 instead of TpPh,4CN complexes to react with TpPhCu(NO3), and we want to see if any coordinate bonds will form between CN substituents and the copper atom in TpPhCu(NO3). In addition, such complexes could be used to study interactions mediated by the cyano-pyrazole moiety. Metal pyrazole complexes are already known to exist and easy to synthesize. Without binding to the boron atom, substituted pyrazoles are less space limited and easy to orientate to facilitate the CN coordination. On the other hand, TpPhCu(NO3) has been synthesized and purified. While carrying no CN substituents to bind other metal atoms, it has similar structure to its cyano-substituted analogs with a free valence at the metal center. All of these properties make TpPhCu(NO3) a perfect example to simplify the reaction and start with. Reaction of (HpzPh,4CN)2Cu(NO3)2 with TpPhCu(NO3) was in THF by stirring overnight. The solvent was evaporated and the product was washed with dichloromethane and toluene to remove any unreacted starting materials. (HpzPh,4CN)2Cu(NO3)2 shows a CN stretching frequency at 2235 cm-1 in the IR 104 spectrum. After reaction the CN peak of the green solid product shifted to 2229 cm-1, possibly due to the coordination to a metal ion. The mass spectrum also shows a positive result for this reaction (Figure 4.2.1). 120 650.3 [(HpzPh,4CN)2Cu(NO3)2-Cu(NO3)]+ 361.5 100 [(HpzPh,4CN)2Na]+ 80 526.1 [(HpzPh,4CN)2Cu(NO3)2]H+ 60 40 1097.1 20 [TpPhCu(NO3)- (HpzPh,4CN)2Cu(NO3)2]Li+ 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Figure 4.2.1 MS of TpPhCu(NO3)-(HpzPh,4CN)2Cu(NO3)2 There are four major peaks at 361.5, 526.1, 650.3 and 1097.1. The first three peaks correspond to [(HpzPh,4CN)2]Na+, [(HpzPh,4CN)2Cu(NO3)2]H+ and [(HpzPh,4CN)2Cu(NO3)2-Cu(NO3)]+ while the last one, which is the most interesting, fits into the formula weight of the desired product with a lithium ion: [TpPhCu(NO3)-(HpzPh,4CN)2Cu(NO3)2]Li+. Magnification of this peak shows six isotope peaks whose intensities match with the isotopic abundance coupling of one 10,11B atom with two 63,65Cu atoms (Figure 4.2.2). 105 100 90 80 70 60 50 40 30 20 10 0 1090 1092 1094 1096 1098 1100 1102 1104 Figure 4.2.2 Magnification of Peak m/z = 1097 from Figure 4.2.1 We have, therefore, shown the formation of a dinuclear copper species by spectroscopy, suggesting the CN substituent binds to the other copper center in TpPhCu(NO3). We tried to crystallize this dinuclear species. Unfortunately, the only crystals isolated from both TpPhCu(NO3)-(HpzPh,4CN)2Co(NO3)2 and TpPhCu(NO3)-(HpzPh,4CN)2Cu(NO3)2 samples proved to be TpPhCo(HpzPh,4CN)(NO3) and TpPhCu(HpzPh,4CN)(NO3). ORTEP drawings of these two crystal structures are shown in Figure 4.2.3 and Figure 4.2.4 with selected bond distances and angles in Table 4.2.1 and Table 4.2.2. 106 Figure 4.2.3 ORTEP Drawing of TpPhCo(HpzPh,4CN)(NO3) Showing 50% Thermal Ellipsoids, H Atoms Are Omitted and Only B, N, O, Co Atoms Are Labeled for Clarity. Table 4.2.1 Bond Distances (Å) and Angles (deg.) for TpPhCo(HpzPh,4CN)(NO3) B - N(1) B - N(3) B - N(5) Co - N(2) Co - N(4) Co - N(6) Co - N(7) Co - O(1) C(34) - N(9) 1.522(2) 1.527(3) 1.536(3) 2.061(2) 2.066(3) 2.166(4) 2.063(3) 2.016(2) 1.170(2) N(2) - Co - N(4) N(2) - Co - N(6) N(6) - Co - N(4) N(2) - Co - O(1) N(4) - Co - O(1) N(6) - Co - O(1) N(7) - Co - O(1) N(2) - Co - N(7) N(4) - Co - N(7) N(6) - Co - N(7) C(32) - C(34) - N(9) 107 84.6(4) 90.8(5) 90.8(7) 87.7(4) 168.8(5) 97.4(5) 94.8(5) 176.3(3) 92.4(2) 91.3(2) 179.1(6) Figure 4.2.4 ORTEP Drawing of TpPhCu(HpzPh,4CN)(NO3) Showing 50% Thermal Ellipsoids, H Atoms Are Omitted and Only N, O, B, Cu Atoms Are Labeled for Clarity. Table 4.2.2 Bond Distances (Å) and Angles (deg.) for TpPhCu(HpzPh,4CN)(NO3) B - N(1) B - N(3) B - N(5) Cu - N(2) Cu - N(4) Cu - N(6) Cu - N(7) Cu - O(1) C(34) - N(9) 1.540(2) 1.540(4) 1.528(3) 2.003(2) 2.267(4) 2.021(3) 2.023(3) 1.966(3) 1.140(2) N(2) - Cu - N(4) N(2) - Cu - N(6) N(6) - Cu - N(4) N(2) - Cu - O(1) N(4) - Cu - O(1) N(6) - Cu - O(1) N(7) - Cu - O(1) N(2) – Cu - N(7) N(4) - Cu - N(7) N(6) – Cu - N(7) C(32) - C(34) - N(9) 108 90.6(3) 86.1(4) 91.1(4) 87.7(2) 97.3(3) 169.5(4) 92.8(2) 178.8(3) 90.3(3) 93.1(4) 177.6(2) TpPhCo(HpzPh,4CN)(NO3) and TpPhCu(HpzPh,4CN)(NO3) are isostructural and crystallize in the monoclinic P21/n space group. The metal atoms have square-pyramidal coordination environments with the basal plane consisting of two N atoms from the TpPh ligand, one N atom from HpzPh,4CN and one O atom from a monodentate NO3-. The third TpPh N atom occupies the apical position. The neutral substituted pyrazole essentially takes the place of one oxygen atom in TpPhCu(NO3) while keeping relatively small N-Cu-N angles compared with other TpPhCu(HpzPh)X complexes80 as shown in Table 4.2.3. Table 4.2.3 Structural Data (Å and deg.) for TpPh Metal Complexes Complexes TpPhCo(HpzPh,4CN)(NO3) TpPhCu(HpzPh,4CN)(NO3) TpPhCu(NO3) TpPhCu(HpzPh)(SCN) TpPhCu(HpzPh)Cl M-N 2.089 2.079 2.020 2.072 2.081 N-M-N 88.7 89.3 92.1 104.0 104.1 109 N-B-N 109.1 108.7 108.8 109.7 109.3 References This Work This Work This Work 80 80 4.3 TlTpR,4CN-Rh2(CF3COO)4 There are quite a few coordination polymer structures reported involving Rh2(CF3COO)4 and the cyano group.106-108 Rh2(CF3COO)4 is a good electrophile that can be easily bonded to a CN unit. It is already shown that this rhodium dimer can form a coordination polymer with (BpPh,4CN)2Cu46 although a crystal structure has not been determined yet. We have synthesized and purified new TpR,4CN ligands. Thus we would like to explore the possibility of forming a coordination polymer from TlTpR,4CN and Rh2(CF3COO)4. Initial attempt was made by mixing the two materials in CH2Cl2. In both cases for TlTpPh,4CN and TlTpt-Bu,4CN, red materials precipitated out and were isolated. The IR spectra of these red products show only cyano stretches without considerable shift from the ligands. Crystals of these red products were grown from the TlTpt-Bu,4CN-Rh2(CF3COO)2 sample and studied by X-ray crystallography. Instead of the coordination polymer structure we designed, the crystal turned to be (Hpzt-Bu,4CN)2-Rh2(CF3COO)4, whose formation was due to decomposition of the ligand. An ORTEP drawing of this crystal structure is shown in Figure 4.3.1 with selected bond distances and angles in Table 4.3.1. 110 Figure 4.3.1 ORTEP Drawing of (Hpzt-Bu,4CN)2-Rh2(CF3COO)4 Showing 50% Thermal Ellipsoids, H Atoms Omitted for Clarity. Table 4.3.1 Bond Distances (Å) and Angles (deg.) t-Bu,4CN )2-Rh2(CF3COO)4 (Hpz Rh - Rh 2.417(2) Rh - Rh - N(1) 179.3(3) Rh - N(1) 2.211(3) O(1) - Rh - O(2) 90.1(2) Rh - O(1) 2.040(1) O(3) - Rh - O(4) 92.1(4) Rh - O(2) 2.035(3) N(1) - Rh - O(1) 91.6(3) Rh - O(3) 2.035(2) N(1) - Rh - O(2) 91.4(2) Rh - O(4) 2.035(2) N(1) - Rh - O(3) 92.5(1) C(4) - N(3) 1.148(3) N(1) - Rh - O(4) 92.8(3) C(2) - C(4) - N(3) 176.5(2) for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4 crystallizes in the triclinic P 1 space group. Each rhodium has an almost perfect octahedral coordination geometry with four oxygen atoms in the same plane; pyrazole N atom and Rh-Rh bond at the apical positions. Because of the dissociation of the Tp ligand, the pyrazoles coordinate to the metal ion via the ring nitrogen instead of the CN 111 substituents, consistent with the lack of a shift of the CN stretch. Although a coordination polymer is not isolated here, this structure shows the rigid molecular configuration for Rh2(CF3COO)4 to be working as one construction block for coordination polymers, as well as the potential to form new Rh-N bonds at the apical positions. 112 4.4 TlTpPh,4CN-[Ni(cyclam)][ClO4]2 Ni(cyclam)(ClO4)2 (cyclam = 1,4,8,11-tetraazacyclotetradecane) is another common material used to build coordination polymers.109-111 In this molecule the Ni atom and four coordinated N atoms are in the same plane, leaving two apical positions as the free coordination sites on the nickel atom. The first reaction of TlTpPh,4CN with Ni(cyclam)(ClO4)2 was done in acetone solution. A yellow product was obtained after washing by CH2Cl2. This yellow solid was studied by X-ray crystallography and turned out to be only [Ni(cyclam)][ClO4]2. However, reactions in aqueous solution resulted in pink crystals and some unreacted starting materials. The IR spectrum of this pink crystal shows only the cyano stretch. X-ray crystallography revealed the crystal to be (pzPh,4CN)2Ni(cyclam), which probably resulted from the decomposition of the ligand. An ORTEP drawing of this crystal structure is shown in Figure 4.4.1 with selected bond distances and angles in Table 4.4.1. Table 4.4.1 Bond Distances (Å) and Angles (deg.) for (pzPh,4CN)2Ni(cyclam) Ni - N(1) Ni - N(2) Ni - N(3) N(3) - N(4) C(15) - N(5) 2.073(1) 2.079(1) 2.200(1) 1.380(2) 1.154(2) N(1) - Ni - N(2) N(1) - Ni - N(3) N(2) - Ni - N(3) C(7) - C(15) - N(5) 113 85.3(6) 87.5(6) 85.1(6) 179.8(2) Figure 4.4.1 ORTEP Drawing of (pzPh,4CN)2Ni(cyclam) Showing 50% Thermal Ellipsoids, H Atoms Omitted for Clarity. (pzPh,4CN)2Ni(cyclam) crystallizes on an inversion center in the orthorhombic space group Pbca. The octahedral coordination environment of the Ni ion consists of four N atoms from the cyclam ring in the same plane, and two other N atoms from two anionic pyrazole moieties, occupying the apical positions. Similar to the structure of (Hpzt-Bu,4CN)2-Rh2(CF3COO)4, two substituted pyrazoles coordinate to the metal ion via the ring nitrogen instead of the CN substituents, consistent with the lack of a BH stretch in the IR spectrum. There are interactions between the CN group and two protons of two neighboring cyclam rings (N(5)…C(2) 3.413 Å, N(5)…C(5) 3.687 Å) and a third proton from the phenyl group (N(5)…C(12) 3.462 Å). Although no coordination polymer has been constructed here, this structure shows the possibility of Ni(cyclam) to function as one construction block for 114 coordination polymers, as well as the potential to form new Ni-N bonds at the apical positions. 115 4.5 Conclusion Attempts were made here to construct coordination polymers by using cyano-substituted polypyrazolylborate complexes with metal complexes containing empty coordination sites, such as Rh2(CF3COO)4 and Ni(cyclam)(ClO4)2. Mass spectra show formation of a dinuclear copper species, although crystallization of these compounds results in TpPhM(HpzPh,4CN)(NO3). TlTpR,4CN was used as one building block in construction of coordination polymers. We expected to see the cyano substituent coordinate to rhodium or nickel centers, however, (Hpzt-Bu,4CN)2-Rh2(CF3COO)4 and (pzPh,4CN)2Ni(cyclam) were isolated with coordination of the pyrazole ring N atoms, possibly due to the decomposition of the ligand. Although no coordination polymers have been constructed so far, it does show the potential of these molecules to work as one building block. 116 4.6 Experimental 4.6.1 General Experimental For general experimental details see section 2.8.1. Synthesis of TpPhCu(NO3) was described in 3.6.14. (HpzPh,4CN)2M(NO3)2 (M = Co, Cu) were synthesized by the same procedure as for (Hpzt-Bu,4CN)2CuCl2 (section 3.6.17), by using M(II) nitrate and HpzPh,4CN with 1:2 ratio. Ni(cyclam)(ClO4)2 was prepared by the literature method.112 TpPhCo(HpzPh,4CN)(NO3), (Hpzt-Bu,4CN)2-Rh2(CF3COO)4 and (pzPh,4CN)2Ni(cyclam) crystal data were collected by Charles Campana and Cary Bauer from Bruker AXS Inc. The first two were collected at 100 K on a Bruker Kappa APEX II CCD area detector system equipped with a graphite monochromator and a Mo Kα fine-focus sealed tube (λ = 0.7107 Å) operated at 1.5 kW power (50 kV, 30 mA). The detector was placed at a distance of 3.985 cm and 4.980 cm from the crystals respectively. The last one was collected at 100 K on a Bruker Proteum R /Pt135 CCD area detector system equipped with Montel optics and a Cu Kα rotating anode (λ = 1.5418 Å) operated at 2.7 kW power (45 kV, 60 mA). The detector was placed at a distance of 5.030 cm from the crystal. All structures were solved and refined as described in section 2.8.1. 4.6.2 TpPhCu(NO3)-(HpzPh,4CN)2Co(NO3)2 To a solution of TpPhCu(NO3) (0.500 g, 0.88 mmol) in 20 mL dry THF was 117 added (HpzPh,4CN)2Co(NO3)2 (0.461 g, 0.88 mmol). The green solution turned brown immediately and was stirred for 12 hours. The solvent was evaporated under reduced pressure resulting in a brown solid. This brown product was washed with toluene to remove any unreacted starting materials. Final product is a brown solid (0.702 g, 0.64 mmol, 79.5%). IR (KBr, cm-1): 2233(νCN, s), 2496(νBH, w). X-ray quality crystals of TpPhCo(HpzPh,4CN)(NO3) were grown by slow evaporation from the THF solution. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table P1-4. 4.6.3 TpPhCu(NO3)-(HpzPh,4CN)2Cu(NO3)2 Same procedure as above was followed, using 0.500 g TpPhCu(NO3) (0.88 mmol) and 0.461 g (HpzPh,4CN)2Cu(NO3)2 (0.88 mmol). Final product is a green solid (0.829 g, 0.76 mmol, 86.2%). IR (cm-1, KBr pellet): 2234(νCN, vs), 2496(νBH, w). [(HpzPh,4CN)2Na]+, ESI-MS (THF, 526.1 positive detection): m/z = [(HpzPh,4CN)2Cu(NO3)2]H+, [(HpzPh,4CN)2Cu(NO3)2-Cu(NO3)]+, 1097.1 361.5 650.3 [TpPhCu(NO3)- (HpzPh,4CN)2Cu(NO3)2]Li+. X-ray quality crystals of TpPhCu(HpzPh,4CN)(NO3) were grown by slow evaporation from the THF solution. X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table Q1-4. 118 4.6.4 TlTpPh,4CN-Rh2(CF3COO)4 Rh2(CF3COO)4 (0.0122 g, 0.019 mmol) was dissolved in 20 mL CH2Cl2, and TlTpPh,4CN (0.0140 g, 0.019 mmol) was added in directly. The mixture was stirred for one hour and a reddish precipitate came out of the solution. This precipitate was filtered and washed by toluene. The final product is a red solid (0.016 g, 0.012 mmol, 63.2%). IR (cm-1, KBr pellet): 738(m), 785(m), 858(m), 1191(s), 2243(νCN, s). 4.6.5 TlTpt-Bu,4CN-Rh2(CF3COO)4 Same procedure as above was followed, using 0.01o g TlTpt-Bu,4CN (0.015 mmol) and 0.010 g Rh2(CF3COO)4 (0.015 mmol). The final product is a red solid (0.o16 g, 0.012 mmol, 81.7%). IR (cm-1, KBr pellet): 2236(νCN, vs), 2489(νBH, w). X-ray quality crystals of (Hpzt-Bu,4CN)2-Rh2(CF3COO)4 were grown by layering a solution of TlTpt-Bu,4CN in methanol on top of a solution of Rh2(CF3COO)4 in methanol/dichloromethane. After allowing the solutions to diffuse together for a week, the top was removed and the solvent allowed to slowly evaporate, producing red crystals of. IR (cm-1, KBr pellet): 2235(νCN, vs). X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table R1-4. 119 4.6.6 TlTpPh,4CN-Ni(cyclam)(ClO4)2 TlTpPh,4CN (0.100 g, 0.14 mmol) was added to 20 mL aqueous solution of Ni(cyclam)(ClO4)2 (0.062 g, 0.13 mmol). The mixture was stirred and heated at reflux for 12 hours. A yellow precipitate came out of the solution and was filtered. The remaining aqueous solution was slowly evaporated to generate pink crystals of (pzPh,4CN)2Ni(cyclam) (0.049 g, 0.06 mmol, 49.2%). IR (cm-1, KBr pellet): 870(s), 958(s), 1384(s), 1626(s), 2207(νCN, s). X-ray data collection and structure solution parameters are listed in Table A. Atomic positions, thermal parameters, and metrical parameters are listed in Table S1-4. 120 Chapter 5 Conclusions Research work started with the synthesis and purification of new cyano-substituted trispyrazolylborates. We have successfully made three new ligands: TpPh,4CN, Tpt-Bu,4CN and TpMe2,4CN through relatively easy and safe synthetic procedures. Thallium salts of the first two ligands were made and studied by X-ray crystallography for ligand purification and structure characterization. Steric effects of the bulky substituents are detected as well as the short contacts between cyano substituents and metal centers. Transition metals such as Mn, Fe, Co and Cu can easily form “sandwich” or “half-sandwich” type complexes with these new trispyrazolylborates. Synthesis and structural characterization of metal complexes involving these substituted Tp ligands are discussed here. It was shown that both sterically and electronically active substituents have important roles in molecular structure construction. It was also noticed that these substituents have significant effects on the electronic properties of the metal ion as well as the molecular reactivity. Ligand isomerization was revealed in (TpPh,4CN)*2Co, (TpPh,4CN)*2Mn and (TpPh,4CN)*2Fe complexes. The isomerized metal-N bonds are much shorter than regular length with lower symmetry. Ligand decomposition was also observed to produce some metal pyrazole complexes, showing the metal-CN contacts. For copper, both copper(I) and copper(II) 121 complexes were produced. [TpPh,4CNCu]n and [Tpt-Bu,4CNCu]n represent the first crystallographically characterized examples of cyano bridged scorpionate polymers. The potential of the cyano substituent in forming coordination polymers was explored. Some of the metal complexes we made have already shown 1- or 2-dimensional polymer structures. Mass spectra revealed the existence of a dinuclear copper species. While attempting construction of coordination polymers from Tp complexes and other electrophilic metal compounds such as Rh2(CF3COO)4 and Ni(cyclam)(ClO4)2, ligand dissociation was observed again, leading to the formation of metal pyrazole complexes with the ring N atom coordination. The goal of this research project is to produce new molecular materials involving polypyrazolylborate metal complexes. By employing different substituents and metal ions, these materials are designed to have desired electronic and magnetic properties. Research work discussed in this dissertation paves the way leading to the goal and shows a promising future. 122 LIST OF REFERENCES 123 LIST OF REFERENCES 1. Trofimenko, S., Scorpionates: The Coordination Chemistry of Polypyrazolylborates Ligands. Imperial College Press: London, 1999. 2. Kitajima, N.; Tolman, W., Progress Inorg. Chem. 1995, 43, 419. 3. Kaner, R. B.; MacDiarmid, A. G., Sci. Am. 1998, 258, 106. 4. Kanatzidis, M. G., Chem. Eng. News 1990, 68, 36. 5. Buchachenko, A. L., Russ. Chem. Rev. 1990, 59, 307. 6. Miller, J. S.; Epstein, A. J., Angew. Chem. Int. Ed. Engl. 1994, 33, 358. 7. Aubin, S.; Sun, Z.; Pardi, L.; Krzystek, J.; Folting, K.; Brunel, L.; Rheingold, A.; Christou, G.; Hendrickson, D., Inorg. Chem. 1999, 38, 5329. 8. Manriquez, J. M.; Yee, G. T.; McLean, R.S.; Epstein, A. J.; Miller, J. S., Science 1991, 252, 1415. 9. Day, P.; Coronado, E. 2005; p 105. 10. Bittencourt, J. A. Plasma conductivity and diffusion; 1979; p 58. 11. McGinness, J.; Corry, P.; Proctor, P., Science 1974, 183, 853. 12. Shirakawa, H., "Synthesis of Polyacetylene" Handbook of Conducting Polymers. Marcell Dekker: New York, 1998. 13. Schlüter-Dieter, A., “Synthesis of Poly(para-phenylene)s” Handbook of Conducting Polymers. Marcell Dekker: New York, 1998. 14. Gregory, R.V., “Solution Processing of Conductive Polymers: Fibers and Gels from Emeraldine Base Polyaniline” Handbook of Conducting Polymers. Marcell Dekker: New York, 1998. 15. R.D. McCullough, P.C Ewbank, Regioregular, Head-to-Tail Coupled Poly(3-alkylthiophene) and Its Derivatives” Handbook of Conducting Polymers. Marcell Dekker: New York, 1998. 16. Kanazawa, K. K.; Diaz, A. F.; Gill, W. D.; Grant, P. M.; Street, G. B.; Gardini, G. P.; Kwak, J. F., Synth. Met. 1979/80, 1, 329. 17. Hanack, M.; Hees, M.; Stihler, P.; Winter, G.; Subramanian, L. R., “Synthesis and Properties of Conducting Bridged Macrocyclic Metal Complexes” Handbook of Conducting Polymers. Marcell Dekker: New York, 1998. 18. Bernhard, S.; Goldsmith, J. I.; Takada, K.; Abruña, H. D., Inorg. Chem. 2004, 42, 4389. 19. Gofer, Y.; Sarker, H.; Killian, J. G.; Poehler, T. O.; Searson, P. C., Appl. Phys. Lett. 1997, 71, 1582. 20. Alper, J., Science 1989, 246, 4927. 21. Trofimenko, S., J. Am. Chem. Soc. 1966, 88, 1842. 22. Trofimenko, S., J. Am. Chem. Soc. 1967, 89, 3170. 23. Jesson, J.; Trofimenko, S.; Eaton; D., J. Am. Chem. Soc. 1967, 89, 3148. 24. Jesson, J.; Weiher, J.; Trofimenko, S., J. Chem. Phys. 1968, 48, 2058. 25. Churchill, M.; Gold, K.; Maw, C., Inorg. Chem. 1970, 9, 1597. 26. Trofimenko, S., Acc. Chem. Research 1971, 4, 17. 124 27. Trofimenko, S., J. Am. Chem. Soc. 1969, 91, 588. 28. Trofimenko, S., J. Am. Chem. Soc. 1967, 89, 3904. 29. Calabrese, J.; Trofimenko, S.; Thompson, J., J. Chem. Soc., Chem. Commun. 1986, 1122. 30. Trofimenko, S.; Calabrese, J.; Thompson, J., Inorg. Chem. 1987, 26, 1507. 31. Han, R.; Parkin, G., Inorg. Chem. 1993, 32, 4968. 32. Egan, J. W.; Haggerty, B. S.; Rheingold, A. L.; Sendlinger, S. C.; Theopold, K. H., J. Am. Chem. Soc. 1990, 112, 2445. 33. Tolman, W. B., Inorg. Chem. 1991, 30, 4877. 34. Oliver, J.; Hutchinson, B.; Milligan, W., Inorg. Chem. 1980, 19, 165. 35. Eichhorn, D.; Armstrong, W., Inorg. Chem. 1990, 29, 3607. 36. Long, G. J.; Hutchinson, B. B., Inorg. Chem. 1987, 26, 608. 37. Dias, H.; Lu, H.; Ratcliff, R.; Simon, G., Inorg. Chem. 1995, 34, 1975. 38. Dias, H.; Lu, H., Inorg. Chem. 1995, 34, 5380. 39. Siemer, C.; Goswami, N.; Kahol, P.; Van Stipdonk, M.; Eichhhorn, D., Inorg. Chem. 2001, 40, 4081. 40. Rheingold, A.; Incarvito, C.; Trofimenko, S., Inorg. Chem. 2000, 39, 5569. 41. Berseth, P. A.; Sokol, J. J.; Shores, M. P.; Heinrich, J. L.; Long, J. R., J. Am. Chem. Soc. 2000, 122, 9655. 42. Beltran, L.; Long, J. R., Acc. Chem. Res. 2005, 38, 325. 43. Broderick, W. E.; Thompson, J. A.; Day, E. P.; Hoffman, B. M., Science 1990, 249, 401. 44. Miller, J. S.; Calabrese, J. C.; Rommelmann, H.; Chittipeddi, S. R.; Zhang, J. H.; Reiff, W. M.; Epstein, A. J., J. Am. Chem. Soc. 1987, 109, 769. 45. Entley, W. R.; Girolami, G. S., Inorg. Chem. 1994, 33, 5165. 46. Siemer, C.; Van Stipdonk, M.; Kahol, P.; Eichhorn, D., Polyhedron 2004, 23, 235. 47. McFadden, H.; Huppatz, J., Aust. J. Chem. 1991, 44, 1263. 48. Tupper, D.; Bray, M., Synthesis 1997, 337. 49. Craven, E.; Mutlu, E.; Lundberg, D.; Temizdemir, S.; Dechert, S.; Brombacher, H.; Janiak, C., Polyhedron 2002, 21, 553. 50. Janiak, C.; Temizdemir, S.; Scharmann, T., Zeitschrift für anorganische und allgemeine Chemie 1998, 624, 755. 51. Ciunik, Z.; Ruman, T.; Lukasiewicz, M.; Wolowiec, S., J. Mol. Struct. 2004, 690, 175. 52. Cowley, A. H.; Geerts, R. L.; Nunn, C. M.; Trofimenko, S., J. Organomet. Chem. 1989, 365, 19. 53. Janiak, C.; Braun, L.; Girgsdies, F., Dalton Transactions 1999, 17, 3136. 54. Renn, O.; Venanzi, L.; Marteletti, A.; Gramlich, V., Helvetica Chimica Acta 1995, 78, 993. 55. Frencisco, A.; Hans-Heinrich, L.; Concepcion, F.; Hernandez, C.; Nadine, J.; Jose, E., J. Org. Chem. 1995, 60, 1965. 56. Trofimenko, S.; Calabrese, J. C.; Kochi, J. K.; Wolowiec, S.; Hulsbergen, F. 125 B.; Reedijk, J., Inorg. Chem. 1992, 31, 3943. 57. Lopez, C.; Sanz, D.; Claramunt, R. M.; Trofimenko, S.; Elgueroand J., J. Organomet. Chem. 1995, 503, 265. 58. Alberola, A.; Antolin, L.; Gonzalez, A.; Laguna, M.; Pulido, F., J. Heterocyclic Chem. 1986, 23, 1035. 59. Silvernail, C.; Yap, G.; Sommer, R.; Rheingold, A.; Day, V.; Belot, J., Polyhedron 2001, 20, 3113. 60. Jones, C. J.; McCleverty, J. A.; Trofimenko, S., Polyhedron 1990, 9, 619. 61. Trofimenko, S.; Calabrese, J. C.; Domaille, P. J.; Thompson, J. S., Inorg. Chem. 1989, 28, 1091. 62. Darensbourg, D. J.; Maynard, E. L.; Holtcamp, M. W.; Klausmeyer, K. K.; Reibenspies, J. H., Inorg. Chem. 1996, 35, 2682. 63. Eichhorn, D. M. Ph.D. Dissertation. University of California, Berkeley, 1992. 64. Siemer, C. J.; Eichhorn, D. M., Unpublished Results. 65. Farrugia, L., J. Appl. Crystallogr. 1999, 32, 837. 66. Walker, N.; Stuart, D., Acta. Crystallogr., Sect. A 1983, 39, 158. 67. Altornare, A.; Gascarano, G.; Giacovazzo, C.; Guagliardi, A., J. Appl. Cryst. 1993, 26, 343. 68. Sheldrick, G., SHELX97- Programs for Crystal Structure Analysis (Release 97-2). Institut für Anorganische Chemie der Universität: Germany, 1998. 69. Creagh, D.; McAuley, W., International Tables for Crystallography. Kluwer Academic Publishers: Dordrecht, 1992. 70. Reglinski, J.; Spicer, M.; Garner, M.; Kennedy, A., J. Am. Chem. Soc. 1999, 121, 2317. 71. Kisko, J.; Hascall, T.; Parkin, G., J. Am. Chem. Soc. 1998, 120, 10561. 72. Bolsch, L. L.; Gamble, A. S.; Boncella, J. M., J. Mol. Catal. 1992, 76, 229. 73. Darensbourg, D. J.; Holtcamp, M. W.; Khandelwal, B.; Klausmeyer, K. K.; Reibenspies, J. H., J. Am. Chem. Soc. 1995, 117, 538. 74. Perez, P. J.; Brookhart, M.; Templeton, J. L., Organometallics 1993, 12, 261. 75. Kitajima, N.; Fukui, H.; Moro-oka, Y., J. Chem. Soc., Chem. Commun. 1988, 485. 76. Hambley, T.; Lynch, M.; Zvargulis, E., J. Chem. Soc., Dalton Trans. 1996, 4283. 77. Armstrong, W.; Spool, A.; Papaephthymiou, G.; Frankel, R.; Lippard, S., J. Am. Chem. Soc. 1984, 106, 3653. 78. Ruggiero, C.; Carrier, S.; Antholine, W.; Whittaker, J.; Cramer, C.; Tolman, W., J. Am. Chem. Soc. 1993, 115, 11285. 79. Kremer-Aach, A.; Kläui, W.; Bell, R.; Strearath, A.; Wunderlich, H.; Mootz, D., Inorg. Chem. 1997, 36, 1552. 80.Siemer, C. J.; Meece, F. A.; Armstrong, W. H.; Eichhorn, D. M., Polyhedron 2001, 20, 2637. 126 81. Armstrong, W.; Chan, M., Inorg. Chem. 1989, 28, 3777. 82. Sheats, J.; Czernuszewicz, R.; Dismukes, G.; Rheingold, A.; Petrouleas, V.; Stubbe, J.; Armstrong, W.; Beer, R.; Lippard, S., J. Am. Chem. Soc. 1987, 109, 1435. 83. Xing, Y.; Aoki, K.; Bai, F., Syn. Reac. Inorg. Metal-Org. Chem. 2004, 34, 1149. 84. Chia, L.; Radojevic, S.; Scowen, I.; Mcpartlin, M.; Halcrow, M., J. Chem. Soc., Dalton Trans. 2000, 133. 85. Hammes, B.; Carrano, M.; Carrano, C., J. Chem. Soc., Dalton Trans. 2001, 1448. 86. Dhar, S.; Reddy, P.; Nethaji, M.; Mahadevan, S.; Saha, M.; Chakravarty, A., Inorg. Chem. 2002, 41, 3469. 87. Bruce, M. I.; Ostazewski, A. P. P., J. Chem. Soc., Dalton Trans. 1973, 2433. 88. Mealli, C.; Arcus, C. S.; Wilkinson, J. L.; Marks, T. J.; Ibers, J. A., J. Am. Chem. Soc. 1976, 98, 711. 89. Trofimenko, S., Chemical Reviews 1972, 72, 497. 90. Verweij, P. D.; Rietmeijer, F. J.; De Graaff, R. A. G.; Erdonmez, A.; Reedijk, J., Inorganica Chimica Acta 1989, 163, 223. 91. Safronova, L. A.; Komyagin, N. T.; Yanovskii, A. I.; Struchkov, Yu. T.; Shebaldova, A. D, Koordinatsionnaya Khimiya 1987, 13, 1407. 92. Lumme, P.; Lindell, E.; Mutikainen, I., Acta Crystallographica, Section C: Crystal Structure Communications 1988, C44, 1564. 93. Lumme, P. O.; Lindell, E.; Mutikainen, I., Acta Crystallographica, Section C: Crystal Structure Communications 1988, C44, 967. 94. Sun, Y.; Cheng, P.; Yan, S.; Liao, D.; Jiang, Z.; Shen, P., Journal of Molecular Structure 2001, 597, 191. 95. Liu, X.; Kilner, C.; Thornton-Pett, M.; Halcrow, M., Acta Crys. Section C 2001, C57, 1253. 96. Desiraju, G., Angew. Chem., Int. Ed. Engl. 1995, 34, 2311. 97. Batten, S.; Robson, R., Angew. Chem., Int. Ed. Engl. 1998, 37, 1469. 98. Cheetham, A.; Ferey, G.; Loiseau, T., Agnew. Chem. Int. Ed. 1999, 38, 3268. 99. Yaghi, O.; O'Keefe, M., J. Solid State Chem. 2000, 152, 1. 100. Eddaoudi, M.; Moler, D.; Li, H.; Chem, B.; Reineke, T.; O'Keeffe, M.; Yaghi, O., Acc. Chem. Res. 2001, 34, 319. 101. Moulton, B.; Zaworotko, M., Chem. Rev. 2001, 101, 1629. 102. Evans, O.; Lin, W., Acc. Chem. Res. 2002, 35, 511. 103. Hamilton, B.; Kelly, K.; Malasi, W.; Ziegler, C., Inorg. Chem. 2003, 42, 3067. 104. Nather, C.; Greve, J.; Jeb, I., Chem. Mater. 2002, 14, 4536. 105. Shin, D.; Lee, I.; Chung, Y.; Lah, M., Inorg. Chem. 2003, 42, 5459. 106. Contakes, S. M.; Klausmeyer, K. K.; Rauchfuss, T. B., Inorg. Chem. 2000, 39, 2069. 127 107. Miyasaka, H.; Campos-Fernandez, C. S.; Galan-Mascaros, J. R.; Dunbar, K. R., Inorg. Chem. 2000, 39, 5870. 108. Cotton, F. A.; Dikarev, E. V.; Petrukhina, M. A.; Stiriba, S., Polyhedron 2000, 19, 1829. 109. Colacio, E.; Ghazi, M.; Stoeckli-Evans, H.; Lloret, F.; Moreno, J. M.; Perez, C., Inorg. Chem. 2001, 40, 4876. 110. Shen, Z.; Zuo, J.; Shi, F.; Xu, Y.; Song, Y.; You, X.; Raj, S. S.; Fun, H.; Zhou, Z.; Che, C., Transition Metal Chemistry 2001, 26, 345. 111. Ferlay, S.; Mallah, T.; Vaissermann, J.; Bartolome, F.; Veillet, P.; Verdaguer, M., Chemical Communications (Cambridge) 1996, 21, 2481. 112. Bosnich, B.; Tobe, M. L.; Webb, G. A., Inorg. Chem. 1965, 4, 1109. 113. Zhao, Ningfeng. M.S. Thesis. Wichita State University, 2003. 128 APPENDIX 129 APPENDIX A COMPLETE CRYSTALLOGRAPHIC DATA Table A Crystallographic Data Compound TlTpPh,4CN Hpzt-Bu,4CN Molecular Formula C30H19N9BTl C8H11N3 Formula Weight 720.7 149.2 Diffractometer Nonius CAD4 Nonius CAD4 Radiation Mo, Kα (λ = 0.7107 Å) Mo, Kα (λ = 0.7107 Å) Temperature (K) 150 150 Color, Habit Yellow, Prism Colorless, Prism Crystal System Trigonal Monoclinic Space Group C2/m Crystal Dimension (mm) P3 0.25 x 0.18 x 0.10 a (Å) 15.077(6) 11.552(2) b (Å) 15.077(6) 6.693(3) c (Å) 8.056(2) 11.590(2) α (deg.) 90.0(2) 90 0.32 x 0.21 x 0.24 β (deg.) 90.0(2) 108.8(1) γ (deg.) 119.9(3) 90 Volume (Å3) 1587.5(9) 848.5(4) Z 2 4 Density (calc’d) (g/cm3) 1.51 1.17 Octants Collected h, ±k, ±l h, k, ±l Max. h, k, l 18, 18, 9 14, 8, 13 1.6 - 26 3.6 - 26 5.120 0.074 6445 936 θ Range (deg.) Abs. Coefficient (µ, mm-1) Measured Reflections Unique Reflections (Rint) 2083 (0.085) 900 (0.022) Obs. Reflections [I>2σ(I)] 1457 702 Parameters 125 64 Final R indices (Robs, Rall) 0.035, 0.091 0.052, 0.077 Goodness of Fit 1.102 1.026 Max./min. Transmission (Tmax, 0.629, 0.361 0.987, 0.925 1.714, -1.047 0.722, -0.654 Tmin) Max./Min. Peak in Final Diffraction Map (ρmax, ρmin, eÅ-3) 130 Table A Crystallographic Data (cont.) Compound TlTpt-Bu,4CN (TpPh,4CN)*2Co Molecular Formula C24H31N9BTl C60H38N18B2Co Formula Weight 660.8 1091.6 Diffractometer Bruker SMART-1000 Bruker Pt135 PROTEUM CCD Radiation Mo, Kα (λ = 0.7107 Å) Cu, Kα (λ = 1.5418 Å) Temperature (K) 153 100 Color, Habit Colorless, Prism Pink, Prism Crystal System Trigonal Monoclinic Space Group R3m P21/n Crystal Dimension (mm) 0.63 x 0.18 x 0.16 0.23 x 0.04 x 0.04 a (Å) 16.864(10) 10.557(4) b (Å) 16.864(10) 19.558(7) c (Å) 8.158(10) 27.953(10) α (deg.) 90 90 β (deg.) 90 99.8(3) 120 90 γ (deg.) Volume (Å3) 2009.4(3) 5687.2(4) Z 3 4 Density (calc’d) (g/cm3) 1.62 1.27 Octants Collected ±h, ±k, ±l ±h, ±k, ±l Max. h, k, l 22, 21, 10 12, 21, 32 2.4 – 28.9 1.4 – 31.8 6.057 2.814 Measured Reflections 7073 35966 Unique Reflections (Rint) 2167 (0.066) 8891 (0.046) Obs. Reflections [I>2σ(I)] 2136 6181 Parameters 109 738 Final R indices (Robs, Rall) 0.026, 0.055 0.070, 0.106 Goodness of Fit 1.019 1.020 Max./min. Transmission (Tmax, 0.423, 0.153 0.895, 0.564 0.821, -2.352 0.781, -0.322 θ Range (deg.) Abs. Coefficient (µ, mm-1) Tmin) Max./Min. Peak in Final Diffraction Map (ρmax, ρmin, eÅ-3) 131 R/ Table A Crystallographic Data (cont.) Compound (TpPh,4CN)*2Mn (TpPh,4CN)*2Fe Molecular Formula C60H38N18B2Mn C60H38N18B2Fe Formula Weight 1087.6 Diffractometer 1088.6 Bruker PROTEUM R/ Pt135 Bruker SMART APEX II CCD CCD Radiation Cu, Kα (λ = 1.5418 Å) Cu, Kα (λ = 1.5418 Å) Temperature (K) 100 100 Color, Habit Pale Yellow, Prism Light Yellow, Prism Crystal System Monoclinic Monoclinic Space Group P21/n P21/n Crystal Dimension (mm) 0.23 x 0.06 x 0.06 0.23 x 0.06 x 0.06 a (Å) 10.552(5) 10.552(3) b (Å) 19.682(9) 19.622(8) c (Å) 28.311(10) 28.089(10) α (deg.) 90 90 β (deg.) 99.4(3) 99.5(3) 90 90 γ (deg.) Volume (Å3) 5801.3(5) 5742.1(4) Z 4 4 Density (calc’d) (g/cm3) 1.25 1.26 Octants Collected ±h, ±k, ±l ±h, ±k, ±l Max. h, k, l 11, 21, 31 11, 21, 31 1.4 – 31.4 1.4 – 29.6 2.290 2.551 Measured Reflections 50224 28292 Unique Reflections (Rint) 8630 (0.060) 8150 (0.151) Obs. Reflections [I>2σ(I)] 6778 3451 Parameters 738 739 Final R indices (Robs, Rall) 0.105, 0.126 0.091, 0.215 Goodness of Fit 1.137 1.024 Max./min. Transmission (Tmax, 0.896, 0.564 0.926, 0.807 1.168, -0.876 0.529, -0.326 θ Range (deg.) Abs. Coefficient (µ, mm-1) Tmin) Max./Min. Peak in Final Diffraction Map (ρmax, ρmin, eÅ-3) 132 Table A Crystallographic Data (cont.) Compound [TpPh,4CNCu]n [Tpt-Bu,4CNCu]n Molecular Formula C30H19N9BCu C26H34N10BCu·CH3CN Formula Weight 579.9 561.0 Diffractometer Nonius CAD4 Nonius CAD4 Radiation Mo, Kα (λ = 0.7107 Å) Mo, Kα (λ = 0.7107 Å) Temperature (K) 150 150 Color, Habit Yellow, Prism Yellow, Prism Crystal System Monoclinic Monoclinic Space Group P21/n I2/c Crystal Dimension (mm) 0.12 x 0.10 x 0.08 0.18 x 0.12 x 0.10 a (Å) 9.557(3) 16.987(4) b (Å) 24.311(8) 14.636(7) c (Å) 14.440(3) 24.406(6) α (deg.) 90 90 β (deg.) 92.6(2) 100.7(3) 90 90 2655.3(3) 5961.6(3) Z 4 8 Density (calc’d) (g/cm3) 1.45 1.25 Octants Collected h, k, ±l h, k, ±l Max. h, k, l 11, 29, 14 20, 18, 30 1.7 – 26.0 1.6 – 26.0 0.862 0.765 Measured Reflections 5490 3141 Unique Reflections (Rint) 5179 (0.253) 3049 (0.185) Obs. Reflections [I>2σ(I)] 1691 1266 Parameters 368 321 γ (deg.) Volume (Å3) θ Range (deg.) Abs. Coefficient (µ, mm-1) Final R indices (Robs, Rall) 0.077, 0.382 0.068, 0.297 Goodness of Fit 0.873 0.978 Max./min. Transmission (Tmax, 0.807, 0.425 0.927, 0.871 0.587, -1.232 0.420, -0.822 Tmin) Max./Min. Peak in Final Diffraction Map (ρmax, ρmin, eÅ-3) 133 Table A Crystallographic Data (cont.) Compound TpPhCu(NO3)113 {[(HpzPh,4CN)2Cu (CH3CN)2][ClO4]2}n Molecular Formula C27H22N7O3BCu C24H22N8O9Cl2Cu·H2O Formula Weight 566.9 700.8 Diffractometer Nonius CAD4 Nonius CAD4 Radiation Mo, Kα (λ = 0.7107 Å) Mo, Kα (λ = 0.7107 Å) Temperature (K) 298 150 Color, Habit Blue, Prism Green, Prism Crystal System Monoclinic Monoclinic Space Group P21/n P21/a Crystal Dimension (mm) 0.55 x 0.50 x 0.10 0.16 x 0.16 x 0.21 a (Å) 9.318(7) 10.559(4) b (Å) 15.376(8) 14.323(8) c (Å) 18.784(9) 10.650(2) α (deg.) 90 90 β (deg.) 102.5(6) 110.2(3) 90 90 γ (deg.) Volume (Å3) 2628.1(3) 1511.7(2) Z 4 4 Density (calc’d) (g/cm3) 1.43 1.58 Octants Collected h, k, ±l h, k, ±l Max. h, k, l 11, 18, 22 12, 17, 13 1.7 – 25.0 2.0 – 26.0 0.874 0.967 Measured Reflections 4970 3115 Unique Reflections (Rint) 4620 (0.057) 2958 (0.046) Obs. Reflections [I>2σ(I)] 2101 2270 Parameters 356 214 Final R indices (Robs, Rall) 0.059, 0.215 0.036, 0.066 Goodness of Fit 0.970 1.061 Max./min. Transmission (Tmax, 0.896, 0.401 0.684, 0.633 0.336, -0.542 0.789, -0.490 θ Range (deg.) Abs. Coefficient (µ, mm-1) Tmin) Max./Min. Peak in Final Diffraction Map (ρmax, ρmin, eÅ-3) 134 Table A Crystallographic Data (cont.) Compound (Hpzt-Bu,4CN)4CoCl2 (Hpzt-Bu,4CN)2Mn (CF3SO3)2·2H2O Molecular Formula C32H44N12CoCl2·toluene C18H26N6O8F6S2Mn Formula Weight 818.8 687.6 Diffractometer Nonius CAD4 Nonius CAD4 Radiation Mo, Kα (λ = 0.7107 Å) Mo, Kα (λ = 0.7107 Å) Temperature (K) 150 150 Color, Habit Pink, Prism White, Prism Crystal System Monoclinic Triclinic Space Group P21/n P1 Crystal Dimension (mm) 0.23 x 0.34 x 0.26 0.14 x 0.14 x 0.26 a (Å) 10.321(2) 7.916(2) b (Å) 11.773(8) 9.193(2) c (Å) 19.820(10) 10.406(3) α (deg.) 90 71.6(2) β (deg.) 98.6(1) 77.2(2) 90 82.1(2) γ (deg.) Volume (Å3) 2395.5(6) 698.6(5) Z 4 2 Density (calc’d) (g/cm3) 1.25 1.63 Octants Collected h, k, ±l h, ±k, ±l Max. h, k, l 12, 14, 23 9, 11, 12 2.0 – 25.1 2.1 – 26.0 0.517 0.715 Measured Reflections 4454 2739 Unique Reflections (Rint) 4216 (0.080) 2739 (0.000) Obs. Reflections [I>2σ(I)] 2737 2269 Parameters 300 195 Final R indices (Robs, Rall) 0.073, 0.138 0.038, 0.056 Goodness of Fit 1.025 1.025 Max./min. Transmission (Tmax, 0.498, 0.062 0.929, 0.712 0.826, -0.734 0.550, -0.946 θ Range (deg.) Abs. Coefficient (µ, mm-1) Tmin) Max./Min. Peak in Final Diffraction Map (ρmax, ρmin, eÅ-3) 135 Table A Crystallographic Data (cont.) Compound (Hpzt-Bu,CN)2CuCl2 (HpzMe2)2CuCl2113 Molecular Formula C16H22N6Cl2Cu C10H16N4Cl2Cu Formula Weight 432.8 326.7 Diffractometer Nonius CAD4 Nonius CAD4 Radiation Mo, Kα (λ = 0.7107 Å) Mo, Kα (λ = 0.7107 Å) Temperature (K) 150 298 Color, Habit Blue, Prism Blue, Prism Crystal System Triclinic Monoclinic Space Group P1 C2/c Crystal Dimension (mm) 0.15 x 0.22 x 0.20 0.65 x 0.45 x 0.25 a (Å) 10.086(3) 15.023(6) b (Å) 10.360(4) 8.270(7) c (Å) 10.729(4) 24.038(7) α (deg.) 73.9(3) 90 β (deg.) 68.2(3) 96.0(3) 71.2(3) 90 969.2(1) 2970.0(9) γ (deg.) Volume (Å3) Z 2 8 Density (calc’d) (g/cm3) 1.48 1.46 Octants Collected h, ±k, ±l h, k, ±l Max. h, k, l 12, 12, 13 20, 18, 30 2.1 – 26.0 1.7 – 25.0 1.414 1.815 Measured Reflections 3812 2697 Unique Reflections (Rint) 3812 (0.000) 2607 (0.076) Obs. Reflections [I>2σ(I)] 3108 1907 Parameters 227 154 θ Range (deg.) Abs. Coefficient (µ, mm-1) Final R indices (Robs, Rall) 0.030, 0.053 0.068, 0.104 Goodness of Fit 1.024 1.050 Max./min. Transmission (Tmax, 0.725, 0.277 0.626, 0.404 0.381, -0.316 0.910, -1.110 Tmin) Max./Min. Peak in Final Diffraction Map (ρmax, ρmin, eÅ-3) 136 Table A Crystallographic Data (cont.) Compound TpPhCo(HpzPh,4CN)(NO3) TpPhCu(HpzPh,4CN)(NO3) Molecular Formula C37H29N10O3BCo C37H29N10O3BCu Formula Weight 731.4 736.0 Diffractometer Nonius CAD4 Bruker Kappa APEX II CCD Radiation Mo, Kα (λ = 0.7107 Å) Mo, Kα (λ = 0.7107 Å) Temperature (K) 150 100 Color, Habit Yellow, Prism Blue, Prism Crystal System Monoclinic Monoclinic Space Group P21/n P21/n Crystal Dimension (mm) 0.27 x 0.22 x 0.15 0.26 x 0.13 x 0.10 a (Å) 15.716(8) 15.791(8) b (Å) 13.582(6) 13.509(7) c (Å) 15.902(9) 15.816(7) α (deg.) 90 90 β (deg.) 95.9(4) 96.1(3) 90 90 3376.9(2) 3354.9(3) Z 4 4 Density (calc’d) (g/cm3) 1.44 1.46 Octants Collected h, k, ±l ±h, ±k, ±l Max. h, k, l 19, 16, 19 21, 17, 21 1.7 – 26.0 2.6 – 28.3 0.563 0.706 Measured Reflections 6873 38704 Unique Reflections (Rint) 6635 (0.229) 8289 (0.050) Obs. Reflections [I>2σ(I)] 2437 6369 Parameters 469 469 γ (deg.) Volume (Å3) θ Range (deg.) Abs. Coefficient (µ, mm-1) Final R indices (Robs, Rall) 0.070, 0.324 0.037, 0.572 Goodness of Fit 0.945 1.024 Max./min. 0.770, 0.352 0.933, 0.840 0.459, -0.974 0.412, -0.444 Transmission (Tmax, Tmin) Max./Min. Peak in Final Diffraction Map (ρmax, ρmin, eÅ-3) 137 Table A Crystallographic Data (cont.) Compound (Hpzt-Bu,4CN)2-Rh2(CF3COO)4 (pzPh,4CN)2Ni(cyclam) Molecular Formula C24H22N6O8F12Rh2 C30H32N10Ni Formula Weight 956.3 591.4 Diffractometer Bruker Kappa APEX II CCD Bruker Pt135 PROTEUM CCD Radiation M0, Kα (λ = 0.7107 Å) Cu, Kα (λ = 1.5418 Å) Temperature (K) 100 100 Color, Habit Red, Prism Pink, Prism Crystal System Triclinic Orthorhombic Space Group P1 Pbca Crystal Dimension (mm) 0.17 x 0.15 x 0.13 0.28 x 0.05 x 0.04 a (Å) 7.596(10) 11.357(5) b (Å) 10.145(10) 12.253(5) c (Å) 11.548(10) 20.633(9) α (deg.) 109.7(10) 90 β (deg.) 106.2(10) 90 90.1(10) 90 γ (deg.) Volume (Å3) 800.0(2) 2871.2(2) Z 1 4 Density (calc’d) (g/cm3) 1.99 1.37 Octants Collected ±h, ±k, ±l ±h, ±k, ±l Max. h, k, l 11, 15, 17 13, 13, 23 2.8 – 32.5 2.1 – 31.8 1.158 1.283 Measured Reflections 16201 23217 Unique Reflections (Rint) 5672 (0.019) 2330 (0.025) Obs. Reflections [I>2σ(I)] 5418 2163 Parameters 249 187 Final R indices (Robs, Rall) 0.018, 0.019 0.033, 0.035 Goodness of Fit 1.044 1.082 Max./min. 0.869, 0.829 0.951, 0.715 0.603, -0.936 0.754, -0.362 θ Range (deg.) Abs. Coefficient (µ, mm-1) Transmission (Tmax, Tmin) Max./Min. Peak in Final Diffraction Map (ρmax, ρmin, eÅ-3) 138 R/ Table B.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for TlTpPh,4CN. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Tl 3333 6667 1858(1) 43(1) N(2) 4639(4) 6731(4) -677(5) 38(1) N(1) 4199(4) 6480(4) -2207(6) 39(1) C(2) 5368(5) 6021(5) -2201(7) 42(2) C(1) 4619(5) 6058(5) -3121(7) 44(2) C(3) 5360(5) 6458(5) -659(7) 38(1) C(5) 6017(5) 6659(5) 799(7) 41(2) B 3333 6667 -2777(13) 42(3) N(3) 6364(5) 5169(5) -3195(7) 59(2) C(4) 5930(6) 5559(6) -2755(8) 49(2) C(10) 6642(6) 6252(5) 980(8) 57(2) C(6) 6003(6) 7257(6) 2085(9) 56(2) C(9) 7261(7) 6462(7) 2335(9) 71(2) C(7) 6595(6) 7451(6) 3469(10) 68(2) C(8) 7219(7) 7051(6) 3605(10) 71(2) ___________________________________________________________________________ Table B.2 Anisotropic displacement parameters (Å2 x 103) for TlTpPh,4CN. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Tl 54(1) 54(1) 23(1) 0 0 27(1) N(2) 45(3) 49(3) 22(2) -3(2) -1(2) 24(3) N(1) 45(3) 45(3) 27(2) -3(2) 2(2) 22(3) C(2) 48(4) 47(4) 31(3) -4(3) 3(3) 24(3) C(1) 52(4) 50(4) 30(3) -7(3) 0(3) 26(3) C(3) 39(4) 41(4) 30(3) 4(3) 6(3) 16(3) C(5) 47(4) 39(4) 36(3) -2(3) -1(3) 21(3) B 51(5) 51(5) 24(6) 0 0 26(2) N(3) 67(4) 80(5) 44(3) -15(3) -8(3) 48(4) C(4) 53(4) 62(5) 36(3) -5(3) -5(3) 31(4) C(10) 80(5) 63(5) 41(4) -15(3) -12(4) 46(4) C(6) 62(5) 64(5) 52(4) -12(4) -16(4) 38(4) C(9) 97(6) 87(6) 53(4) -17(4) -24(4) 65(5) C(7) 86(6) 76(5) 53(4) -28(4) -21(4) 49(5) C(8) 87(6) 81(6) 55(5) -14(4) -25(4) 48(5) ___________________________________________________________________________ Table B.3 Bond lengths [Å] for TlTpPh,4CN. __________________________________ Tl-N(2)#1 2.804(5) Tl-N(2) 2.804(5) Tl-N(2)#2 2.806(5) N(2)-C(3) 1.341(8) N(2)-N(1) 1.361(6) N(1)-C(1) 1.323(7) N(1)-B 1.536(6) C(2)-C(1) 1.374(9) C(2)-C(3) 1.409(8) 139 C(2)-C(4) 1.412(10) C(3)-C(5) 1.468(8) C(5)-C(10) 1.365(9) C(5)-C(6) 1.380(9) B-N(1)#1 1.536(6) B-N(1)#2 1.538(6) N(3)-C(4) 1.132(8) C(10)-C(9) 1.367(10) C(6)-C(7) 1.366(9) C(9)-C(8) 1.377(10) C(7)-C(8) 1.351(11) __________________________________ Table B.4 Bond angles [°] for TlTpPh,4CN. __________________________________ N(2)#1-Tl-N(2) 72.77(15) N(2)#1-Tl-N(2)#2 72.86(15) N(2)-Tl-N(2)#2 72.87(15) C(3)-N(2)-N(1) 106.4(5) C(3)-N(2)-Tl 130.1(4) N(1)-N(2)-Tl 114.4(3) C(1)-N(1)-N(2) 110.7(5) C(1)-N(1)-B 125.2(6) N(2)-N(1)-B 124.1(5) C(1)-C(2)-C(3) 105.0(6) C(1)-C(2)-C(4) 123.9(6) C(3)-C(2)-C(4) 131.0(6) N(1)-C(1)-C(2) 108.6(5) N(2)-C(3)-C(2) 109.3(5) N(2)-C(3)-C(5) 120.8(5) C(2)-C(3)-C(5) 129.8(6) C(10)-C(5)-C(6) 116.9(6) C(10)-C(5)-C(3) 122.6(6) C(6)-C(5)-C(3) 120.5(6) N(1)-B-N(1)#1 111.4(4) N(1)-B-N(1)#2 111.5(4) N(1)#1-B-N(1)#2 111.5(4) N(3)-C(4)-C(2) 178.6(8) C(5)-C(10)-C(9) 121.7(7) C(7)-C(6)-C(5) 122.1(7) C(10)-C(9)-C(8) 119.8(7) C(8)-C(7)-C(6) 119.7(7) C(7)-C(8)-C(9) 119.6(7) _________________________________ Symmetry transformations used to generate equivalent atoms: #1 -y+1,x-y+1,z #2 -x+y,-x+1,z 140 Table C.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for Hpzt-Bu,4CN. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ N(1) 6309(2) 0 902(2) 25(1) N(2) 6293(2) 0 -274(2) 27(1) N(3) 10563(2) 0 1800(3) 41(1) C(3) 7440(2) 0 1709(2) 23(1) C(5) 7696(2) 0 3069(2) 27(1) C(1) 7448(2) 0 -209(3) 25(1) C(4) 9517(2) 0 1437(3) 29(1) C(2) 8213(2) 0 1000(2) 24(1) C(6) 6500(3) 0 3365(3) 37(1) C(7) 8425(2) 1878(4) 3607(2) 45(1) ___________________________________________________________________________ Table C.2 Anisotropic displacement parameters (Å2 x 103) for Hpzt-Bu,4CN. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ N(1) 21(1) 28(1) 24(1) 0 6(1) 0 N(2) 22(1) 31(1) 26(1) 0 5(1) 0 N(3) 22(1) 55(2) 46(2) 0 11(1) 0 C(3) 19(1) 19(1) 29(1) 0 6(1) 0 C(5) 24(1) 29(2) 25(1) 0 6(1) 0 C(1) 26(1) 24(1) 28(1) 0 11(1) 0 C(4) 24(1) 29(2) 34(2) 0 10(1) 0 C(2) 21(1) 20(1) 32(2) 0 9(1) 0 C(6) 33(2) 50(2) 31(2) 0 14(1) 0 C(7) 49(1) 47(2) 37(1) -13(1) 13(1) -16(1) ___________________________________________________________________________ Table C.3 Bond lengths [Å] for Hpzt-Bu,4CN. _________________________________ N(1)-C(3) 1.338(3) N(1)-N(2) 1.358(3) N(2)-C(1) 1.311(3) N(3)-C(4) 1.143(4) C(3)-C(2) 1.396(4) C(3)-C(5) 1.508(4) C(5)-C(6) 1.527(4) C(5)-C(7) 1.529(3) C(5)-C(7)#1 1.529(3) C(1)-C(2) 1.395(4) C(4)-C(2) 1.426(4) _________________________________ Table C.4 Bond angles [°] for Hpzt-Bu,4CN. _________________________________ C(3)-N(1)-N(2) 113.3(2) C(1)-N(2)-N(1) 105.0(2) N(1)-C(3)-C(2) 104.7(2) 141 N(1)-C(3)-C(5) 123.3(2) C(2)-C(3)-C(5) 132.0(2) C(3)-C(5)-C(6) 110.4(2) C(3)-C(5)-C(7) 108.79(16) C(6)-C(5)-C(7) 109.16(16) C(3)-C(5)-C(7)#1 108.79(16) C(6)-C(5)-C(7)#1 109.16(16) C(7)-C(5)-C(7)#1 110.6(3) N(2)-C(1)-C(2) 111.1(2) N(3)-C(4)-C(2) 179.3(3) C(1)-C(2)-C(3) 105.8(2) C(1)-C(2)-C(4) 127.7(2) C(3)-C(2)-C(4) 126.5(3) __________________________________ Symmetry transformations used to generate equivalent atoms: #1 x,-y,z 142 Table D.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for TlTpt-Bu,4CN. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Tl 0 0 1497 28(1) N(2) -1325(3) -660(3) 3830(5) 25(1) C(1) -1717(3) -859(3) 6478(6) 29(1) N(1) -1013(3) -504(3) 5424(5) 25(1) C(2) -2507(3) -1252(3) 5590(7) 30(1) C(3) -2239(4) -1117(3) 3915(7) 27(1) C(5) -2868(5) -1430(6) 2465(9) 36(2) B 0 0 5964(11) 22(2) C(8) -2321(4) -1158(5) 835(7) 45(1) C(7) -3465(5) -993(7) 2479(10) 66(2) C(6) -3466(6) -2478(5) 2472(10) 71(2) C(4) -3415(4) -1709(4) 6270(8) 41(1) N(3) -4136(5) -2060(6) 6826(12) 63(2) ___________________________________________________________________________ Table D.2 Anisotropic displacement parameters (Å2 x 103) for TlTpt-Bu,4CN. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Tl 35(1) 35(1) 15(1) 0 0 18(1) N(2) 28(2) 30(2) 17(2) -1(2) -3(1) 14(2) C(1) 34(3) 31(2) 22(2) 1(2) 6(2) 17(2) N(1) 30(2) 29(2) 17(2) -2(1) -1(1) 15(2) C(2) 28(2) 30(2) 32(3) 5(2) 7(2) 15(2) C(3) 28(3) 23(2) 29(3) -1(2) 1(2) 12(2) C(5) 25(3) 47(4) 32(3) 0(3) -1(3) 15(3) B 27(3) 27(3) 12(4) 0 0 13(1) C(8) 38(3) 66(4) 24(3) -3(3) -5(2) 21(3) C(7) 58(4) 110(6) 56(4) -10(4) -16(3) 61(5) C(6) 65(5) 50(4) 55(5) -5(3) -10(4) -2(3) C(4) 39(3) 42(3) 40(3) 3(3) 9(3) 18(3) N(3) 37(4) 58(4) 86(7) 12(4) 22(4) 19(4) ___________________________________________________________________________ Table D.3 Bond lengths [Å] for TlTpt-Bu,4CN. __________________________________ Tl-N(2)#1 2.714(4) Tl-N(2)#2 2.714(4) Tl-N(2) 2.714(4) N(2)-C(3) 1.337(7) N(2)-N(1) 1.378(5) C(1)-N(1) 1.340(6) C(1)-C(2) 1.362(7) N(1)-B 1.544(5) C(2)-C(3) 1.421(7) C(2)-C(4) 1.438(8) C(3)-C(5) 1.498(8) C(5)-C(7) 1.515(10) C(5)-C(6) 1.536(11) 143 C(5)-C(8) 1.551(10) B-N(1)#2 1.544(5) B-N(1)#1 1.544(5) C(4)-N(3) 1.146(9) ____________________________________ Table D.4 Bond angles [°] for TlTpt-Bu,4CN. ________________________________________________________ N(2)#1-Tl-N(2)#2 76.27(12) N(2)#1-Tl-N(2) 76.27(12) N(2)#2-Tl-N(2) 76.27(12) C(3)-N(2)-N(1) 106.3(4) C(3)-N(2)-Tl 138.5(3) N(1)-N(2)-Tl 115.2(3) N(1)-C(1)-C(2) 108.0(4) C(1)-N(1)-N(2) 110.6(4) C(1)-N(1)-B 123.5(5) N(2)-N(1)-B 125.9(5) C(1)-C(2)-C(3) 106.2(4) C(1)-C(2)-C(4) 125.2(5) C(3)-C(2)-C(4) 128.7(5) N(2)-C(3)-C(2) 108.9(5) N(2)-C(3)-C(5) 124.8(5) C(2)-C(3)-C(5) 126.2(5) C(3)-C(5)-C(7) 110.4(6) C(3)-C(5)-C(6) 110.1(6) C(7)-C(5)-C(6) 110.2(7) C(3)-C(5)-C(8) 111.2(5) C(7)-C(5)-C(8) 107.7(6) C(6)-C(5)-C(8) 107.1(6) N(1)#2-B-N(1) 112.2(3) N(1)#2-B-N(1)#1 112.2(3) N(1)-B-N(1)#1 112.2(3) N(3)-C(4)-C(2) 178.9(8) ________________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x+y,-x,z #2 -y,x-y,z 144 Table E.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for (TpPh,4CN)*2Co. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Co(1) 5043(1) 4502(1) 2522(1) 39(1) B(1) 5971(4) 5548(2) 3384(2) 45(1) N(1A) 6158(3) 5465(2) 2492(1) 42(1) C(1A) 7333(3) 6278(2) 2906(2) 46(1) C(2A) 7472(4) 6344(2) 2431(2) 46(1) C(3A) 8277(4) 6825(2) 2242(2) 54(1) N(3A) 8942(4) 7211(2) 2100(2) 70(1) C(4A) 6712(3) 5820(2) 2172(2) 43(1) C(5A) 6486(4) 5709(2) 1656(2) 50(1) C(6A) 6114(5) 6266(3) 1353(2) 64(1) C(7A) 5867(6) 6178(3) 862(3) 86(2) C(8A) 5992(6) 5549(3) 656(2) 82(2) C(9A) 6365(5) 4991(3) 948(2) 69(2) C(10A) 6614(4) 5074(2) 1443(2) 54(1) N(2A) 6531(3) 5759(2) 2939(1) 42(1) N(1B) 3830(3) 5234(2) 2851(1) 41(1) C(1B) 3692(4) 5975(2) 3440(2) 43(1) C(2B) 2486(3) 5913(2) 3173(2) 43(1) C(3B) 1336(4) 6239(2) 3272(2) 49(1) N(3B) 430(3) 6495(2) 3362(2) 58(1) C(4B) 2603(3) 5447(2) 2798(2) 42(1) C(5B) 1621(3) 5251(2) 2386(2) 43(1) C(6B) 878(4) 5760(2) 2120(2) 48(1) C(7B) 14(4) 5599(2) 1712(2) 57(1) C(8B) -131(4) 4923(2) 1555(2) 57(1) C(9B) 577(4) 4417(2) 1822(2) 54(1) C(10B) 1430(4) 4576(2) 2235(2) 46(1) N(2B) 4489(3) 5566(2) 3250(1) 43(1) N(1C) 6060(3) 4306(2) 3197(1) 43(1) C(1C) 6560(4) 3729(2) 3400(2) 45(1) C(2C) 7262(4) 3861(2) 3850(2) 46(1) C(3C) 8035(5) 3394(2) 4162(2) 61(1) N(3C) 8677(5) 3027(2) 4406(2) 89(2) C(4C) 7168(4) 4566(2) 3924(2) 47(1) C(5C) 7770(4) 4974(2) 4343(2) 54(1) C(6C) 7650(5) 4764(3) 4804(2) 72(2) C(7C) 8239(6) 5130(4) 5210(2) 85(2) C(8C) 8935(6) 5710(3) 5144(3) 84(2) C(9C) 9087(5) 5912(3) 4691(3) 78(2) C(10C) 8513(4) 5553(2) 4287(2) 63(1) N(2C) 6431(3) 4814(2) 3526(1) 42(1) B(2) 4107(4) 3470(2) 1657(2) 47(1) N(1E) 6256(3) 3769(2) 2188(1) 41(1) C(1E) 6389(4) 3020(2) 1606(2) 50(1) C(2E) 7600(4) 3092(2) 1867(2) 45(1) C(3E) 8740(4) 2767(2) 1767(2) 51(1) N(3E) 9642(3) 2507(2) 1679(2) 66(1) C(4E) 7482(3) 3562(2) 2237(2) 40(1) C(5E) 8481(3) 3776(2) 2639(2) 41(1) C(6E) 9248(4) 3275(2) 2908(2) 47(1) C(7E) 10158(4) 3456(2) 3298(2) 56(1) C(8E) 10331(4) 4138(2) 3433(2) 53(1) 145 C(9E) 9600(4) 4630(2) 3171(2) 48(1) C(10E) 8694(4) 4457(2) 2775(2) 43(1) N(2E) 5591(3) 3431(2) 1798(1) 44(1) N(1D) 3920(3) 3545(2) 2558(2) 43(1) C(1D) 2698(3) 2761(2) 2125(2) 48(1) C(2D) 2550(4) 2678(2) 2594(2) 47(1) C(3D) 1708(4) 2196(2) 2760(2) 55(1) N(3D) 1018(4) 1810(2) 2880(2) 68(1) C(4D) 3348(4) 3180(2) 2866(2) 48(1) C(5D) 3561(4) 3276(2) 3388(2) 50(1) C(6D) 3708(5) 2700(2) 3692(2) 67(2) C(7D) 3898(6) 2776(3) 4182(3) 84(2) C(8D) 3989(6) 3411(3) 4392(2) 82(2) C(9D) 3850(4) 3986(3) 4097(2) 64(1) C(10D) 3624(4) 3920(2) 3609(2) 52(1) N(2D) 3527(3) 3279(2) 2105(2) 44(1) N(1F) 4056(3) 4709(2) 1849(1) 44(1) C(1F) 3628(4) 5295(2) 1646(2) 45(1) C(2F) 3034(4) 5184(2) 1180(2) 53(1) C(3F) 2495(6) 5689(3) 838(2) 77(2) N(3F) 2085(6) 6101(3) 563(2) 117(2) C(4F) 3127(4) 4480(2) 1097(2) 50(1) C(5F) 2653(5) 4089(3) 659(2) 71(2) C(6F) 1466(7) 4189(4) 418(3) 110(2) C(7F) 1000(9) 3791(5) -13(3) 135(3) C(8F) 1740(12) 3308(6) -166(4) 151(4) C(9F) 2960(12) 3206(4) 82(3) 137(3) C(10F) 3453(7) 3593(3) 488(3) 97(2) N(2F) 3739(3) 4211(2) 1504(1) 42(1) ___________________________________________________________________________ Table E.2 Anisotropic displacement parameters (Å2 x 103) for (TpPh,4CN)*2Co. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Co(1) 19(1) 21(1) 80(1) -2(1) 12(1) -1(1) B(1) 23(2) 31(2) 81(4) -2(2) 6(3) 3(2) N(1A) 24(2) 24(2) 81(3) 4(2) 14(2) 2(1) C(1A) 16(2) 25(2) 96(4) -4(2) 5(2) 1(2) C(2A) 23(2) 22(2) 94(4) 1(2) 11(2) 0(2) C(3A) 27(2) 30(2) 104(4) 5(2) 13(2) 6(2) N(3A) 40(2) 33(2) 142(4) 11(2) 31(2) -1(2) C(4A) 18(2) 32(2) 80(4) 2(2) 10(2) 9(2) C(5A) 32(2) 32(2) 89(4) 3(2) 20(2) -2(2) C(6A) 55(3) 51(3) 87(4) 6(3) 16(3) 6(2) C(7A) 98(5) 62(4) 99(5) 14(3) 19(4) 14(3) C(8A) 87(4) 81(4) 80(4) 8(3) 20(4) -10(3) C(9A) 56(3) 58(3) 96(5) -4(3) 25(3) -12(3) C(10A) 36(2) 46(3) 82(4) 4(2) 20(3) -8(2) N(2A) 23(2) 22(2) 81(3) -7(2) 8(2) 0(1) N(1B) 22(2) 26(2) 76(3) -1(2) 9(2) 1(1) C(1B) 32(2) 28(2) 70(3) -5(2) 14(2) 4(2) C(2B) 23(2) 21(2) 85(3) -2(2) 14(2) 2(2) C(3B) 29(2) 28(2) 92(4) 0(2) 16(2) -2(2) N(3B) 31(2) 37(2) 112(3) -11(2) 23(2) 3(2) C(4B) 20(2) 21(2) 85(3) 4(2) 11(2) -1(2) 146 C(5B) 19(2) C(6B) 20(2) C(7B) 28(2) C(8B) 25(2) C(9B) 26(2) C(10B) 19(2) N(2B) 24(2) N(1C) 24(2) C(1C) 23(2) C(2C) 33(2) C(3C) 57(3) N(3C) 95(4) C(4C) 22(2) C(5C) 35(2) C(6C) 49(3) C(7C) 64(4) C(8C) 63(4) C(9C) 58(3) C(10C) 42(3) N(2C) 19(2) B(2) 27(2) N(1E) 24(2) C(1E) 33(2) C(2E) 20(2) C(3E) 28(2) N(3E) 33(2) C(4E) 21(2) C(5E) 18(2) C(6E) 22(2) C(7E) 28(2) C(8E) 26(2) C(9E) 23(2) C(10E) 20(2) N(2E) 24(2) N(1D) 22(2) C(1D) 18(2) C(2D) 24(2) C(3D) 27(2) N(3D) 41(2) C(4D) 24(2) C(5D) 22(2) C(6D) 57(3) C(7D) 92(5) C(8D) 76(4) C(9D) 42(3) C(10D) 30(2) N(2D) 20(2) N(1F) 27(2) C(1F) 26(2) C(2F) 37(2) C(3F) 69(4) N(3F) 121(5) C(4F) 28(2) C(5F) 57(3) C(6F) 91(5) C(7F) 93(6) C(8F) 140(9) C(9F) 202(11) 29(2) 33(2) 47(3) 55(3) 37(2) 35(2) 27(2) 25(2) 26(2) 35(2) 40(3) 58(3) 40(2) 52(3) 71(3) 104(5) 89(4) 68(4) 55(3) 30(2) 30(2) 22(2) 27(2) 27(2) 27(2) 40(2) 23(2) 30(2) 35(2) 52(3) 58(3) 40(2) 31(2) 26(2) 27(2) 23(2) 24(2) 27(2) 32(2) 24(2) 42(3) 44(3) 63(4) 83(4) 59(3) 45(3) 25(2) 23(2) 30(2) 40(3) 59(3) 79(4) 49(3) 63(3) 113(6) 165(9) 175(10) 105(6) 82(3) 92(4) 96(4) 91(4) 100(4) 84(4) 79(3) 80(3) 86(4) 70(3) 85(4) 105(4) 79(3) 74(4) 93(5) 82(4) 97(5) 105(5) 89(4) 74(3) 84(4) 78(3) 92(4) 89(4) 102(4) 128(4) 77(3) 77(3) 86(4) 89(4) 75(3) 83(4) 79(3) 82(3) 82(3) 103(4) 97(4) 113(4) 135(4) 101(4) 89(4) 101(5) 93(5) 89(4) 93(5) 85(4) 87(3) 86(3) 81(4) 82(4) 97(5) 132(5) 73(4) 92(4) 116(6) 133(8) 127(8) 117(7) 1(2) -3(2) 2(3) -10(3) -9(2) -1(2) -8(2) -4(2) 4(2) 5(2) 5(3) 16(3) -2(2) -2(2) -12(3) -14(4) -31(4) -20(4) -11(3) -7(2) -8(2) -4(2) -11(2) -6(2) -8(2) -18(2) 2(2) 1(2) 3(2) 15(3) -1(2) -6(2) 3(2) -8(2) -2(2) -4(2) 8(2) 8(2) 15(2) 7(2) 8(2) 13(3) 22(3) 11(4) -3(3) 6(2) -1(2) -4(2) -3(2) 3(2) 6(3) 29(4) -12(2) -2(3) -27(5) -18(7) -61(7) -42(5) 147 13(2) 10(2) 7(3) 9(2) 18(3) 11(2) 9(2) 16(2) 16(2) 11(2) 8(3) -6(3) 10(2) 6(2) 11(3) 2(3) 3(4) 7(4) 5(3) 3(2) 11(3) 10(2) 19(2) 16(2) 18(2) 28(2) 14(2) 15(2) 12(2) 15(3) 10(2) 14(2) 13(2) 14(2) 14(2) 12(2) 17(2) 18(3) 28(2) 21(2) 16(2) 12(3) 7(4) 17(3) 19(3) 19(2) 12(2) 15(2) 10(2) 8(3) -7(3) -32(4) 5(2) 9(3) -10(5) -21(6) -3(7) 62(7) 2(2) 2(2) 7(2) -1(2) 0(2) 0(2) 2(1) -1(1) 4(2) 2(2) 5(2) 17(3) 3(2) 8(2) 7(3) 14(4) 6(3) -1(3) 6(2) 2(1) -3(2) -4(1) -2(2) -2(2) -6(2) -2(2) 1(2) 1(2) 5(2) 13(2) 3(2) -2(2) 2(2) 0(1) 0(1) -1(2) 3(2) 5(2) 0(2) 7(2) 5(2) 9(2) 11(3) 5(3) 3(2) 3(2) 0(1) -3(1) 1(2) 4(2) 8(3) 14(3) -7(2) -6(3) -18(4) -26(6) -28(8) -43(7) C(10F) 109(5) 77(4) 114(6) -22(4) 46(4) -12(4) N(2F) 22(2) 36(2) 67(3) -6(2) 4(2) -2(1) ___________________________________________________________________________ Table E.3 Bond lengths [Å] for (TpPh,4CN)*2Co. __________________________________ Co(1)-N(1F) 2.029(4) Co(1)-N(1C) 2.042(4) Co(1)-N(1B) 2.222(3) Co(1)-N(1D) 2.227(3) Co(1)-N(1E) 2.229(3) Co(1)-N(1A) 2.229(3) B(1)-N(2A) 1.523(7) B(1)-N(2C) 1.546(6) B(1)-N(2B) 1.546(5) N(1A)-C(4A) 1.342(5) N(1A)-N(2A) 1.371(5) C(1A)-N(2A) 1.335(5) C(1A)-C(2A) 1.366(6) C(2A)-C(4A) 1.421(6) C(2A)-C(3A) 1.429(6) C(3A)-N(3A) 1.145(5) C(4A)-C(5A) 1.437(6) C(5A)-C(10A) 1.393(6) C(5A)-C(6A) 1.396(7) C(6A)-C(7A) 1.362(8) C(7A)-C(8A) 1.374(8) C(8A)-C(9A) 1.379(8) C(9A)-C(10A) 1.375(7) N(1B)-C(4B) 1.346(5) N(1B)-N(2B) 1.373(5) C(1B)-N(2B) 1.335(5) C(1B)-C(2B) 1.368(6) C(2B)-C(4B) 1.411(6) C(2B)-C(3B) 1.439(5) C(3B)-N(3B) 1.144(5) C(4B)-C(5B) 1.463(6) C(5B)-C(10B) 1.390(5) C(5B)-C(6B) 1.400(6) C(6B)-C(7B) 1.370(6) C(7B)-C(8B) 1.393(6) C(8B)-C(9B) 1.381(6) C(9B)-C(10B) 1.375(6) N(1C)-C(1C) 1.332(5) N(1C)-N(2C) 1.366(5) C(1C)-C(2C) 1.372(6) C(2C)-C(4C) 1.401(6) C(2C)-C(3C) 1.421(7) C(3C)-N(3C) 1.133(6) C(4C)-N(2C) 1.335(6) C(4C)-C(5C) 1.470(7) C(5C)-C(6C) 1.378(7) C(5C)-C(10C) 1.402(7) C(6C)-C(7C) 1.395(8) C(7C)-C(8C) 1.381(9) C(8C)-C(9C) 1.364(8) C(9C)-C(10C) 1.380(7) 148 B(2)-N(2D) 1.531(7) B(2)-N(2F) 1.542(6) B(2)-N(2E) 1.551(5) N(1E)-C(4E) 1.341(5) N(1E)-N(2E) 1.365(5) C(1E)-N(2E) 1.341(5) C(1E)-C(2E) 1.367(6) C(2E)-C(4E) 1.405(6) C(2E)-C(3E) 1.430(5) C(3E)-N(3E) 1.143(5) C(4E)-C(5E) 1.465(6) C(5E)-C(10E) 1.393(5) C(5E)-C(6E) 1.405(6) C(6E)-C(7E) 1.371(6) C(7E)-C(8E) 1.390(6) C(8E)-C(9E) 1.365(6) C(9E)-C(10E) 1.376(6) N(1D)-C(4D) 1.338(5) N(1D)-N(2D) 1.366(5) C(1D)-N(2D) 1.346(5) C(1D)-C(2D) 1.356(6) C(2D)-C(4D) 1.425(6) C(2D)-C(3D) 1.427(6) C(3D)-N(3D) 1.137(5) C(4D)-C(5D) 1.452(7) C(5D)-C(10D) 1.399(6) C(5D)-C(6D) 1.403(7) C(6D)-C(7D) 1.361(8) C(7D)-C(8D) 1.368(8) C(8D)-C(9D) 1.388(7) C(9D)-C(10D) 1.352(7) N(1F)-C(1F) 1.324(5) N(1F)-N(2F) 1.372(5) C(1F)-C(2F) 1.366(6) C(2F)-C(4F) 1.402(6) C(2F)-C(3F) 1.424(7) C(3F)-N(3F) 1.147(7) C(4F)-N(2F) 1.319(6) C(4F)-C(5F) 1.457(7) C(5F)-C(6F) 1.332(8) C(5F)-C(10F) 1.421(8) C(6F)-C(7F) 1.449(11) C(7F)-C(8F) 1.341(12) C(8F)-C(9F) 1.370(13) C(9F)-C(10F) 1.389(10) ___________________________________ Table E.4 Bond angles [°] for (TpPh,4CN)*2Co. __________________________________ N(1F)-Co(1)-N(1C) 178.99(12) N(1F)-Co(1)-N(1B) 90.80(13) N(1C)-Co(1)-N(1B) 89.26(13) N(1F)-Co(1)-N(1D) 90.96(13) N(1C)-Co(1)-N(1D) 90.02(13) N(1B)-Co(1)-N(1D) 100.01(11) N(1F)-Co(1)-N(1E) 89.00(13) N(1C)-Co(1)-N(1E) 90.94(13) 149 N(1B)-Co(1)-N(1E) N(1D)-Co(1)-N(1E) N(1F)-Co(1)-N(1A) N(1C)-Co(1)-N(1A) N(1B)-Co(1)-N(1A) N(1D)-Co(1)-N(1A) N(1E)-Co(1)-N(1A) N(2A)-B(1)-N(2C) N(2A)-B(1)-N(2B) N(2C)-B(1)-N(2B) C(4A)-N(1A)-N(2A) C(4A)-N(1A)-Co(1) N(2A)-N(1A)-Co(1) N(2A)-C(1A)-C(2A) C(1A)-C(2A)-C(4A) C(1A)-C(2A)-C(3A) C(4A)-C(2A)-C(3A) N(3A)-C(3A)-C(2A) N(1A)-C(4A)-C(2A) N(1A)-C(4A)-C(5A) C(2A)-C(4A)-C(5A) C(10A)-C(5A)-C(6A) C(10A)-C(5A)-C(4A) C(6A)-C(5A)-C(4A) C(7A)-C(6A)-C(5A) C(6A)-C(7A)-C(8A) C(7A)-C(8A)-C(9A) C(10A)-C(9A)-C(8A) C(9A)-C(10A)-C(5A) C(1A)-N(2A)-N(1A) C(1A)-N(2A)-B(1) N(1A)-N(2A)-B(1) C(4B)-N(1B)-N(2B) C(4B)-N(1B)-Co(1) N(2B)-N(1B)-Co(1) N(2B)-C(1B)-C(2B) C(1B)-C(2B)-C(4B) C(1B)-C(2B)-C(3B) C(4B)-C(2B)-C(3B) N(3B)-C(3B)-C(2B) N(1B)-C(4B)-C(2B) N(1B)-C(4B)-C(5B) C(2B)-C(4B)-C(5B) C(10B)-C(5B)-C(6B) C(10B)-C(5B)-C(4B) C(6B)-C(5B)-C(4B) C(7B)-C(6B)-C(5B) C(6B)-C(7B)-C(8B) C(9B)-C(8B)-C(7B) C(10B)-C(9B)-C(8B) C(9B)-C(10B)-C(5B) C(1B)-N(2B)-N(1B) C(1B)-N(2B)-B(1) N(1B)-N(2B)-B(1) C(1C)-N(1C)-N(2C) C(1C)-N(1C)-Co(1) N(2C)-N(1C)-Co(1) N(1C)-C(1C)-C(2C) 179.80(14) 80.01(11) 89.32(13) 89.70(13) 79.46(11) 179.40(14) 100.52(11) 108.2(3) 108.2(4) 110.1(3) 107.4(3) 139.0(3) 113.1(2) 108.2(4) 106.4(4) 126.3(4) 127.2(5) 178.4(6) 107.8(4) 124.9(4) 127.2(4) 118.3(5) 123.5(4) 118.2(4) 120.0(5) 121.3(6) 119.9(6) 119.3(5) 121.3(5) 110.1(4) 126.9(4) 122.7(3) 106.8(3) 140.0(3) 113.2(2) 108.7(4) 105.8(3) 126.4(4) 127.7(4) 178.4(6) 108.8(4) 123.1(4) 127.9(3) 118.4(4) 122.3(4) 119.2(4) 120.8(4) 120.2(4) 119.3(5) 120.6(4) 120.7(4) 110.0(3) 126.6(4) 122.6(3) 106.3(4) 131.3(3) 122.2(2) 110.2(4) 150 C(1C)-C(2C)-C(4C) C(1C)-C(2C)-C(3C) C(4C)-C(2C)-C(3C) N(3C)-C(3C)-C(2C) N(2C)-C(4C)-C(2C) N(2C)-C(4C)-C(5C) C(2C)-C(4C)-C(5C) C(6C)-C(5C)-C(10C) C(6C)-C(5C)-C(4C) C(10C)-C(5C)-C(4C) C(5C)-C(6C)-C(7C) C(8C)-C(7C)-C(6C) C(9C)-C(8C)-C(7C) C(8C)-C(9C)-C(10C) C(9C)-C(10C)-C(5C) C(4C)-N(2C)-N(1C) C(4C)-N(2C)-B(1) N(1C)-N(2C)-B(1) N(2D)-B(2)-N(2F) N(2D)-B(2)-N(2E) N(2F)-B(2)-N(2E) C(4E)-N(1E)-N(2E) C(4E)-N(1E)-Co(1) N(2E)-N(1E)-Co(1) N(2E)-C(1E)-C(2E) C(1E)-C(2E)-C(4E) C(1E)-C(2E)-C(3E) C(4E)-C(2E)-C(3E) N(3E)-C(3E)-C(2E) N(1E)-C(4E)-C(2E) N(1E)-C(4E)-C(5E) C(2E)-C(4E)-C(5E) C(10E)-C(5E)-C(6E) C(10E)-C(5E)-C(4E) C(6E)-C(5E)-C(4E) C(7E)-C(6E)-C(5E) C(6E)-C(7E)-C(8E) C(9E)-C(8E)-C(7E) C(8E)-C(9E)-C(10E) C(9E)-C(10E)-C(5E) C(1E)-N(2E)-N(1E) C(1E)-N(2E)-B(2) N(1E)-N(2E)-B(2) C(4D)-N(1D)-N(2D) C(4D)-N(1D)-Co(1) N(2D)-N(1D)-Co(1) N(2D)-C(1D)-C(2D) C(1D)-C(2D)-C(4D) C(1D)-C(2D)-C(3D) C(4D)-C(2D)-C(3D) N(3D)-C(3D)-C(2D) N(1D)-C(4D)-C(2D) N(1D)-C(4D)-C(5D) C(2D)-C(4D)-C(5D) C(10D)-C(5D)-C(6D) C(10D)-C(5D)-C(4D) C(6D)-C(5D)-C(4D) C(7D)-C(6D)-C(5D) 106.2(4) 127.4(4) 126.1(5) 178.3(6) 106.3(4) 125.4(4) 128.3(4) 119.2(5) 119.3(5) 121.5(5) 120.6(6) 119.2(6) 120.7(6) 120.6(6) 119.7(6) 111.0(3) 131.6(4) 117.4(4) 109.9(3) 107.9(4) 108.2(3) 106.9(3) 140.0(3) 113.1(2) 108.6(4) 105.6(3) 126.3(4) 128.1(4) 178.7(6) 109.2(4) 123.2(4) 127.5(3) 117.9(4) 123.0(4) 119.0(3) 120.5(4) 120.4(4) 119.6(5) 120.7(4) 120.9(4) 109.8(3) 127.2(4) 122.6(3) 107.0(3) 141.2(3) 111.0(2) 108.2(4) 106.2(4) 125.0(4) 128.8(5) 178.2(6) 108.4(4) 124.6(4) 127.0(4) 117.6(5) 123.2(4) 119.1(4) 120.2(5) 151 C(6D)-C(7D)-C(8D) 121.3(5) C(7D)-C(8D)-C(9D) 119.2(6) C(10D)-C(9D)-C(8D) 120.3(5) C(9D)-C(10D)-C(5D) 121.3(5) C(1D)-N(2D)-N(1D) 110.2(4) C(1D)-N(2D)-B(2) 124.8(4) N(1D)-N(2D)-B(2) 124.3(3) C(1F)-N(1F)-N(2F) 106.8(4) C(1F)-N(1F)-Co(1) 130.8(3) N(2F)-N(1F)-Co(1) 122.3(3) N(1F)-C(1F)-C(2F) 109.8(4) C(1F)-C(2F)-C(4F) 106.3(4) C(1F)-C(2F)-C(3F) 126.6(4) C(4F)-C(2F)-C(3F) 127.0(5) N(3F)-C(3F)-C(2F) 178.6(7) N(2F)-C(4F)-C(2F) 106.6(4) N(2F)-C(4F)-C(5F) 124.3(4) C(2F)-C(4F)-C(5F) 129.1(5) C(6F)-C(5F)-C(10F) 119.5(6) C(6F)-C(5F)-C(4F) 120.4(6) C(10F)-C(5F)-C(4F) 120.1(5) C(5F)-C(6F)-C(7F) 119.9(8) C(8F)-C(7F)-C(6F) 120.6(9) C(7F)-C(8F)-C(9F) 119.4(9) C(8F)-C(9F)-C(10F) 121.5(9) C(9F)-C(10F)-C(5F) 119.0(8) C(4F)-N(2F)-N(1F) 110.5(3) C(4F)-N(2F)-B(2) 132.6(4) N(1F)-N(2F)-B(2) 116.9(4) ________________________________ Symmetry transformations used to generate equivalent atoms: 152 Table F.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for (TpPh,4CN)*2Mn. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Mn(1) 5028(1) 4475(1) 2519(1) 36(1) B(1) 5945(7) 5512(3) 3404(3) 40(2) N(1A) 6168(4) 5478(2) 2521(2) 40(1) C(1A) 7318(5) 6276(3) 2949(3) 42(2) C(2A) 7473(6) 6363(3) 2485(3) 43(2) C(3A) 8290(6) 6853(3) 2315(3) 50(2) N(3A) 8944(5) 7241(3) 2173(3) 62(2) C(4A) 6731(5) 5853(3) 2220(3) 40(2) C(5A) 6507(6) 5760(3) 1711(3) 47(2) C(6A) 6142(8) 6315(4) 1409(3) 59(2) C(7A) 5887(10) 6244(5) 928(4) 82(3) C(8A) 6014(10) 5613(5) 723(3) 80(3) C(9A) 6391(8) 5057(4) 1009(4) 66(2) C(10A) 6625(6) 5132(4) 1493(3) 52(2) N(2A) 6521(4) 5744(3) 2971(2) 40(1) N(1B) 3789(4) 5215(2) 2881(2) 37(1) C(1B) 3671(6) 5936(3) 3480(3) 44(2) C(2B) 2448(6) 5877(3) 3211(3) 41(2) C(3B) 1310(6) 6200(3) 3318(3) 48(2) N(3B) 397(5) 6449(3) 3410(3) 59(2) C(4B) 2567(5) 5437(3) 2836(3) 41(2) C(5B) 1599(5) 5238(3) 2425(3) 42(2) C(6B) 838(6) 5747(3) 2175(3) 45(2) C(7B) -4(6) 5591(4) 1766(3) 53(2) C(8B) -108(6) 4925(4) 1598(3) 55(2) C(9B) 614(6) 4418(3) 1852(3) 49(2) C(10B) 1452(6) 4572(3) 2261(3) 44(2) N(2B) 4448(5) 5531(3) 3276(2) 41(1) N(1C) 6081(5) 4275(3) 3225(2) 41(1) C(1C) 6616(6) 3708(3) 3426(3) 41(2) C(2C) 7306(7) 3850(3) 3867(3) 47(2) C(3C) 8116(9) 3402(4) 4175(3) 63(2) N(3C) 8801(9) 3042(4) 4412(3) 87(3) C(4C) 7169(6) 4550(3) 3943(3) 42(2) C(5C) 7736(7) 4958(4) 4355(3) 55(2) C(6C) 7613(8) 4762(5) 4807(3) 70(2) C(7C) 8170(10) 5132(6) 5208(4) 85(3) C(8C) 8882(10) 5700(6) 5145(4) 87(3) C(9C) 9065(8) 5903(5) 4694(4) 78(3) C(10C) 8500(7) 5536(4) 4299(3) 62(2) N(2C) 6428(5) 4784(3) 3553(2) 41(1) B(2) 4126(6) 3443(4) 1636(3) 40(2) N(1E) 6281(4) 3732(2) 2161(2) 37(1) C(1E) 6401(6) 3011(3) 1572(3) 44(2) C(2E) 7618(6) 3064(3) 1836(3) 40(2) C(3E) 8759(6) 2753(3) 1724(3) 49(2) N(3E) 9674(5) 2493(3) 1636(3) 61(2) C(4E) 7503(5) 3529(3) 2203(2) 36(2) C(5E) 8483(5) 3727(3) 2603(2) 37(2) C(6E) 9258(6) 3235(3) 2859(3) 42(2) C(7E) 10142(6) 3411(4) 3250(3) 49(2) C(8E) 10270(6) 4086(4) 3405(3) 52(2) 153 C(9E) 9519(6) 4573(4) 3152(3) 45(2) C(10E) 8639(6) 4406(3) 2753(3) 39(2) N(2E) 5616(5) 3410(2) 1773(2) 39(1) N(1D) 3887(4) 3474(2) 2523(2) 37(1) C(1D) 2698(5) 2707(3) 2074(3) 39(2) C(2D) 2524(6) 2599(3) 2531(3) 40(2) C(3D) 1684(6) 2110(3) 2690(3) 47(2) N(3D) 988(5) 1719(3) 2806(3) 55(2) C(4D) 3312(6) 3091(3) 2821(3) 38(2) C(5D) 3500(6) 3168(3) 3335(3) 45(2) C(6D) 3618(8) 2587(4) 3624(3) 64(2) C(7D) 3786(10) 2652(5) 4117(4) 86(3) C(8D) 3871(10) 3287(5) 4331(4) 79(3) C(9D) 3753(7) 3859(4) 4043(3) 61(2) C(10D) 3555(6) 3805(3) 3560(3) 47(2) N(2D) 3525(4) 3229(2) 2070(2) 39(1) N(1F) 4006(5) 4682(3) 1818(2) 41(1) C(1F) 3554(6) 5257(3) 1606(3) 46(2) C(2F) 2980(7) 5130(4) 1147(3) 56(2) C(3F) 2441(10) 5613(5) 794(4) 80(3) N(3F) 2021(11) 6010(5) 522(4) 121(4) C(4F) 3118(7) 4433(4) 1075(3) 53(2) C(5F) 2697(9) 4029(4) 649(3) 69(2) C(6F) 1513(13) 4105(6) 400(5) 119(5) C(7F) 1117(15) 3679(8) -16(5) 140(6) C(8F) 1906(17) 3224(8) -158(5) 128(5) C(9F) 3162(15) 3160(7) 90(4) 115(4) C(10F) 3568(11) 3566(5) 479(4) 88(3) N(2F) 3728(5) 4178(3) 1487(2) 39(1) ___________________________________________________________________________ Table F.2 Anisotropic displacement parameters (Å2 x 103) for (TpPh,4CN)*2Mn. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Mn(1) 18(1) 19(1) 74(1) -3(1) 12(1) -1(1) B(1) 24(4) 17(4) 77(6) -5(4) 3(4) 5(3) N(1A) 22(3) 16(3) 82(4) 3(3) 13(3) 1(2) C(1A) 15(3) 23(3) 86(6) -11(3) 6(3) 0(2) C(2A) 18(3) 23(3) 90(6) 4(3) 8(3) 4(2) C(3A) 26(3) 21(3) 105(6) 4(4) 14(4) 3(3) N(3A) 32(3) 26(3) 132(6) 7(3) 22(4) 0(3) C(4A) 14(3) 31(4) 76(5) 4(3) 9(3) 7(3) C(5A) 26(3) 24(4) 95(6) 4(4) 20(3) 2(3) C(6A) 63(5) 43(5) 76(6) 8(4) 23(4) 10(4) C(7A) 109(8) 47(5) 90(8) 12(5) 19(6) 17(5) C(8A) 100(7) 78(7) 64(6) 5(5) 23(5) -6(6) C(9A) 58(5) 48(5) 96(7) 4(5) 24(5) -6(4) C(10A) 34(4) 48(5) 77(6) 5(4) 17(4) -12(3) N(2A) 17(2) 23(3) 80(4) -3(3) 11(3) 1(2) N(1B) 15(2) 23(3) 73(4) -3(3) 10(2) 3(2) C(1B) 31(3) 27(3) 75(5) -8(3) 13(3) 2(3) C(2B) 22(3) 26(3) 79(5) -1(3) 18(3) 2(2) C(3B) 31(4) 25(3) 90(6) -10(3) 15(4) -3(3) N(3B) 31(3) 33(3) 117(6) -13(3) 23(3) 0(3) 154 C(4B) 21(3) C(5B) 21(3) C(6B) 21(3) C(7B) 31(4) C(8B) 26(3) C(9B) 26(3) C(10B) 23(3) N(2B) 26(3) N(1C) 24(3) C(1C) 31(3) C(2C) 41(4) C(3C) 71(5) N(3C) 109(6) C(4C) 35(4) C(5C) 47(4) C(6C) 64(5) C(7C) 88(7) C(8C) 82(7) C(9C) 57(5) C(10C) 44(4) N(2C) 24(3) B(2) 20(3) N(1E) 22(3) C(1E) 32(3) C(2E) 25(3) C(3E) 27(4) N(3E) 30(3) C(4E) 24(3) C(5E) 20(3) C(6E) 30(3) C(7E) 30(3) C(8E) 25(3) C(9E) 27(3) C(10E) 23(3) N(2E) 24(3) N(1D) 20(2) C(1D) 21(3) C(2D) 24(3) C(3D) 29(3) N(3D) 38(3) C(4D) 25(3) C(5D) 24(3) C(6D) 60(5) C(7D) 102(8) C(8D) 94(7) C(9D) 52(5) C(10D) 31(3) N(2D) 17(2) N(1F) 28(3) C(1F) 33(3) C(2F) 45(4) C(3F) 94(7) N(3F) 143(9) C(4F) 44(4) C(5F) 73(6) C(6F) 109(9) C(7F) 120(11) C(8F) 152(14) 17(3) 23(3) 31(4) 37(4) 50(5) 31(4) 30(4) 25(3) 27(3) 22(3) 35(4) 44(5) 51(5) 34(4) 54(5) 64(6) 91(8) 86(8) 58(6) 53(5) 28(3) 33(4) 20(3) 26(3) 22(3) 31(4) 43(4) 17(3) 32(4) 25(3) 51(5) 59(5) 37(4) 25(3) 22(3) 24(3) 11(3) 17(3) 24(4) 27(3) 14(3) 42(4) 43(5) 64(6) 71(7) 54(5) 32(4) 24(3) 21(3) 22(4) 31(4) 51(5) 70(6) 39(4) 53(5) 89(8) 151(14) 113(11) 87(5) 84(5) 84(5) 92(6) 88(6) 93(6) 82(5) 71(4) 73(4) 72(5) 65(5) 73(6) 92(6) 59(5) 63(5) 82(7) 77(7) 88(8) 112(9) 86(6) 73(4) 65(5) 69(4) 76(5) 75(5) 91(6) 115(6) 68(5) 61(4) 72(5) 68(5) 73(5) 74(5) 71(5) 73(4) 67(4) 86(6) 81(5) 89(6) 106(5) 77(5) 69(5) 85(7) 86(8) 71(6) 81(7) 79(6) 75(4) 76(4) 83(6) 90(6) 87(7) 127(8) 75(6) 78(6) 142(11) 129(12) 113(11) 0(3) -4(3) -6(3) -1(4) -7(4) -13(4) -3(3) -5(3) -3(3) 1(3) 3(3) 5(4) 13(4) -3(3) -4(4) -12(5) -22(6) -26(6) -24(6) -16(4) -9(3) 4(4) -4(2) -10(3) -7(3) -8(4) -15(4) 1(3) 1(3) 2(3) 5(4) -4(4) -8(3) 1(3) -4(3) -1(3) 7(3) 6(3) 1(3) 9(3) 3(3) 5(4) 8(4) 19(5) 5(5) -9(4) 1(4) 3(3) -5(3) -2(3) 3(4) 4(5) 21(6) -2(4) 6(5) -32(8) -39(10) -42(9) 155 13(3) 15(3) 12(3) 9(4) 8(3) 15(4) 18(3) 9(3) 10(3) 15(3) 9(4) 8(4) -10(5) 10(3) 8(4) 13(5) 14(6) 1(6) -6(5) 1(4) 12(3) 8(3) 10(2) 15(3) 14(3) 20(4) 24(3) 13(3) 14(3) 14(3) 10(3) 11(3) 18(3) 15(3) 13(3) 8(2) 11(3) 13(3) 13(3) 26(3) 12(3) 12(3) 1(4) -1(6) 8(5) 18(4) 14(3) 9(2) 11(3) 11(4) 5(4) -8(6) -46(7) 11(4) 9(5) -32(8) -44(9) 0(10) -7(2) 0(2) 4(3) 6(3) -2(3) -1(3) 1(3) 0(2) -1(2) 4(3) 8(3) 3(4) 19(5) 6(3) 14(4) 11(4) 18(6) 19(6) 7(4) 4(4) -2(2) -2(3) -4(2) -2(3) -1(2) -1(3) 1(3) 3(2) 1(2) 2(3) 11(3) 2(3) -5(3) -2(2) 3(2) 4(2) -1(2) 0(2) 6(3) -5(3) 2(2) 1(3) 6(4) 6(5) 2(5) 0(4) -1(3) 2(2) 0(2) 3(3) 7(3) 13(5) 14(6) 1(3) 7(4) 3(7) 14(10) 9(10) C(9F) 141(12) 110(10) 95(9) -19(8) 20(8) -5(9) C(10F) 100(8) 71(7) 97(8) -19(6) 29(6) -5(6) N(2F) 25(3) 27(3) 66(4) 0(3) 10(3) 2(2) ___________________________________________________________________________ Table F.3 Bond lengths [Å] for (TpPh,4CN)*2Mn. __________________________________ Mn(1)-N(1F) 2.138(6) Mn(1)-N(1C) 2.161(6) Mn(1)-N(1B) 2.306(5) Mn(1)-N(1E) 2.311(5) Mn(1)-N(1D) 2.310(5) Mn(1)-N(1A) 2.311(5) B(1)-N(2A) 1.525(10) B(1)-N(2C) 1.555(8) B(1)-N(2B) 1.562(8) N(1A)-C(4A) 1.336(8) N(1A)-N(2A) 1.372(8) C(1A)-N(2A) 1.350(8) C(1A)-C(2A) 1.361(10) C(2A)-C(4A) 1.411(9) C(2A)-C(3A) 1.429(9) C(3A)-N(3A) 1.145(9) C(4A)-C(5A) 1.434(10) C(5A)-C(6A) 1.401(10) C(5A)-C(10A) 1.397(10) C(6A)-C(7A) 1.351(12) C(7A)-C(8A) 1.386(13) C(8A)-C(9A) 1.381(12) C(9A)-C(10A) 1.360(11) N(1B)-C(4B) 1.348(7) N(1B)-N(2B) 1.368(7) C(1B)-N(2B) 1.340(8) C(1B)-C(2B) 1.392(9) C(2B)-C(4B) 1.392(10) C(2B)-C(3B) 1.434(9) C(3B)-N(3B) 1.147(8) C(4B)-C(5B) 1.472(9) C(5B)-C(10B) 1.392(9) C(5B)-C(6B) 1.402(9) C(6B)-C(7B) 1.374(10) C(7B)-C(8B) 1.393(10) C(8B)-C(9B) 1.384(10) C(9B)-C(10B) 1.372(10) N(1C)-C(1C) 1.336(8) N(1C)-N(2C) 1.374(7) C(1C)-C(2C) 1.368(10) C(2C)-C(4C) 1.406(9) C(2C)-C(3C) 1.422(11) C(3C)-N(3C) 1.148(10) C(4C)-N(2C) 1.328(9) C(4C)-C(5C) 1.462(10) C(5C)-C(6C) 1.361(12) C(5C)-C(10C) 1.418(11) C(6C)-C(7C) 1.397(13) C(7C)-C(8C) 1.373(15) C(8C)-C(9C) 1.382(14) 156 C(9C)-C(10C) 1.385(12) B(2)-N(2D) 1.530(10) B(2)-N(2F) 1.546(9) B(2)-N(2E) 1.558(8) N(1E)-C(4E) 1.337(7) N(1E)-N(2E) 1.362(7) C(1E)-N(2E) 1.335(8) C(1E)-C(2E) 1.381(9) C(2E)-C(4E) 1.403(9) C(2E)-C(3E) 1.431(9) C(3E)-N(3E) 1.155(8) C(4E)-C(5E) 1.458(9) C(5E)-C(10E) 1.403(9) C(5E)-C(6E) 1.393(9) C(6E)-C(7E) 1.373(10) C(7E)-C(8E) 1.398(10) C(8E)-C(9E) 1.369(10) C(9E)-C(10E) 1.381(10) N(1D)-C(4D) 1.347(8) N(1D)-N(2D) 1.365(8) C(1D)-N(2D) 1.350(7) C(1D)-C(2D) 1.353(10) C(2D)-C(3D) 1.430(9) C(2D)-C(4D) 1.443(9) C(3D)-N(3D) 1.147(8) C(4D)-C(5D) 1.446(10) C(5D)-C(6D) 1.400(10) C(5D)-C(10D) 1.402(10) C(6D)-C(7D) 1.384(13) C(7D)-C(8D) 1.386(13) C(8D)-C(9D) 1.384(12) C(9D)-C(10D) 1.352(11) N(1F)-C(1F) 1.332(8) N(1F)-N(2F) 1.364(7) C(1F)-C(2F) 1.365(11) C(2F)-C(4F) 1.397(10) C(2F)-C(3F) 1.428(12) C(3F)-N(3F) 1.136(11) C(4F)-N(2F) 1.333(9) C(4F)-C(5F) 1.453(12) C(5F)-C(6F) 1.339(14) C(5F)-C(10F) 1.432(13) C(6F)-C(7F) 1.451(17) C(7F)-C(8F) 1.329(18) C(8F)-C(9F) 1.400(19) C(9F)-C(10F) 1.373(15) _____________________________________ Table F.4 Bond angles [°] for (TpPh,4CN)*2Mn. __________________________________ N(1F)-Mn(1)-N(1C) 179.2(2) N(1F)-Mn(1)-N(1B) 93.1(2) N(1C)-Mn(1)-N(1B) 86.94(19) N(1F)-Mn(1)-N(1E) 87.3(2) N(1C)-Mn(1)-N(1E) 92.6(2) N(1B)-Mn(1)-N(1E) 179.6(2) N(1F)-Mn(1)-N(1D) 89.0(2) 157 N(1C)-Mn(1)-N(1D) N(1B)-Mn(1)-N(1D) N(1E)-Mn(1)-N(1D) N(1F)-Mn(1)-N(1A) N(1C)-Mn(1)-N(1A) N(1B)-Mn(1)-N(1A) N(1E)-Mn(1)-N(1A) N(1D)-Mn(1)-N(1A) N(2A)-B(1)-N(2C) N(2A)-B(1)-N(2B) N(2C)-B(1)-N(2B) C(4A)-N(1A)-N(2A) C(4A)-N(1A)-Mn(1) N(2A)-N(1A)-Mn(1) N(2A)-C(1A)-C(2A) C(1A)-C(2A)-C(4A) C(1A)-C(2A)-C(3A) C(4A)-C(2A)-C(3A) N(3A)-C(3A)-C(2A) N(1A)-C(4A)-C(2A) N(1A)-C(4A)-C(5A) C(2A)-C(4A)-C(5A) C(6A)-C(5A)-C(10A) C(6A)-C(5A)-C(4A) C(10A)-C(5A)-C(4A) C(7A)-C(6A)-C(5A) C(6A)-C(7A)-C(8A) C(9A)-C(8A)-C(7A) C(10A)-C(9A)-C(8A) C(9A)-C(10A)-C(5A) C(1A)-N(2A)-N(1A) C(1A)-N(2A)-B(1) N(1A)-N(2A)-B(1) C(4B)-N(1B)-N(2B) C(4B)-N(1B)-Mn(1) N(2B)-N(1B)-Mn(1) N(2B)-C(1B)-C(2B) C(1B)-C(2B)-C(4B) C(1B)-C(2B)-C(3B) C(4B)-C(2B)-C(3B) N(3B)-C(3B)-C(2B) N(1B)-C(4B)-C(2B) N(1B)-C(4B)-C(5B) C(2B)-C(4B)-C(5B) C(10B)-C(5B)-C(6B) C(10B)-C(5B)-C(4B) C(6B)-C(5B)-C(4B) C(7B)-C(6B)-C(5B) C(6B)-C(7B)-C(8B) C(9B)-C(8B)-C(7B) C(10B)-C(9B)-C(8B) C(9B)-C(10B)-C(5B) C(1B)-N(2B)-N(1B) C(1B)-N(2B)-B(1) N(1B)-N(2B)-B(1) C(1C)-N(1C)-N(2C) C(1C)-N(1C)-Mn(1) N(2C)-N(1C)-Mn(1) 91.8(2) 101.71(17) 78.37(17) 91.3(2) 87.9(2) 77.99(17) 101.92(17) 179.6(2) 109.8(5) 109.1(6) 111.0(5) 107.4(5) 139.1(5) 113.0(4) 108.3(6) 106.3(6) 125.8(7) 127.8(8) 179.1(9) 108.6(7) 123.5(6) 127.7(6) 117.1(8) 119.9(7) 123.0(7) 121.6(8) 119.8(9) 120.3(9) 119.4(9) 121.8(8) 109.4(6) 126.9(6) 123.3(5) 106.3(5) 140.0(5) 113.6(3) 107.0(6) 106.2(5) 125.6(6) 128.3(6) 178.6(9) 109.5(6) 121.2(6) 129.2(5) 118.7(6) 122.7(6) 118.5(6) 120.3(6) 120.2(7) 119.7(7) 120.3(6) 120.8(7) 110.9(5) 125.5(6) 122.6(5) 106.0(5) 131.6(5) 122.2(4) 158 N(1C)-C(1C)-C(2C) C(1C)-C(2C)-C(4C) C(1C)-C(2C)-C(3C) C(4C)-C(2C)-C(3C) N(3C)-C(3C)-C(2C) N(2C)-C(4C)-C(2C) N(2C)-C(4C)-C(5C) C(2C)-C(4C)-C(5C) C(6C)-C(5C)-C(10C) C(6C)-C(5C)-C(4C) C(10C)-C(5C)-C(4C) C(5C)-C(6C)-C(7C) C(8C)-C(7C)-C(6C) C(9C)-C(8C)-C(7C) C(8C)-C(9C)-C(10C) C(9C)-C(10C)-C(5C) C(4C)-N(2C)-N(1C) C(4C)-N(2C)-B(1) N(1C)-N(2C)-B(1) N(2D)-B(2)-N(2F) N(2D)-B(2)-N(2E) N(2F)-B(2)-N(2E) C(4E)-N(1E)-N(2E) C(4E)-N(1E)-Mn(1) N(2E)-N(1E)-Mn(1) N(2E)-C(1E)-C(2E) C(1E)-C(2E)-C(4E) C(1E)-C(2E)-C(3E) C(4E)-C(2E)-C(3E) N(3E)-C(3E)-C(2E) N(1E)-C(4E)-C(2E) N(1E)-C(4E)-C(5E) C(2E)-C(4E)-C(5E) C(10E)-C(5E)-C(6E) C(10E)-C(5E)-C(4E) C(6E)-C(5E)-C(4E) C(7E)-C(6E)-C(5E) C(6E)-C(7E)-C(8E) C(9E)-C(8E)-C(7E) C(8E)-C(9E)-C(10E) C(9E)-C(10E)-C(5E) C(1E)-N(2E)-N(1E) C(1E)-N(2E)-B(2) N(1E)-N(2E)-B(2) C(4D)-N(1D)-N(2D) C(4D)-N(1D)-Mn(1) N(2D)-N(1D)-Mn(1) N(2D)-C(1D)-C(2D) C(1D)-C(2D)-C(3D) C(1D)-C(2D)-C(4D) C(3D)-C(2D)-C(4D) N(3D)-C(3D)-C(2D) N(1D)-C(4D)-C(2D) N(1D)-C(4D)-C(5D) C(2D)-C(4D)-C(5D) C(6D)-C(5D)-C(10D) C(6D)-C(5D)-C(4D) C(10D)-C(5D)-C(4D) 110.1(6) 106.7(6) 127.6(7) 125.4(7) 177.5(10) 106.0(6) 125.6(6) 128.4(7) 118.5(8) 120.3(8) 121.1(8) 121.6(10) 119.1(11) 121.1(10) 119.3(10) 120.3(9) 111.4(5) 131.9(6) 116.7(5) 110.3(6) 108.8(6) 109.0(5) 107.1(5) 139.8(4) 113.0(3) 108.1(6) 105.4(5) 126.0(6) 128.3(6) 178.9(8) 109.2(5) 122.7(6) 127.9(5) 118.3(6) 121.6(6) 120.0(6) 120.6(6) 120.7(7) 118.9(7) 121.1(7) 120.3(6) 110.1(5) 126.2(6) 123.3(5) 107.8(5) 140.2(5) 111.3(4) 108.5(6) 126.4(6) 106.4(6) 127.1(7) 178.2(9) 107.2(6) 124.8(6) 127.9(6) 118.2(7) 119.2(7) 122.6(6) 159 C(7D)-C(6D)-C(5D) 119.8(8) C(8D)-C(7D)-C(6D) 120.9(9) C(9D)-C(8D)-C(7D) 118.8(9) C(10D)-C(9D)-C(8D) 121.1(8) C(9D)-C(10D)-C(5D) 121.1(7) C(1D)-N(2D)-N(1D) 110.0(6) C(1D)-N(2D)-B(2) 124.8(6) N(1D)-N(2D)-B(2) 124.6(5) C(1F)-N(1F)-N(2F) 106.7(6) C(1F)-N(1F)-Mn(1) 132.0(5) N(2F)-N(1F)-Mn(1) 121.3(4) N(1F)-C(1F)-C(2F) 110.1(6) C(1F)-C(2F)-C(4F) 106.2(7) C(1F)-C(2F)-C(3F) 127.5(7) C(4F)-C(2F)-C(3F) 126.2(8) N(3F)-C(3F)-C(2F) 178.2(11) N(2F)-C(4F)-C(2F) 106.8(7) N(2F)-C(4F)-C(5F) 123.9(7) C(2F)-C(4F)-C(5F) 129.3(8) C(6F)-C(5F)-C(10F) 119.3(10) C(6F)-C(5F)-C(4F) 120.6(9) C(10F)-C(5F)-C(4F) 120.1(8) C(5F)-C(6F)-C(7F) 118.9(12) C(8F)-C(7F)-C(6F) 121.5(13) C(7F)-C(8F)-C(9F) 119.9(13) C(10F)-C(9F)-C(8F) 119.7(13) C(9F)-C(10F)-C(5F) 120.4(11) C(4F)-N(2F)-N(1F) 110.3(5) C(4F)-N(2F)-B(2) 131.4(6) N(1F)-N(2F)-B(2) 118.3(6) __________________________________ Symmetry transformations used to generate equivalent atoms: 160 Table G.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for (TpPh,4CN)*2Fe. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Fe(1) -30(1) 512(1) 2483(1) 50(1) B(1) 882(8) 1537(5) 3351(5) 54(3) N(1A) 1104(5) 1484(3) 2458(4) 52(2) C(1A) 2304(6) 2261(4) 2901(4) 53(3) C(2A) 2454(7) 2345(4) 2431(4) 53(3) C(3A) 3305(7) 2842(4) 2264(4) 64(3) N(3A) 4010(6) 3224(3) 2154(3) 77(3) C(4A) 1663(7) 1853(4) 2153(5) 51(3) C(5A) 1473(7) 1768(4) 1630(5) 60(3) C(6A) 1393(6) 1131(4) 1400(5) 57(3) C(7A) 1187(7) 1070(5) 917(5) 64(3) C(8A) 1063(9) 1644(7) 628(4) 90(3) C(9A) 1163(10) 2287(6) 832(6) 95(4) C(10A) 1337(8) 2340(5) 1330(5) 79(4) N(2A) 1466(5) 1737(3) 2915(3) 49(2) N(1B) -1270(5) 1237(3) 2824(3) 52(2) C(1B) -1390(7) 1988(3) 3407(4) 61(3) C(2B) -2627(7) 1929(4) 3145(4) 60(3) C(3B) -3746(7) 2240(4) 3251(4) 61(3) N(3B) -4651(6) 2500(3) 3344(3) 73(2) C(4B) -2492(6) 1448(4) 2776(3) 47(3) C(5B) -3493(6) 1243(4) 2372(3) 49(2) C(6B) -3670(7) 566(4) 2236(3) 53(3) C(7B) -4578(7) 395(4) 1843(4) 62(3) C(8B) -5313(7) 877(5) 1576(4) 63(3) C(9B) -5146(8) 1567(5) 1723(4) 66(3) C(10B) -4250(7) 1739(4) 2112(4) 60(3) N(2B) -605(5) 1580(3) 3215(3) 54(2) N(1C) 951(5) 300(3) 3156(3) 51(2) C(1C) 1424(8) -277(4) 3385(4) 61(3) C(2C) 1989(8) -155(5) 3849(4) 59(3) C(3C) 2538(11) -642(6) 4192(5) 94(4) N(3C) 2929(10) -1050(5) 4474(5) 134(4) C(4C) 1858(9) 551(5) 3910(5) 64(3) C(5C) 2335(11) 942(5) 4345(5) 83(3) C(6C) 3504(14) 857(6) 4583(5) 133(5) C(7C) 3981(15) 1256(9) 5002(7) 152(6) C(8C) 3250(20) 1747(11) 5174(8) 187(10) C(9C) 2060(20) 1831(7) 4937(6) 161(8) C(10C) 1511(11) 1437(6) 4525(5) 112(4) N(2C) 1250(6) 788(4) 3499(3) 54(2) B(2) -958(8) -530(4) 1610(4) 47(3) N(1D) -1148(5) -459(3) 2509(3) 48(2) C(1D) -2311(7) -1266(4) 2083(5) 64(3) C(2D) -2477(7) -1351(4) 2558(5) 60(3) C(3D) -3272(7) -1832(4) 2737(4) 68(3) N(3D) -3955(6) -2216(3) 2869(3) 80(3) C(4D) -1718(7) -825(4) 2813(5) 52(3) C(5D) -1495(7) -727(4) 3334(5) 57(3) C(6D) -1632(7) -80(5) 3543(5) 65(3) C(7D) -1404(9) -10(6) 4041(6) 84(4) C(8D) -1003(10) -572(6) 4328(4) 93(4) 161 C(9D) -883(10) -1197(6) 4109(5) 92(4) C(10D) -1136(9) -1288(5) 3629(5) 73(3) N(2D) -1517(6) -735(3) 2058(3) 53(2) N(1E) 1195(5) -221(3) 2145(3) 48(2) C(1E) 1319(7) -946(4) 1549(3) 58(3) C(2E) 2526(6) -892(4) 1819(4) 52(3) C(3E) 3676(7) -1217(4) 1719(3) 58(3) N(3E) 4586(6) -1472(3) 1628(3) 67(2) C(4E) 2415(6) -432(4) 2196(4) 50(3) C(5E) 3388(7) -243(4) 2605(3) 52(3) C(6E) 4145(7) -748(4) 2865(4) 58(3) C(7E) 4980(8) -595(4) 3284(4) 68(3) C(8E) 5125(7) 68(4) 3438(4) 68(3) C(9E) 4417(8) 581(4) 3179(4) 63(3) C(10E) 3569(7) 427(4) 2762(4) 57(3) N(2E) 546(6) -540(3) 1743(3) 55(2) N(1F) -1056(5) 714(3) 1793(3) 52(2) C(1F) -1593(7) 1285(4) 1586(4) 56(3) C(2F) -2280(8) 1150(4) 1141(4) 54(3) C(3F) -3090(10) 1602(5) 827(4) 77(3) N(3F) -3769(9) 1968(4) 591(4) 104(3) C(4F) -2162(7) 445(4) 1066(4) 49(2) C(5F) -2745(9) 41(5) 658(5) 66(3) C(6F) -2631(9) 231(5) 206(6) 79(3) C(7F) -3233(11) -142(7) -206(5) 100(4) C(8F) -3906(11) -718(6) -123(6) 97(4) C(9F) -4071(10) -925(5) 320(6) 86(4) C(10F) -3490(8) -569(5) 721(4) 74(3) N(2F) -1437(6) 208(3) 1466(3) 50(2) ___________________________________________________________________________ Table G.2 Anisotropic displacement parameters (Å2 x 103) for (TpPh,4CN)*2Fe. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Fe(1) 25(1) 15(1) 113(1) -1(1) 21(1) 0(1) B(1) 29(5) 22(6) 118(12) -5(7) 31(6) -1(4) N(1A) 30(3) 19(4) 110(8) 4(5) 25(4) 6(3) C(1A) 29(4) 16(5) 118(10) 2(5) 21(5) -7(4) C(2A) 33(4) 11(5) 118(10) 8(5) 22(5) -2(4) C(3A) 34(4) 29(5) 132(10) 4(5) 23(5) 10(4) N(3A) 39(4) 38(5) 159(9) 18(5) 37(5) -4(3) C(4A) 37(5) 21(5) 97(10) 8(6) 17(6) 6(4) C(5A) 34(4) 33(6) 114(11) 15(7) 19(6) 2(4) C(6A) 43(5) 27(6) 108(11) 2(6) 33(6) 2(4) C(7A) 52(5) 53(7) 94(10) -1(7) 29(6) 4(5) C(8A) 89(8) 85(9) 96(11) 12(9) 16(7) 2(7) C(9A) 100(8) 62(9) 124(13) 27(9) 24(9) 13(6) C(10A) 67(6) 45(7) 130(12) 12(8) 26(8) 6(5) N(2A) 23(3) 24(4) 103(8) -7(4) 16(4) -3(3) N(1B) 36(4) 14(4) 109(7) -5(4) 22(4) -3(3) C(1B) 48(5) 15(4) 127(9) -14(5) 34(5) -1(4) C(2B) 32(5) 22(5) 133(10) -11(5) 35(5) -6(4) C(3B) 34(4) 20(5) 136(10) -13(5) 32(5) -10(4) N(3B) 40(4) 47(5) 139(8) -15(5) 35(4) -1(4) C(4B) 29(4) 11(4) 106(9) 8(5) 23(5) 6(3) 162 C(5B) C(6B) C(7B) C(8B) C(9B) C(10B) N(2B) N(1C) C(1C) C(2C) C(3C) N(3C) C(4C) C(5C) C(6C) C(7C) C(8C) C(9C) C(10C) N(2C) B(2) N(1D) C(1D) C(2D) C(3D) N(3D) C(4D) C(5D) C(6D) C(7D) C(8D) C(9D) C(10D) N(2D) N(1E) C(1E) C(2E) C(3E) N(3E) C(4E) C(5E) C(6E) C(7E) C(8E) C(9E) C(10E) N(2E) N(1F) C(1F) C(2F) C(3F) N(3F) C(4F) C(5F) C(6F) C(7F) C(8F) C(9F) 20(4) 25(4) 31(4) 33(5) 41(5) 36(4) 38(4) 44(4) 43(5) 48(5) 87(8) 134(9) 48(5) 69(7) 130(12) 113(12) 165(19) 290(30) 88(8) 24(3) 38(5) 35(4) 21(4) 21(4) 28(4) 43(4) 19(4) 33(4) 36(5) 61(6) 98(8) 107(9) 87(7) 39(4) 21(3) 48(5) 23(4) 34(4) 38(4) 25(4) 34(4) 37(4) 51(5) 37(5) 44(5) 26(4) 36(4) 30(3) 35(4) 46(5) 76(7) 126(8) 41(5) 67(6) 62(6) 98(9) 88(8) 72(7) 24(5) 32(6) 43(6) 64(7) 47(6) 36(5) 22(4) 18(4) 30(6) 48(7) 59(8) 79(8) 38(7) 56(7) 94(10) 135(14) 180(20) 77(10) 78(8) 47(5) 17(5) 20(4) 21(5) 18(5) 32(5) 32(4) 35(6) 27(6) 51(7) 61(8) 73(9) 61(8) 37(6) 23(4) 19(4) 37(5) 26(5) 24(5) 31(4) 25(5) 23(5) 32(5) 36(6) 40(6) 36(5) 28(6) 26(4) 24(4) 26(5) 24(6) 32(6) 47(6) 41(6) 63(8) 71(7) 105(10) 60(8) 52(7) 104(8) 106(9) 116(10) 97(9) 112(10) 111(9) 107(7) 92(7) 115(11) 80(10) 128(13) 170(13) 107(11) 125(12) 157(15) 200(20) 180(20) 130(17) 182(15) 89(7) 88(10) 93(7) 151(12) 147(11) 145(10) 170(9) 110(10) 119(11) 112(11) 138(13) 107(11) 110(13) 98(11) 98(8) 108(7) 94(9) 110(9) 121(9) 139(8) 106(9) 104(8) 108(9) 118(10) 125(10) 108(9) 119(10) 103(7) 106(7) 114(10) 89(9) 124(11) 129(9) 65(8) 70(10) 106(12) 95(11) 140(15) 130(14) 9(5) 11(5) 3(6) -10(6) 18(6) -1(5) -13(4) -10(4) 4(6) 4(6) 9(8) 15(7) -17(7) -6(7) -49(9) -20(13) -38(15) -47(10) 1(9) 7(5) -8(6) 0(4) -18(6) -12(6) 0(6) 9(5) 2(6) -1(7) 6(7) 13(9) -3(9) 0(8) 2(7) 1(4) 0(4) -11(5) 4(5) 0(5) -11(4) -6(5) -1(5) -1(5) -8(6) -7(6) -10(6) -3(5) -15(4) -8(4) -2(6) -1(5) 10(6) 16(5) -1(5) 0(7) -20(8) -20(9) -23(8) -1(8) 163 16(4) 20(5) 23(5) 20(5) 21(6) 22(5) 29(4) 15(4) 27(6) 5(5) -3(8) -28(8) 20(6) 14(7) -31(10) -4(12) -56(16) 83(16) 53(9) 9(4) 16(6) 20(4) 21(6) 29(6) 21(5) 31(5) 31(5) 34(5) 26(6) 38(8) 19(7) 24(9) 25(7) 17(4) 23(4) 25(5) 22(5) 24(5) 31(4) 24(5) 24(5) 19(5) 13(6) 11(5) 14(6) 20(5) 13(4) 26(4) 27(5) 4(5) 16(7) -9(7) 4(5) 20(6) 20(7) 11(8) 13(9) 11(8) 8(4) 4(4) 7(4) -2(5) 12(5) -6(4) -5(3) -13(3) -6(4) -1(5) 3(6) -9(7) -10(5) 1(6) -13(9) -4(11) -19(15) -45(14) 15(7) 2(3) 1(4) 4(3) 5(4) 1(4) -8(4) 9(4) 12(4) -6(4) -7(4) -8(5) 4(7) 7(6) 14(5) 9(3) 3(3) 3(4) -1(3) -4(4) -4(3) -7(4) 1(4) 6(4) 16(4) -5(4) 3(5) 6(4) -3(3) 4(3) 11(4) 0(4) 0(5) 12(5) 5(4) 26(6) 3(5) 39(8) -2(7) 0(6) C(10F) 50(5) 45(6) 125(11) -18(7) 6(6) 4(5) N(2F) 36(4) 25(4) 92(7) -13(4) 14(4) -3(3) ___________________________________________________________________________ Table G.3 Bond lengths [Å] for (TpPh,4CN)*2Fe. __________________________________ Fe(1)-N(1C) 2.043(7) Fe(1)-N(1F) 2.096(7) Fe(1)-N(1D) 2.249(6) Fe(1)-N(1E) 2.247(6) Fe(1)-N(1B) 2.252(6) Fe(1)-N(1A) 2.259(6) B(1)-N(2A) 1.511(12) B(1)-N(2B) 1.555(10) B(1)-N(2C) 1.559(11) B(1)-H(1) 1.07(6) N(1A)-C(4A) 1.334(10) N(1A)-N(2A) 1.369(9) C(1A)-N(2A) 1.361(9) C(1A)-C(2A) 1.365(11) C(1A)-H(1A) 0.9500 C(2A)-C(4A) 1.424(11) C(2A)-C(3A) 1.455(12) C(3A)-N(3A) 1.134(9) C(4A)-C(5A) 1.457(12) C(5A)-C(10A) 1.396(12) C(5A)-C(6A) 1.403(12) C(6A)-C(7A) 1.342(11) C(6A)-H(6A) 0.9500 C(7A)-C(8A) 1.381(13) C(7A)-H(7A) 0.9500 C(8A)-C(9A) 1.384(14) C(8A)-H(8A) 0.9500 C(9A)-C(10A) 1.385(13) C(9A)-H(9A) 0.9500 C(10A)-H(10A) 0.9500 N(1B)-C(4B) 1.341(8) N(1B)-N(2B) 1.378(8) C(1B)-N(2B) 1.330(9) C(1B)-C(2B) 1.394(10) C(1B)-H(1B) 0.9500 C(2B)-C(3B) 1.406(10) C(2B)-C(4B) 1.426(11) C(3B)-N(3B) 1.152(8) C(4B)-C(5B) 1.473(11) C(5B)-C(6B) 1.386(10) C(5B)-C(10B) 1.388(10) C(6B)-C(7B) 1.377(11) C(6B)-H(6B) 0.9500 C(7B)-C(8B) 1.367(11) C(7B)-H(7B) 0.9500 C(8B)-C(9B) 1.417(11) C(8B)-H(8B) 0.9500 C(9B)-C(10B) 1.364(11) C(9B)-H(9B) 0.9500 C(10B)-H(10B) 0.9500 N(1C)-C(1C) 1.356(10) 164 N(1C)-N(2C) C(1C)-C(2C) C(1C)-H(1C) C(2C)-C(4C) C(2C)-C(3C) C(3C)-N(3C) C(4C)-N(2C) C(4C)-C(5C) C(5C)-C(6C) C(5C)-C(10C) C(6C)-C(7C) C(6C)-H(6C) C(7C)-C(8C) C(7C)-H(7C) C(8C)-C(9C) C(8C)-H(8C) C(9C)-C(10C) C(9C)-H(9C) C(10C)-H(10C) B(2)-N(2D) B(2)-N(2F) B(2)-N(2E) B(2)-H(2) N(1D)-C(4D) N(1D)-N(2D) C(1D)-N(2D) C(1D)-C(2D) C(1D)-H(1D) C(2D)-C(3D) C(2D)-C(4D) C(3D)-N(3D) C(4D)-C(5D) C(5D)-C(10D) C(5D)-C(6D) C(6D)-C(7D) C(6D)-H(6D) C(7D)-C(8D) C(7D)-H(7D) C(8D)-C(9D) C(8D)-H(8D) C(9D)-C(10D) C(9D)-H(9D) C(10D)-H(10D) N(1E)-C(4E) N(1E)-N(2E) C(1E)-N(2E) C(1E)-C(2E) C(1E)-H(1E) C(2E)-C(4E) C(2E)-C(3E) C(3E)-N(3E) C(4E)-C(5E) C(5E)-C(10E) C(5E)-C(6E) C(6E)-C(7E) C(6E)-H(6E) C(7E)-C(8E) C(7E)-H(7E) 1.361(9) 1.360(11) 0.9500 1.406(11) 1.412(15) 1.153(13) 1.310(11) 1.460(14) 1.313(14) 1.450(13) 1.434(18) 0.9500 1.37(2) 0.9500 1.33(2) 0.9500 1.431(17) 0.9500 0.9500 1.531(12) 1.565(11) 1.571(10) 1.31(7) 1.334(10) 1.373(9) 1.347(9) 1.384(12) 0.9500 1.409(12) 1.425(12) 1.146(9) 1.456(12) 1.391(12) 1.417(12) 1.386(12) 0.9500 1.391(13) 0.9500 1.388(13) 0.9500 1.343(12) 0.9500 0.9500 1.338(8) 1.371(8) 1.321(9) 1.376(10) 0.9500 1.412(11) 1.440(10) 1.149(8) 1.457(11) 1.389(10) 1.402(10) 1.382(11) 0.9500 1.373(10) 0.9500 165 C(8E)-C(9E) 1.385(11) C(8E)-H(8E) 0.9500 C(9E)-C(10E) 1.384(11) C(9E)-H(9E) 0.9500 C(10E)-H(10E) 0.9500 N(1F)-C(1F) 1.343(9) N(1F)-N(2F) 1.368(8) C(1F)-C(2F) 1.363(11) C(1F)-H(1F) 0.9500 C(2F)-C(4F) 1.408(10) C(2F)-C(3F) 1.430(13) C(3F)-N(3F) 1.146(11) C(4F)-N(2F) 1.332(10) C(4F)-C(5F) 1.445(12) C(5F)-C(6F) 1.346(13) C(5F)-C(10F) 1.460(13) C(6F)-C(7F) 1.427(14) C(6F)-H(6F) 0.9500 C(7F)-C(8F) 1.376(15) C(7F)-H(7F) 0.9500 C(8F)-C(9F) 1.346(14) C(8F)-H(8F) 0.9500 C(9F)-C(10F) 1.379(13) C(9F)-H(9F) 0.9500 C(10F)-H(10F) 0.9500 _____________________________________ Table G.4 Bond angles [°] for (TpPh,4CN)*2Fe. _________________________________ N(1C)-Fe(1)-N(1F) 179.0(3) N(1C)-Fe(1)-N(1D) 89.1(3) N(1F)-Fe(1)-N(1D) 89.9(3) N(1C)-Fe(1)-N(1E) 91.2(3) N(1F)-Fe(1)-N(1E) 88.7(3) N(1D)-Fe(1)-N(1E) 79.3(2) N(1C)-Fe(1)-N(1B) 88.6(3) N(1F)-Fe(1)-N(1B) 91.5(3) N(1D)-Fe(1)-N(1B) 100.1(2) N(1E)-Fe(1)-N(1B) 179.4(2) N(1C)-Fe(1)-N(1A) 90.6(3) N(1F)-Fe(1)-N(1A) 90.4(3) N(1D)-Fe(1)-N(1A) 179.6(3) N(1E)-Fe(1)-N(1A) 100.5(2) N(1B)-Fe(1)-N(1A) 80.1(2) N(2A)-B(1)-N(2B) 108.6(8) N(2A)-B(1)-N(2C) 110.1(7) N(2B)-B(1)-N(2C) 108.3(6) N(2A)-B(1)-H(1) 108(3) N(2B)-B(1)-H(1) 109(3) N(2C)-B(1)-H(1) 113(3) C(4A)-N(1A)-N(2A) 108.7(7) C(4A)-N(1A)-Fe(1) 140.5(7) N(2A)-N(1A)-Fe(1) 110.2(6) N(2A)-C(1A)-C(2A) 107.4(8) N(2A)-C(1A)-H(1A) 126.3 C(2A)-C(1A)-H(1A) 126.3 C(1A)-C(2A)-C(4A) 107.3(8) 166 C(1A)-C(2A)-C(3A) C(4A)-C(2A)-C(3A) N(3A)-C(3A)-C(2A) N(1A)-C(4A)-C(2A) N(1A)-C(4A)-C(5A) C(2A)-C(4A)-C(5A) C(10A)-C(5A)-C(6A) C(10A)-C(5A)-C(4A) C(6A)-C(5A)-C(4A) C(7A)-C(6A)-C(5A) C(7A)-C(6A)-H(6A) C(5A)-C(6A)-H(6A) C(6A)-C(7A)-C(8A) C(6A)-C(7A)-H(7A) C(8A)-C(7A)-H(7A) C(7A)-C(8A)-C(9A) C(7A)-C(8A)-H(8A) C(9A)-C(8A)-H(8A) C(10A)-C(9A)-C(8A) C(10A)-C(9A)-H(9A) C(8A)-C(9A)-H(9A) C(9A)-C(10A)-C(5A) C(9A)-C(10A)-H(10A) C(5A)-C(10A)-H(10A) C(1A)-N(2A)-N(1A) C(1A)-N(2A)-B(1) N(1A)-N(2A)-B(1) C(4B)-N(1B)-N(2B) C(4B)-N(1B)-Fe(1) N(2B)-N(1B)-Fe(1) N(2B)-C(1B)-C(2B) N(2B)-C(1B)-H(1B) C(2B)-C(1B)-H(1B) C(1B)-C(2B)-C(3B) C(1B)-C(2B)-C(4B) C(3B)-C(2B)-C(4B) N(3B)-C(3B)-C(2B) N(1B)-C(4B)-C(2B) N(1B)-C(4B)-C(5B) C(2B)-C(4B)-C(5B) C(6B)-C(5B)-C(10B) C(6B)-C(5B)-C(4B) C(10B)-C(5B)-C(4B) C(7B)-C(6B)-C(5B) C(7B)-C(6B)-H(6B) C(5B)-C(6B)-H(6B) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B) C(6B)-C(7B)-H(7B) C(7B)-C(8B)-C(9B) C(7B)-C(8B)-H(8B) C(9B)-C(8B)-H(8B) C(10B)-C(9B)-C(8B) C(10B)-C(9B)-H(9B) C(8B)-C(9B)-H(9B) C(9B)-C(10B)-C(5B) C(9B)-C(10B)-H(10B) C(5B)-C(10B)-H(10B) 124.7(9) 128.0(11) 176.7(10) 107.3(10) 125.8(8) 127.0(9) 116.5(11) 119.9(10) 123.6(9) 122.2(10) 118.9 118.9 120.3(10) 119.9 119.9 120.5(12) 119.8 119.8 118.3(11) 120.8 120.8 122.2(11) 118.9 118.9 109.2(8) 125.0(9) 125.2(7) 106.5(6) 140.4(6) 113.2(4) 109.1(8) 125.4 125.4 126.8(9) 104.0(7) 129.1(8) 178.9(10) 110.0(7) 123.3(8) 126.5(6) 119.2(8) 121.4(7) 119.4(7) 120.0(7) 120.0 120.0 121.8(8) 119.1 119.1 117.9(9) 121.0 121.0 120.5(8) 119.8 119.8 120.6(8) 119.7 119.7 167 C(1B)-N(2B)-N(1B) C(1B)-N(2B)-B(1) N(1B)-N(2B)-B(1) C(1C)-N(1C)-N(2C) C(1C)-N(1C)-Fe(1) N(2C)-N(1C)-Fe(1) N(1C)-C(1C)-C(2C) N(1C)-C(1C)-H(1C) C(2C)-C(1C)-H(1C) C(1C)-C(2C)-C(4C) C(1C)-C(2C)-C(3C) C(4C)-C(2C)-C(3C) N(3C)-C(3C)-C(2C) N(2C)-C(4C)-C(2C) N(2C)-C(4C)-C(5C) C(2C)-C(4C)-C(5C) C(6C)-C(5C)-C(10C) C(6C)-C(5C)-C(4C) C(10C)-C(5C)-C(4C) C(5C)-C(6C)-C(7C) C(5C)-C(6C)-H(6C) C(7C)-C(6C)-H(6C) C(8C)-C(7C)-C(6C) C(8C)-C(7C)-H(7C) C(6C)-C(7C)-H(7C) C(9C)-C(8C)-C(7C) C(9C)-C(8C)-H(8C) C(7C)-C(8C)-H(8C) C(8C)-C(9C)-C(10C) C(8C)-C(9C)-H(9C) C(10C)-C(9C)-H(9C) C(9C)-C(10C)-C(5C) C(9C)-C(10C)-H(10C) C(5C)-C(10C)-H(10C) C(4C)-N(2C)-N(1C) C(4C)-N(2C)-B(1) N(1C)-N(2C)-B(1) N(2D)-B(2)-N(2F) N(2D)-B(2)-N(2E) N(2F)-B(2)-N(2E) N(2D)-B(2)-H(2) N(2F)-B(2)-H(2) N(2E)-B(2)-H(2) C(4D)-N(1D)-N(2D) C(4D)-N(1D)-Fe(1) N(2D)-N(1D)-Fe(1) N(2D)-C(1D)-C(2D) N(2D)-C(1D)-H(1D) C(2D)-C(1D)-H(1D) C(1D)-C(2D)-C(3D) C(1D)-C(2D)-C(4D) C(3D)-C(2D)-C(4D) N(3D)-C(3D)-C(2D) N(1D)-C(4D)-C(2D) N(1D)-C(4D)-C(5D) C(2D)-C(4D)-C(5D) C(10D)-C(5D)-C(6D) C(10D)-C(5D)-C(4D) 110.4(6) 127.3(8) 121.9(7) 103.1(8) 134.5(7) 122.4(6) 112.1(8) 123.9 123.9 104.8(9) 126.9(10) 128.3(12) 176.8(13) 106.6(9) 127.0(9) 126.4(11) 118.5(12) 121.5(11) 120.0(11) 121.3(14) 119.3 119.4 122.0(16) 119.0 119.0 117(2) 121.5 121.5 123.8(18) 118.1 118.1 117.3(13) 121.3 121.4 113.4(7) 129.5(9) 117.1(9) 107.7(7) 108.3(8) 110.1(6) 115(3) 101(3) 114(3) 106.8(7) 140.6(7) 112.0(6) 108.8(9) 125.6 125.6 127.1(9) 104.3(8) 128.6(11) 177.4(11) 110.1(10) 123.9(9) 125.8(9) 120.0(11) 118.4(10) 168 C(6D)-C(5D)-C(4D) C(7D)-C(6D)-C(5D) C(7D)-C(6D)-H(6D) C(5D)-C(6D)-H(6D) C(6D)-C(7D)-C(8D) C(6D)-C(7D)-H(7D) C(8D)-C(7D)-H(7D) C(7D)-C(8D)-C(9D) C(7D)-C(8D)-H(8D) C(9D)-C(8D)-H(8D) C(10D)-C(9D)-C(8D) C(10D)-C(9D)-H(9D) C(8D)-C(9D)-H(9D) C(9D)-C(10D)-C(5D) C(9D)-C(10D)-H(10D) C(5D)-C(10D)-H(10D) C(1D)-N(2D)-N(1D) C(1D)-N(2D)-B(2) N(1D)-N(2D)-B(2) C(4E)-N(1E)-N(2E) C(4E)-N(1E)-Fe(1) N(2E)-N(1E)-Fe(1) N(2E)-C(1E)-C(2E) N(2E)-C(1E)-H(1E) C(2E)-C(1E)-H(1E) C(1E)-C(2E)-C(4E) C(1E)-C(2E)-C(3E) C(4E)-C(2E)-C(3E) N(3E)-C(3E)-C(2E) N(1E)-C(4E)-C(2E) N(1E)-C(4E)-C(5E) C(2E)-C(4E)-C(5E) C(10E)-C(5E)-C(6E) C(10E)-C(5E)-C(4E) C(6E)-C(5E)-C(4E) C(7E)-C(6E)-C(5E) C(7E)-C(6E)-H(6E) C(5E)-C(6E)-H(6E) C(8E)-C(7E)-C(6E) C(8E)-C(7E)-H(7E) C(6E)-C(7E)-H(7E) C(7E)-C(8E)-C(9E) C(7E)-C(8E)-H(8E) C(9E)-C(8E)-H(8E) C(10E)-C(9E)-C(8E) C(10E)-C(9E)-H(9E) C(8E)-C(9E)-H(9E) C(9E)-C(10E)-C(5E) C(9E)-C(10E)-H(10E) C(5E)-C(10E)-H(10E) C(1E)-N(2E)-N(1E) C(1E)-N(2E)-B(2) N(1E)-N(2E)-B(2) C(1F)-N(1F)-N(2F) C(1F)-N(1F)-Fe(1) N(2F)-N(1F)-Fe(1) N(1F)-C(1F)-C(2F) N(1F)-C(1F)-H(1F) 121.6(10) 119.6(10) 120.2 120.2 119.5(11) 120.2 120.2 119.0(12) 120.5 120.5 123.0(12) 118.5 118.5 118.8(11) 120.6 120.6 110.0(8) 125.0(9) 124.5(7) 106.7(6) 139.8(6) 113.3(4) 107.8(8) 126.1 126.1 106.2(7) 126.3(9) 127.4(7) 178.4(10) 108.4(7) 123.2(8) 128.2(7) 117.9(8) 122.2(7) 119.9(7) 121.3(8) 119.4 119.4 119.8(8) 120.1 120.1 120.0(9) 120.0 120.0 120.3(8) 119.9 119.9 120.7(8) 119.6 119.6 110.9(6) 125.4(7) 122.5(7) 105.1(7) 132.4(7) 122.2(5) 110.8(8) 124.6 169 C(2F)-C(1F)-H(1F) 124.6 C(1F)-C(2F)-C(4F) 106.4(8) C(1F)-C(2F)-C(3F) 128.1(8) C(4F)-C(2F)-C(3F) 125.2(9) N(3F)-C(3F)-C(2F) 177.2(13) N(2F)-C(4F)-C(2F) 105.6(8) N(2F)-C(4F)-C(5F) 126.0(8) C(2F)-C(4F)-C(5F) 128.3(9) C(6F)-C(5F)-C(4F) 120.3(11) C(6F)-C(5F)-C(10F) 118.4(11) C(4F)-C(5F)-C(10F) 121.3(11) C(5F)-C(6F)-C(7F) 121.7(12) C(5F)-C(6F)-H(6F) 119.2 C(7F)-C(6F)-H(6F) 119.2 C(8F)-C(7F)-C(6F) 117.1(12) C(8F)-C(7F)-H(7F) 121.4 C(6F)-C(7F)-H(7F) 121.4 C(9F)-C(8F)-C(7F) 123.7(13) C(9F)-C(8F)-H(8F) 118.2 C(7F)-C(8F)-H(8F) 118.2 C(8F)-C(9F)-C(10F) 119.5(12) C(8F)-C(9F)-H(9F) 120.2 C(10F)-C(9F)-H(9F) 120.2 C(9F)-C(10F)-C(5F) 119.5(11) C(9F)-C(10F)-H(10F) 120.2 C(5F)-C(10F)-H(10F) 120.2 C(4F)-N(2F)-N(1F) 112.1(7) C(4F)-N(2F)-B(2) 131.1(8) N(1F)-N(2F)-B(2) 116.8(7) ___________________________________ Symmetry transformations used to generate equivalent atoms: 170 Table H.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for [TpPh,4CNCu]n. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Cu(1) 3974(1) 3309(1) 3592(1) 28(1) N(7) 5628(7) 3516(3) 1574(5) 25(2) C(14) 7618(10) 5031(4) 5179(7) 36(3) N(5) 5087(7) 4032(3) 4013(5) 23(2) N(4) 5569(7) 4285(3) 3021(5) 24(2) C(23) 5819(8) 2639(4) 1783(7) 22(2) C(21) 6531(7) 3351(4) 776(6) 27(2) N(1) 3442(7) 4097(3) 1703(5) 23(2) C(13) 5750(9) 4281(4) 4918(7) 23(2) C(15) 5390(9) 4158(4) 6124(7) 27(2) C(22) 6683 2803 879 29(2) N(8) 5196(7) 3075(3) 2219(6) 24(2) N(9) 3193(7) 2835(3) 4664(6) 26(2) N(2) 2738(7) 3707(3) 2356(5) 26(2) C(24) 5507(9) 2083(4) 2198(7) 28(2) C(2) 1173(9) 4265(4) 1433(8) 29(2) N(3) -1220(8) 4624(3) 755(7) 40(2) C(30) 2538(9) 2544(4) 5206(7) 22(2) C(3) 1365(9) 3810(4) 2177(8) 32(2) C(18) 4665(10) 4009(4) 8431(8) 37(3) C(16) 4090(9) 3946(4) 6374(8) 34(2) C(20) 6308(9) 4285(4) 7060(8) 37(3) C(17) 3733(10) 3877(4) 7520(7) 33(2) C(11) 6522(8) 4662(3) 3323(7) 24(2) C(25) 5305(9) 1979(4) 3355(8) 38(3) C(5) 358(9) 3447(4) 2689(7) 29(2) C(19) 5932(10) 4205(4) 8201(8) 39(3) C(4) -127(11) 4476(4) 1036(8) 37(3) N(6) 8390 5304 5686 51(3) C(1) 2495(9) 4429(4) 1160(7) 31(2) C(7) -346(13) 2533(5) 3196(9) 57(3) C(10) -770(9) 3644(5) 3263(8) 44(3) C(29) 5412(8) 1651(4) 1430(7) 32(2) C(6) 580(10) 2882(4) 2641(9) 47(3) C(12) 6681(9) 4677(4) 4536(7) 28(2) C(28) 5103(10) 1123(4) 1778(9) 46(3) C(26) 4989(10) 1461(5) 3764(9) 47(3) C(9) -1657(10) 3287(6) 3789(8) 52(3) C(27) 4892(10) 1036(4) 2964(10) 48(3) B(1) 5071(11) 4106(5) 1792(9) 27(3) C(8) -1457(11) 2747(6) 3780(11) 64(4) ___________________________________________________________________________ Table H.2 Anisotropic displacement parameters (Å2 x 103) for [TpPh,4CNCu]n. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Cu(1) 28(1) 30(1) 27(1) 5(1) 4(1) -1(1) N(7) 27(4) 24(5) 25(4) 3(3) -1(3) 9(3) C(14) 44(7) 44(7) 21(5) 11(5) 5(5) -2(5) 171 N(5) 28(4) 24(5) 16(4) 1(3) 1(3) -2(4) N(4) 26(4) 24(5) 22(4) 6(3) 5(3) 3(4) C(23) 24(5) 21(6) 22(5) 3(4) -6(4) 3(4) C(21) 18(4) 42(6) 20(4) 11(5) 5(3) 4(5) N(1) 28(4) 16(5) 26(4) -5(3) 0(3) 5(3) C(13) 30(5) 21(6) 18(4) -3(4) 0(4) -1(4) C(15) 33(5) 23(6) 23(5) 4(4) -7(4) -3(5) C(22) 24(5) 29(7) 35(5) 0(5) 3(4) 10(5) N(8) 19(4) 26(5) 26(4) 2(4) -7(3) 0(4) N(9) 33(5) 17(5) 29(4) 2(4) 2(3) -4(4) N(2) 31(4) 21(5) 26(4) -2(3) 0(3) -1(4) C(24) 31(6) 25(6) 26(5) 3(5) 0(4) 1(5) C(2) 23(5) 35(6) 27(4) -17(5) -8(4) 14(5) N(3) 33(5) 36(6) 50(5) 9(4) -4(4) 11(4) C(30) 42(6) 11(5) 14(4) -6(4) 2(4) 11(4) C(3) 27(5) 27(7) 41(6) 1(5) -7(4) 2(5) C(18) 47(7) 40(7) 22(5) -3(5) -5(5) 6(5) C(16) 28(5) 42(7) 32(5) 7(5) -7(4) 2(5) C(20) 29(5) 36(7) 46(6) -7(5) -9(5) -17(5) C(17) 39(6) 39(7) 22(5) -3(4) 0(4) -4(5) C(11) 20(5) 17(6) 36(5) 2(4) 3(4) -9(4) C(25) 39(6) 35(7) 41(6) 12(5) 15(5) 8(5) C(5) 29(5) 24(7) 32(5) 3(4) -11(4) 4(4) C(19) 46(7) 39(7) 30(5) 20(5) -16(5) -6(6) C(4) 39(7) 37(7) 34(6) -7(5) 0(5) 0(5) N(6) 53(6) 64(7) 36(5) -8(5) -3(4) -17(5) C(1) 35(6) 28(6) 29(5) 7(5) -7(4) 12(5) C(7) 61(8) 32(8) 74(9) 18(6) -31(7) -17(7) C(10) 33(6) 50(8) 50(7) 11(6) 5(5) -2(6) C(29) 37(5) 18(5) 42(5) 0(5) 0(4) 9(5) C(6) 26(6) 34(7) 81(8) -1(6) 6(6) -9(5) C(12) 24(5) 37(7) 23(5) -13(5) -10(4) 5(5) C(28) 37(6) 36(8) 65(8) -7(6) -7(5) -4(5) C(26) 50(7) 59(9) 31(5) 22(6) 4(5) 10(6) C(9) 34(6) 65(9) 56(7) 5(8) -9(5) 2(7) C(27) 35(6) 31(7) 77(8) 20(6) -1(6) 1(5) B(1) 24(6) 36(8) 23(6) 4(5) 2(5) 6(5) C(8) 29(7) 71(11) 91(10) 23(8) -21(6) -21(7) ___________________________________________________________________________ Table H.3 Bond lengths [Å] for [TpPh,4CNCu]n. ___________________________________ Cu(1)-N(9) 1.863(7) Cu(1)-N(2) 2.044(7) Cu(1)-N(8) 2.079(7) Cu(1)-N(5) 2.100(7) N(7)-C(21) 1.345(9) N(7)-N(8) 1.374(8) N(7)-B(1) 1.556(12) C(14)-N(6) 1.132(10) C(14)-C(12) 1.423(12) N(5)-C(13) 1.334(9) N(5)-N(4) 1.387(8) N(4)-C(11) 1.327(9) N(4)-B(1) 1.527(11) C(23)-N(8) 1.325(10) C(23)-C(22) 1.411(8) 172 C(23)-C(24) 1.468(11) C(21)-C(22) 1.344(10) N(1)-C(1) 1.344(9) N(1)-N(2) 1.399(9) N(1)-B(1) 1.556(12) C(13)-C(12) 1.394(11) C(13)-C(15) 1.468(10) C(15)-C(16) 1.386(11) C(15)-C(20) 1.388(11) C(22)-C(30)#1 1.424(9) N(9)-C(30) 1.147(9) N(2)-C(3) 1.342(10) C(24)-C(29) 1.369(11) C(24)-C(25) 1.370(11) C(2)-C(1) 1.375(12) C(2)-C(4) 1.400(12) C(2)-C(3) 1.401(11) N(3)-C(4) 1.137(11) C(30)-C(22)#2 1.424(9) C(3)-C(5) 1.449(12) C(18)-C(19) 1.338(12) C(18)-C(17) 1.378(11) C(16)-C(17) 1.380(10) C(20)-C(19) 1.384(11) C(11)-C(12) 1.390(10) C(25)-C(26) 1.381(12) C(5)-C(10) 1.374(11) C(5)-C(6) 1.391(12) C(7)-C(8) 1.382(14) C(7)-C(6) 1.399(13) C(10)-C(9) 1.372(12) C(29)-C(28) 1.380(12) C(28)-C(27) 1.396(12) C(26)-C(27) 1.381(13) C(9)-C(8) 1.327(15) ____________________________________ Table H.4 Bond angles [°] for [TpPh,4CNCu]n. ____________________________________ N(9)-Cu(1)-N(2) 120.7(3) N(9)-Cu(1)-N(8) 125.8(3) N(2)-Cu(1)-N(8) 86.2(3) N(9)-Cu(1)-N(5) 125.5(3) N(2)-Cu(1)-N(5) 91.9(3) N(8)-Cu(1)-N(5) 96.1(3) C(21)-N(7)-N(8) 110.5(7) C(21)-N(7)-B(1) 128.2(7) N(8)-N(7)-B(1) 121.3(6) N(6)-C(14)-C(12) 178.2(10) C(13)-N(5)-N(4) 105.7(7) C(13)-N(5)-Cu(1) 140.9(6) N(4)-N(5)-Cu(1) 111.5(5) C(11)-N(4)-N(5) 110.0(7) C(11)-N(4)-B(1) 128.1(7) N(5)-N(4)-B(1) 121.8(7) N(8)-C(23)-C(22) 109.7(7) N(8)-C(23)-C(24) 121.0(8) 173 C(22)-C(23)-C(24) C(22)-C(21)-N(7) C(1)-N(1)-N(2) C(1)-N(1)-B(1) N(2)-N(1)-B(1) N(5)-C(13)-C(12) N(5)-C(13)-C(15) C(12)-C(13)-C(15) C(16)-C(15)-C(20) C(16)-C(15)-C(13) C(20)-C(15)-C(13) C(21)-C(22)-C(23) C(21)-C(22)-C(30)#1 C(23)-C(22)-C(30)#1 C(23)-N(8)-N(7) C(23)-N(8)-Cu(1) N(7)-N(8)-Cu(1) C(30)-N(9)-Cu(1) C(3)-N(2)-N(1) C(3)-N(2)-Cu(1) N(1)-N(2)-Cu(1) C(29)-C(24)-C(25) C(29)-C(24)-C(23) C(25)-C(24)-C(23) C(1)-C(2)-C(4) C(1)-C(2)-C(3) C(4)-C(2)-C(3) N(9)-C(30)-C(22)#2 N(2)-C(3)-C(2) N(2)-C(3)-C(5) C(2)-C(3)-C(5) C(19)-C(18)-C(17) C(17)-C(16)-C(15) C(19)-C(20)-C(15) C(18)-C(17)-C(16) N(4)-C(11)-C(12) C(24)-C(25)-C(26) C(10)-C(5)-C(6) C(10)-C(5)-C(3) C(6)-C(5)-C(3) C(18)-C(19)-C(20) N(3)-C(4)-C(2) N(1)-C(1)-C(2) C(8)-C(7)-C(6) C(9)-C(10)-C(5) C(24)-C(29)-C(28) C(5)-C(6)-C(7) C(11)-C(12)-C(13) C(11)-C(12)-C(14) C(13)-C(12)-C(14) C(29)-C(28)-C(27) C(27)-C(26)-C(25) C(8)-C(9)-C(10) C(26)-C(27)-C(28) N(4)-B(1)-N(1) N(4)-B(1)-N(7) N(1)-B(1)-N(7) C(9)-C(8)-C(7) 129.2(7) 107.9(6) 108.9(7) 132.2(8) 118.7(7) 110.9(7) 120.8(8) 128.1(8) 117.7(8) 121.4(8) 120.8(8) 106.2(5) 127.0(4) 126.8(5) 105.7(7) 141.3(6) 112.7(5) 169.5(7) 106.4(7) 136.4(6) 114.4(5) 118.1(9) 120.5(8) 121.4(9) 129.1(9) 105.7(8) 125.1(9) 177.8(8) 109.9(8) 119.1(8) 130.9(8) 119.5(9) 120.2(8) 120.9(9) 120.8(9) 108.7(8) 122.5(10) 119.1(9) 122.1(9) 118.7(9) 120.8(9) 175.8(11) 109.1(8) 120.5(11) 120.2(11) 122.4(9) 118.8(10) 104.6(8) 124.7(8) 130.6(8) 117.6(10) 117.8(9) 122.1(11) 121.5(10) 109.4(7) 108.4(7) 108.9(8) 119.3(11) 174 __________________________________ Symmetry transformations used to generate equivalent atoms: #1 x+1/2,-y+1/2,z-1/2 #2 x-1/2,-y+1/2,z+1/2 175 Table I.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for [Tpt-Bu,4CNCu]n. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ C(25) 2036(8) 9032(8) 9562(4) 32(3) C(15) 1455(7) 11125(9) 11850(5) 27(3) C(14) 1098(7) 9504(9) 12759(5) 41(4) C(5) 5012(11) 10591(13) 11381(8) 51(5) C(24) 2236(9) 6748(11) 9734(6) 33(4) N(7) 6544(8) 8415(8) 11831(5) 62(4) N(8) 764(7) 9482(8) 13121(5) 53(3) C(16) 2181(10) 11696(11) 11902(7) 51(4) C(8) 4938(9) 10674(10) 10747(5) 62(5) C(18) 977(10) 11402(10) 12271(6) 72(5) C(6) 5907(10) 10677(12) 11694(9) 74(6) C(7) 4573(13) 11364(12) 11591(8) 42(5) B 2933(9) 8267(10) 11576(5) 27(4) C(12) 1561(7) 9468(9) 12326(5) 34(3) C(11) 1985(8) 8726(10) 12233(5) 33(4) C(27) 2784(8) 9521(8) 9456(5) 59(5) C(28) 1698(11) 8442(9) 9057(5) 75(6) N(5) 2616(5) 8093(6) 10951(4) 27(3) N(9) 2794(7) 11162(8) 10573(4) 24(3) N(4) 2210(5) 9780(8) 11635(3) 26(4) N(3) 2374(6) 8892(8) 11824(4) 26(3) C(26) 1388(6) 9780(10) 9634(4) 76(8) C(17) 959(6) 11185(10) 11280(4) 60(5) C(13) 1724(6) 10095(19) 11948(4) 26(3) N(6) 2456(7) 8809(8) 10576(4) 19(3) C(101) -440(9) 11513(11) 9077(7) 67(5) N(101) 476(13) 12385(19) 9844(10) 200(16) C(102) 72(16) 11959(16) 9525(9) 101(7) Cu 2797(1) 9977(8) 10994(1) 33(1) N(1) 3774(6) 8692(7) 11632(4) 21(2) N(2) 3875(6) 9566(6) 11456(4) 32(3) C(22) 2320(8) 7478(9) 10119(4) 24(3) C(21) 2534(7) 7318(8) 10678(5) 30(3) C(1) 4461(11) 8305(11) 11788(6) 28(4) C(2) 5093(9) 8905(11) 11719(6) 29(3) C(3) 4665(8) 9695(9) 11519(6) 30(5) C(4) 5872(9) 8650(13) 11770(7) 53(5) C(23) 2266(9) 8430(10) 10077(6) 33(4) ___________________________________________________________________________ Table I.2 Anisotropic displacement parameters (Å2 x 103) for [Tpt-Bu,4CNCu]n. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ C(25) 56(9) 19(7) 20(6) 7(6) 4(6) 4(7) C(15) 24(7) 37(9) 21(7) -3(6) 8(6) 15(7) C(14) 41(8) 57(10) 29(7) 16(7) 17(7) 3(7) C(5) 48(13) 50(12) 56(12) -9(10) 12(10) -10(10) C(24) 38(10) 33(10) 27(9) -17(8) 8(8) -6(9) N(7) 48(9) 43(9) 91(10) 10(8) 1(8) 12(7) 176 N(8) 71(9) 53(8) 42(7) 7(6) 27(7) 1(7) C(16) 61(12) 27(10) 64(12) -20(9) 10(9) -2(10) C(8) 75(11) 72(12) 47(9) 34(8) 31(9) -3(9) C(18) 123(15) 45(10) 63(10) 19(8) 56(11) 45(10) C(6) 58(13) 39(11) 130(18) -1(12) 34(12) -2(11) C(7) 43(13) 34(13) 49(14) -4(9) 8(11) -5(11) B 55(11) 11(8) 17(8) 0(6) 13(7) 6(8) C(11) 39(9) 38(9) 28(8) -5(7) 23(7) -12(7) C(27) 85(12) 52(10) 52(9) 20(7) 44(9) 16(9) C(28) 169(19) 30(10) 23(8) 17(7) 12(10) 1(11) N(5) 29(7) 9(5) 43(6) 7(5) 5(5) 12(5) N(4) 32(5) 28(12) 19(5) 7(4) 8(4) 5(5) N(3) 35(7) 19(7) 26(6) 11(5) 13(5) 6(6) C(26) 58(9) 110(20) 60(9) 47(12) 7(7) 10(12) C(17) 68(12) 32(10) 88(13) -6(9) 31(11) 5(9) C(101) 56(12) 68(14) 67(12) 4(10) -12(10) -20(10) N(101) 137(19) 260(30) 170(20) -160(20) -54(17) 20(18) C(102) 130(20) 82(17) 103(18) 14(15) 45(17) 12(16) Cu 35(1) 34(1) 33(1) -21(3) 13(1) -9(4) N(1) 17(6) 15(6) 30(6) -1(4) 2(5) 9(5) N(2) 33(6) 24(6) 43(6) 9(5) 17(5) -1(5) C(22) 47(10) 12(6) 17(8) -1(6) 17(6) 9(7) C(21) 38(8) 6(7) 47(8) -9(6) 10(7) 4(6) C(1) 36(10) 27(11) 25(9) 6(7) 15(7) -2(9) C(2) 18(8) 30(10) 38(9) -2(7) 2(7) 6(8) C(3) 23(9) 37(14) 31(8) 6(6) 5(6) 5(7) C(4) 20(10) 58(12) 77(12) -14(11) 0(8) 10(10) C(23) 31(9) 35(10) 40(10) -9(8) 21(8) -4(8) ___________________________________________________________________________ Table I.3 Bond lengths [Å] for [Tpt-Bu,4CNCu]n. ___________________________________ C(25)-C(27) 1.523(17) C(25)-C(23) 1.525(18) C(25)-C(28) 1.527(17) C(25)-C(26) 1.585(16) C(15)-C(16) 1.476(19) C(15)-C(18) 1.480(15) C(15)-C(17) 1.489(15) C(15)-C(13) 1.58(3) C(14)-N(8) 1.136(13) C(14)-C(12) 1.430(15) C(5)-C(7) 1.50(2) C(5)-C(3) 1.503(19) C(5)-C(8) 1.53(2) C(5)-C(6) 1.57(3) C(24)-N(9)#1 1.134(16) C(24)-C(22) 1.410(19) N(7)-C(4) 1.176(17) B-N(3) 1.524(16) B-N(1) 1.540(17) B-N(5) 1.541(16) C(12)-C(11) 1.346(18) C(12)-C(13) 1.37(2) C(11)-N(3) 1.318(14) N(5)-C(21) 1.309(13) N(5)-N(6) 1.384(13) 177 N(9)-C(24)#2 1.134(16) N(9)-Cu 2.016(16) N(4)-C(13) 1.311(15) N(4)-N(3) 1.390(14) N(4)-Cu 2.025(8) N(6)-C(23) 1.323(18) N(6)-Cu 2.017(15) C(101)-C(102) 1.42(3) N(101)-C(102) 1.13(3) Cu-N(2) 2.054(11) N(1)-C(1) 1.29(2) N(1)-N(2) 1.370(12) N(2)-C(3) 1.335(16) C(22)-C(21) 1.367(16) C(22)-C(23) 1.399(19) C(1)-C(2) 1.42(2) C(2)-C(4) 1.36(2) C(2)-C(3) 1.40(2) ___________________________________ Table I.4 Bond angles [°] for [Tpt-Bu,4CNCu]n. __________________________________ C(27)-C(25)-C(23) 108.5(11) C(27)-C(25)-C(28) 109.2(10) C(23)-C(25)-C(28) 109.8(11) C(27)-C(25)-C(26) 108.2(10) C(23)-C(25)-C(26) 112.6(9) C(28)-C(25)-C(26) 108.4(10) C(16)-C(15)-C(18) 110.0(13) C(16)-C(15)-C(17) 111.4(11) C(18)-C(15)-C(17) 110.1(11) C(16)-C(15)-C(13) 108.4(11) C(18)-C(15)-C(13) 109.7(10) C(17)-C(15)-C(13) 107.2(10) N(8)-C(14)-C(12) 175.1(14) C(7)-C(5)-C(3) 109.9(12) C(7)-C(5)-C(8) 109.5(15) C(3)-C(5)-C(8) 109.5(16) C(7)-C(5)-C(6) 105.8(17) C(3)-C(5)-C(6) 110.2(15) C(8)-C(5)-C(6) 111.9(14) N(9)#1-C(24)-C(22) 176.9(17) N(3)-B-N(1) 111.0(10) N(3)-B-N(5) 111.4(11) N(1)-B-N(5) 107.6(9) C(11)-C(12)-C(13) 104.2(13) C(11)-C(12)-C(14) 122.6(12) C(13)-C(12)-C(14) 133.1(14) N(3)-C(11)-C(12) 109.8(13) C(21)-N(5)-N(6) 109.4(10) C(21)-N(5)-B 129.0(10) N(6)-N(5)-B 121.2(10) C(24)#2-N(9)-Cu 169.5(12) C(13)-N(4)-N(3) 104.1(13) C(13)-N(4)-Cu 148.8(14) N(3)-N(4)-Cu 107.0(7) C(11)-N(3)-N(4) 109.0(10) 178 C(11)-N(3)-B 128.9(13) N(4)-N(3)-B 122.0(9) N(4)-C(13)-C(12) 113(2) N(4)-C(13)-C(15) 116.3(14) C(12)-C(13)-C(15) 130.8(12) C(23)-N(6)-N(5) 105.9(11) C(23)-N(6)-Cu 144.9(10) N(5)-N(6)-Cu 107.8(8) N(101)-C(102)-C(101) 173(3) N(9)-Cu-N(6) 119.9(3) N(9)-Cu-N(4) 124.1(6) N(6)-Cu-N(4) 97.7(6) N(9)-Cu-N(2) 116.7(5) N(6)-Cu-N(2) 99.9(6) N(4)-Cu-N(2) 92.9(4) C(1)-N(1)-N(2) 110.1(11) C(1)-N(1)-B 128.5(12) N(2)-N(1)-B 121.1(10) C(3)-N(2)-N(1) 106.1(10) C(3)-N(2)-Cu 142.7(9) N(1)-N(2)-Cu 107.1(8) C(21)-C(22)-C(23) 104.2(12) C(21)-C(22)-C(24) 120.7(12) C(23)-C(22)-C(24) 135.1(13) N(5)-C(21)-C(22) 110.0(11) N(1)-C(1)-C(2) 110.8(14) C(4)-C(2)-C(3) 133.8(18) C(4)-C(2)-C(1) 124.3(16) C(3)-C(2)-C(1) 101.3(13) N(2)-C(3)-C(2) 111.6(12) N(2)-C(3)-C(5) 121.8(12) C(2)-C(3)-C(5) 126.6(14) N(7)-C(4)-C(2) 178(2) N(6)-C(23)-C(22) 110.5(13) N(6)-C(23)-C(25) 119.8(12) C(22)-C(23)-C(25) 129.7(13) __________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y-1/2,-z+2 #2 -x+1/2,y+1/2,-z+2 179 Table J.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for TpPhCu(NO3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Cu(1) 7092(1) 2178(1) 4652(1) 50(1) O(2) 9282(5) 2206(3) 4926(2) 56(1) N(2) 4983(6) 2340(3) 4519(3) 51(1) N(3) 5745(6) 618(3) 4037(3) 50(1) N(1) 4154(6) 1923(3) 3943(3) 56(1) N(6) 6902(6) 2351(3) 3478(3) 51(1) O(1) 8013(6) 3215(3) 5270(3) 71(1) N(7) 9273(8) 2919(4) 5284(3) 60(2) N(4) 6799(6) 891(3) 4619(3) 49(1) N(5) 5901(6) 1764(3) 3106(3) 51(1) C(27) 10710(9) 338(6) 6911(4) 78(2) O(3) 10410(6) 3269(4) 5584(3) 92(2) C(23) 7391(8) 184(4) 5001(3) 49(2) C(4) 4615(9) 3345(5) 5489(4) 65(2) C(24) 8513(7) 235(4) 5660(3) 47(2) C(19) 8654(8) 3943(4) 3722(3) 60(2) C(13) 7649(8) 2649(4) 2993(3) 51(2) C(2) 2675(8) 2729(5) 4413(4) 67(2) C(1) 2743(7) 2153(5) 3862(4) 64(2) C(3) 4079(8) 2852(4) 4809(3) 55(2) C(14) 8734(7) 3342(4) 3196(3) 52(2) C(22) 6729(8) -548(4) 4639(4) 64(2) C(25) 9582(8) -395(4) 5828(3) 58(2) C(7) 5708(13) 4273(9) 6740(7) 127(4) C(12) 7176(8) 2235(4) 2330(3) 62(2) C(29) 8561(9) 921(4) 6157(3) 63(2) C(11) 6081(8) 1685(4) 2412(3) 62(2) C(21) 5712(8) -256(4) 4047(4) 63(2) C(18) 9677(10) 4599(5) 3892(4) 78(2) C(28) 9657(10) 966(5) 6778(4) 75(2) C(9) 5595(9) 2986(5) 6066(4) 76(2) C(15) 9857(9) 3424(5) 2816(4) 67(2) C(26) 10674(9) -344(5) 6450(4) 73(2) B(1) 4875(9) 1264(5) 3502(4) 54(2) C(17) 10800(10) 4670(5) 3521(5) 86(3) C(16) 10858(9) 4091(6) 2989(5) 82(2) C(6) 4739(13) 4646(8) 6202(8) 142(5) C(8) 6152(11) 3446(7) 6700(5) 101(3) C(5) 4175(11) 4193(7) 5553(6) 118(4) ___________________________________________________________________________ Table J.2 Anisotropic displacement parameters (Å2 x 103) for TpPhCu(NO3). The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Cu(1) 50(1) 48(1) 53(1) -5(1) 12(1) -1(1) O(2) 57(3) 45(2) 66(3) -6(2) 13(2) 0(3) N(2) 48(3) 60(3) 45(3) 2(3) 7(3) 4(3) N(3) 50(4) 48(3) 49(3) 2(3) 1(3) -5(3) N(1) 50(4) 65(4) 50(3) 6(3) 2(3) 1(3) 180 N(6) 56(4) 50(3) 47(3) 0(3) 9(3) -3(3) O(1) 64(3) 70(3) 85(4) -19(3) 28(3) 0(3) N(7) 73(5) 63(4) 44(3) -5(3) 14(3) -13(4) N(4) 49(4) 49(3) 47(3) -3(3) 6(3) -5(3) N(5) 55(4) 57(3) 40(3) 4(3) 7(3) -1(3) C(27) 66(6) 105(6) 59(5) 9(5) 4(4) -9(6) O(3) 75(4) 110(4) 86(4) -20(3) 5(3) -33(4) C(23) 60(5) 42(4) 47(4) 1(3) 14(4) 0(4) C(4) 63(5) 64(4) 77(5) -4(4) 32(5) 2(4) C(24) 54(4) 44(3) 43(4) 4(3) 10(4) -6(4) C(19) 70(5) 57(4) 53(4) 0(3) 13(4) -1(4) C(13) 63(4) 58(4) 35(3) 10(3) 12(3) 11(4) C(2) 54(5) 74(5) 76(5) 8(4) 18(4) 13(5) C(1) 41(4) 86(5) 60(4) 17(4) -1(4) 3(5) C(3) 59(4) 58(4) 53(4) 11(4) 24(4) 10(4) C(14) 49(4) 59(4) 46(4) 15(3) 4(4) 8(4) C(22) 85(6) 45(3) 61(4) 6(3) 18(5) -3(4) C(25) 69(5) 55(4) 52(4) 13(3) 17(4) 7(4) C(7) 93(9) 147(11) 158(12) -77(9) 63(8) -20(8) C(12) 74(5) 71(4) 44(4) 1(4) 18(4) 1(5) C(29) 80(6) 53(4) 51(4) 6(3) 6(4) 1(4) C(11) 73(5) 68(4) 40(4) -7(3) 3(4) -2(4) C(21) 72(5) 56(4) 57(4) -5(4) 5(4) -18(4) C(18) 101(7) 56(4) 72(5) 3(4) 6(5) -8(5) C(28) 92(7) 76(5) 55(5) -6(4) 8(5) -12(5) C(9) 91(6) 84(5) 60(5) 0(5) 28(5) -9(5) C(15) 64(5) 81(5) 59(4) 6(4) 16(4) 8(5) C(26) 59(5) 91(6) 68(5) 28(5) 13(5) 18(5) B(1) 51(5) 62(5) 42(4) -5(4) -5(4) -6(4) C(17) 82(7) 70(5) 95(7) 35(5) -5(6) -18(5) C(16) 63(6) 108(7) 75(6) 35(5) 14(5) -2(6) C(6) 97(9) 119(9) 203(14) -80(10) 18(9) 32(8) C(8) 97(8) 143(8) 73(6) -19(6) 41(6) -30(8) C(5) 89(8) 106(7) 152(10) -36(7) 9(7) 18(6) ___________________________________________________________________________ Table J.3 Bond lengths [Å] for TpPhCu(NO3). ___________________________________ Cu(1)-N(2) 1.943(6) Cu(1)-O(2) 1.994(5) Cu(1)-N(4) 1.996(5) Cu(1)-O(1) 2.048(5) Cu(1)-N(6) 2.191(5) Cu(1)-N(7) 2.407(7) O(2)-N(7) 1.286(6) N(2)-N(1) 1.349(7) N(2)-C(3) 1.351(7) N(3)-C(21) 1.346(7) N(3)-N(4) 1.368(7) N(3)-B(1) 1.517(9) N(1)-C(1) 1.338(8) N(1)-B(1) 1.551(9) N(6)-C(13) 1.340(7) N(6)-N(5) 1.375(6) O(1)-N(7) 1.254(7) N(7)-O(3) 1.214(7) N(4)-C(23) 1.354(7) 181 N(5)-C(11) 1.356(7) N(5)-B(1) 1.537(9) C(27)-C(26) 1.357(10) C(27)-C(28) 1.360(10) C(23)-C(22) 1.389(8) C(23)-C(24) 1.440(8) C(4)-C(9) 1.375(10) C(4)-C(5) 1.379(11) C(4)-C(3) 1.476(9) C(24)-C(25) 1.376(8) C(24)-C(29) 1.403(8) C(19)-C(14) 1.367(8) C(19)-C(18) 1.377(9) C(13)-C(12) 1.385(8) C(13)-C(14) 1.461(9) C(2)-C(3) 1.372(9) C(2)-C(1) 1.374(9) C(14)-C(15) 1.394(9) C(22)-C(21) 1.372(9) C(25)-C(26) 1.377(9) C(7)-C(6) 1.332(15) C(7)-C(8) 1.345(13) C(12)-C(11) 1.359(9) C(29)-C(28) 1.377(10) C(18)-C(17) 1.381(11) C(9)-C(8) 1.385(10) C(15)-C(16) 1.378(10) C(17)-C(16) 1.348(10) C(6)-C(5) 1.405(13) ____________________________________ Table J.4 Bond angles [°] for TpPhCu(NO3). _________________________________ N(2)-Cu(1)-O(2) 168.7(2) N(2)-Cu(1)-N(4) 89.7(2) O(2)-Cu(1)-N(4) 99.0(2) N(2)-Cu(1)-O(1) 105.1(2) O(2)-Cu(1)-O(1) 63.67(19) N(4)-Cu(1)-O(1) 145.8(2) N(2)-Cu(1)-N(6) 89.7(2) O(2)-Cu(1)-N(6) 96.5(2) N(4)-Cu(1)-N(6) 96.18(19) O(1)-Cu(1)-N(6) 114.13(19) N(2)-Cu(1)-N(7) 136.5(2) O(2)-Cu(1)-N(7) 32.27(18) N(4)-Cu(1)-N(7) 125.5(2) O(1)-Cu(1)-N(7) 31.40(17) N(6)-Cu(1)-N(7) 108.37(19) N(7)-O(2)-Cu(1) 91.8(4) N(1)-N(2)-C(3) 107.5(5) N(1)-N(2)-Cu(1) 115.5(4) C(3)-N(2)-Cu(1) 136.4(5) C(21)-N(3)-N(4) 108.0(5) C(21)-N(3)-B(1) 130.8(6) N(4)-N(3)-B(1) 121.2(5) C(1)-N(1)-N(2) 110.1(6) C(1)-N(1)-B(1) 129.9(6) 182 N(2)-N(1)-B(1) C(13)-N(6)-N(5) C(13)-N(6)-Cu(1) N(5)-N(6)-Cu(1) N(7)-O(1)-Cu(1) O(3)-N(7)-O(1) O(3)-N(7)-O(2) O(1)-N(7)-O(2) O(3)-N(7)-Cu(1) O(1)-N(7)-Cu(1) O(2)-N(7)-Cu(1) C(23)-N(4)-N(3) C(23)-N(4)-Cu(1) N(3)-N(4)-Cu(1) C(11)-N(5)-N(6) C(11)-N(5)-B(1) N(6)-N(5)-B(1) C(26)-C(27)-C(28) N(4)-C(23)-C(22) N(4)-C(23)-C(24) C(22)-C(23)-C(24) C(9)-C(4)-C(5) C(9)-C(4)-C(3) C(5)-C(4)-C(3) C(25)-C(24)-C(29) C(25)-C(24)-C(23) C(29)-C(24)-C(23) C(14)-C(19)-C(18) N(6)-C(13)-C(12) N(6)-C(13)-C(14) C(12)-C(13)-C(14) C(3)-C(2)-C(1) N(1)-C(1)-C(2) N(2)-C(3)-C(2) N(2)-C(3)-C(4) C(2)-C(3)-C(4) C(19)-C(14)-C(15) C(19)-C(14)-C(13) C(15)-C(14)-C(13) C(21)-C(22)-C(23) C(26)-C(25)-C(24) C(6)-C(7)-C(8) C(11)-C(12)-C(13) C(28)-C(29)-C(24) N(5)-C(11)-C(12) N(3)-C(21)-C(22) C(19)-C(18)-C(17) C(27)-C(28)-C(29) C(4)-C(9)-C(8) C(16)-C(15)-C(14) C(27)-C(26)-C(25) N(3)-B(1)-N(5) N(3)-B(1)-N(1) N(5)-B(1)-N(1) C(16)-C(17)-C(18) C(17)-C(16)-C(15) C(7)-C(6)-C(5) C(7)-C(8)-C(9) 120.0(6) 105.9(5) 141.7(5) 109.3(3) 90.3(4) 124.6(6) 121.2(7) 114.2(6) 177.0(5) 58.3(3) 55.9(3) 108.5(5) 137.9(4) 113.5(4) 109.7(5) 129.7(6) 120.4(5) 120.9(8) 107.7(6) 123.4(6) 128.9(6) 118.1(8) 121.3(7) 120.6(8) 117.3(6) 120.9(6) 121.7(6) 121.3(7) 110.1(6) 120.2(5) 129.6(6) 107.7(7) 106.8(6) 107.8(6) 121.6(7) 130.2(7) 118.2(7) 122.6(6) 119.1(6) 106.7(6) 121.4(7) 122.1(12) 106.6(6) 120.8(7) 107.8(6) 108.9(6) 120.2(7) 119.7(7) 122.3(8) 119.4(7) 119.9(8) 110.4(6) 107.8(5) 108.6(6) 118.5(8) 122.2(8) 120.8(11) 118.0(11) 183 C(4)-C(5)-C(6) 118.8(10) _________________________________ Symmetry transformations used to generate equivalent atoms: 184 Table K.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ C(1) 8573(3) 1826(2) 4931(3) 20(1) C(2) 7681(3) 2244(2) 5465(3) 19(1) C(3) 7385(2) 1576(2) 6261(3) 20(1) C(4) 7095(3) 3147(2) 5187(3) 21(1) C(5) 6475(3) 1606(2) 7035(3) 24(1) C(6) 5665(3) 846(2) 7048(3) 33(1) C(7) 4821(3) 890(3) 7801(4) 46(1) C(8) 4797(3) 1673(3) 8531(4) 50(1) C(9) 5575(3) 2434(3) 8501(3) 44(1) C(10) 6416(3) 2408(2) 7747(3) 33(1) C(101) 11492(3) -337(2) 8071(3) 25(1) C(102) 12152(4) -540(3) 9473(3) 43(1) N(1) 8827(2) 957(2) 5387(2) 18(1) N(2) 8099(2) 816(2) 6193(2) 20(1) N(3) 6586(2) 3856(2) 4984(2) 25(1) N(101) 10965(2) -181(2) 6981(2) 20(1) O(1) 4753(3) 2796(2) 2066(4) 68(1) O(2) 3675(2) 1400(2) 1145(2) 45(1) O(3) 6028(3) 1482(2) 2047(3) 57(1) O(4) 4734(3) 1546(2) 3440(2) 51(1) O(5) 8427(3) 9317(2) 7949(2) 31(1) Cl(1) 4810(1) 1804(1) 2174(1) 32(1) Cu(01) 10000 0 5000 16(1) ___________________________________________________________________________ Table K.2 Anisotropic displacement parameters (Å2 x 103) for Ph,4CN )2Cu(CH3CN)2][ClO4]2}n. The anisotropic displacement factor exponent takes {[(Hpz the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ C(1) 20(1) 14(1) 27(1) 2(1) 12(1) 1(1) C(2) 19(1) 14(1) 26(1) 0(1) 9(1) 2(1) C(3) 18(1) 18(1) 25(1) -1(1) 9(1) 1(1) C(4) 20(1) 20(1) 25(1) -1(1) 11(1) -2(1) C(5) 18(1) 30(2) 27(1) 8(1) 11(1) 6(1) C(6) 27(2) 30(2) 45(2) 14(1) 17(1) 7(1) C(7) 26(2) 62(2) 57(2) 35(2) 22(2) 12(2) C(8) 33(2) 87(3) 43(2) 27(2) 28(2) 29(2) C(9) 39(2) 64(2) 33(2) 5(2) 18(2) 25(2) C(10) 31(2) 38(2) 35(2) -1(1) 17(1) 6(1) C(101) 21(1) 22(1) 35(2) -3(1) 12(1) 3(1) C(102) 49(2) 49(2) 26(2) -1(2) 7(2) 11(2) N(1) 19(1) 14(1) 25(1) 1(1) 12(1) 3(1) N(2) 22(1) 14(1) 28(1) 4(1) 13(1) 2(1) N(3) 26(1) 16(1) 35(1) 3(1) 14(1) 6(1) N(101) 20(1) 19(1) 24(1) 1(1) 10(1) 3(1) O(1) 63(2) 28(1) 116(3) -8(2) 35(2) -14(1) O(2) 42(1) 56(2) 39(1) -14(1) 18(1) -21(1) O(3) 37(1) 72(2) 72(2) -15(2) 31(1) 6(1) O(4) 58(2) 64(2) 40(1) -13(1) 26(1) -8(1) 185 O(5) 32(1) 25(1) 46(1) 5(1) 25(1) 2(1) Cl(1) 29(1) 29(1) 43(1) -13(1) 18(1) -6(1) Cu(01) 16(1) 9(1) 23(1) 0(1) 9(1) 3(1) ___________________________________________________________________________ Table K.3 Bond lengths [Å] for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n. __________________________________ C(1)-N(1) 1.330(3) C(1)-C(2) 1.392(4) C(2)-C(3) 1.385(4) C(2)-C(4) 1.421(4) C(3)-N(2) 1.339(3) C(3)-C(5) 1.466(4) C(4)-N(3) 1.134(4) C(5)-C(6) 1.386(4) C(5)-C(10) 1.389(4) C(6)-C(7) 1.391(4) C(7)-C(8) 1.369(6) C(8)-C(9) 1.372(6) C(9)-C(10) 1.387(4) C(101)-N(101) 1.124(4) C(101)-C(102) 1.443(4) N(1)-N(2) 1.351(3) N(1)-Cu(01) 1.983(2) N(3)-Cu(01)#1 2.347(2) N(101)-Cu(01) 2.019(2) O(1)-Cl(1) 1.424(3) O(2)-Cl(1) 1.437(2) O(3)-Cl(1) 1.416(2) O(4)-Cl(1) 1.427(3) Cu(01)-N(1)#2 1.983(2) Cu(01)-N(101)#2 2.019(2) Cu(01)-N(3)#3 2.347(2) Cu(01)-N(3)#4 2.347(3) ___________________________________ Table K.4 Bond angles [°] for {[(HpzPh,4CN)2Cu(CH3CN)2][ClO4]2}n. ________________________________ N(1)-C(1)-C(2) 109.4(2) C(3)-C(2)-C(1) 106.3(2) C(3)-C(2)-C(4) 125.7(2) C(1)-C(2)-C(4) 127.8(3) N(2)-C(3)-C(2) 106.2(2) N(2)-C(3)-C(5) 122.9(2) C(2)-C(3)-C(5) 130.9(2) N(3)-C(4)-C(2) 177.1(3) C(6)-C(5)-C(10) 119.9(3) C(6)-C(5)-C(3) 120.6(3) C(10)-C(5)-C(3) 119.5(3) C(5)-C(6)-C(7) 119.5(3) C(8)-C(7)-C(6) 120.3(3) C(7)-C(8)-C(9) 120.5(3) C(8)-C(9)-C(10) 120.1(3) C(9)-C(10)-C(5) 119.7(3) N(101)-C(101)-C(102) 179.3(3) C(1)-N(1)-N(2) 106.6(2) 186 C(1)-N(1)-Cu(01) 129.20(18) N(2)-N(1)-Cu(01) 124.15(16) C(3)-N(2)-N(1) 111.5(2) C(4)-N(3)-Cu(01)#1 156.4(2) C(101)-N(101)-Cu(01) 175.9(2) O(3)-Cl(1)-O(1) 109.37(18) O(3)-Cl(1)-O(4) 110.75(18) O(1)-Cl(1)-O(4) 108.79(19) O(3)-Cl(1)-O(2) 110.00(16) O(1)-Cl(1)-O(2) 109.73(19) O(4)-Cl(1)-O(2) 108.18(15) N(1)#2-Cu(01)-N(1) 180.00(12) N(1)#2-Cu(01)-N(101) 90.02(9) N(1)-Cu(01)-N(101) 89.98(9) N(1)#2-Cu(01)-N(101)#2 89.98(9) N(1)-Cu(01)-N(101)#2 90.02(9) N(101)-Cu(01)-N(101)#2 180.0 N(1)#2-Cu(01)-N(3)#3 91.00(9) N(1)-Cu(01)-N(3)#3 89.00(9) N(101)-Cu(01)-N(3)#3 90.32(9) N(101)#2-Cu(01)-N(3)#3 89.68(9) N(1)#2-Cu(01)-N(3)#4 89.00(9) N(1)-Cu(01)-N(3)#4 91.00(9) N(101)-Cu(01)-N(3)#4 89.68(9) N(101)#2-Cu(01)-N(3)#4 90.32(9) N(3)#3-Cu(01)-N(3)#4 180.0 ___________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,y+1/2,-z+1 #2 -x+2,-y,-z+1 #3 -x+3/2,y-1/2,-z+1 #4 x+1/2,-y+1/2,z 187 Table L.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for (Hpzt-Bu,4CN)4CoCl2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Co 0 0 0 33(1) Cl 477(1) 940(1) 1113(1) 41(1) N(2) 1353(4) -1605(3) 1103(2) 36(1) N(4) -2542(4) -1366(3) -163(2) 42(1) N(1) 745(4) -1553(3) 455(2) 37(1) N(3) -1886(4) -515(3) 193(2) 40(1) C(3) 1627(5) -2666(3) 1329(2) 38(1) C(2) 1149(5) -3347(3) 777(2) 41(1) C(5) 2299(5) -2948(4) 2029(2) 44(1) C(13) -3679(5) -1629(4) 58(3) 43(1) N(5) 1162(6) -5519(4) 731(3) 83(2) C(4) 1167(6) -4554(4) 753(3) 55(1) C(12) -3777(5) -885(4) 579(3) 47(1) C(1) 623(5) -2622(4) 250(2) 43(1) C(8) 2577(6) -1883(4) 2467(2) 56(2) C(14) -4841(6) -732(5) 957(3) 62(2) C(11) -2645(5) -227(4) 639(3) 48(1) N(6) -5674(6) -565(5) 1273(3) 83(2) C(15) -4487(6) -2626(4) -244(3) 62(2) C(7) 3604(6) -3541(5) 1965(3) 63(2) C(6) 1439(7) -3753(5) 2375(3) 60(2) C(16) -5844(7) -2560(8) -79(6) 105(3) C(18) -4384(12) -2784(10) -955(5) 139(5) C(17) -3855(12) -3678(6) 187(8) 143(4) C(21) -8460(30) -3670(20) -1753(15) 281(16) C(22) -6940(30) -4760(30) -2230(20) 288(19) C(23) -8046(19) -2830(20) -2184(11) 203(7) C(24) -6710(40) -3760(50) -2657(14) 330(30) C(25) -7540(60) -1240(70) -2760(40) 720(70) C(26) -8070(30) -4600(30) -1605(17) 299(15) C(27) -6910(50) -2550(70) -3030(40) 510(40) ___________________________________________________________________________ Table L.2 Anisotropic displacement parameters (Å2 x 103) for (Hpzt-Bu,4CN)4CoCl2. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Co 31(1) 35(1) 32(1) 1(1) 5(1) -3(1) Cl 45(1) 43(1) 34(1) -4(1) 5(1) -2(1) N(2) 43(2) 34(2) 30(2) -1(1) 3(2) -2(2) N(4) 30(2) 44(2) 53(2) -7(2) 11(2) -9(2) N(1) 38(2) 36(2) 37(2) -1(2) 1(2) -4(2) N(3) 37(2) 45(2) 39(2) -4(2) 7(2) -7(2) C(3) 35(3) 35(2) 42(2) 4(2) 5(2) -1(2) C(2) 42(3) 34(2) 47(3) -3(2) 2(2) -2(2) C(5) 51(3) 43(2) 37(2) 7(2) 3(2) -3(2) C(13) 33(3) 44(2) 55(3) -1(2) 14(2) -8(2) N(5) 109(5) 40(2) 87(4) -9(2) -29(3) 7(3) C(4) 62(4) 43(3) 54(3) -7(2) -8(3) 2(3) 188 C(12) 36(3) 55(3) 53(3) 2(2) 16(2) -5(2) C(1) 45(3) 41(2) 41(2) -6(2) 0(2) 1(2) C(8) 85(5) 52(3) 31(2) 2(2) 3(2) -7(3) C(14) 56(4) 66(3) 68(4) -6(3) 26(3) -10(3) C(11) 40(3) 54(3) 51(3) -5(2) 14(2) -7(2) N(6) 72(4) 92(4) 96(4) -25(3) 47(3) -18(3) C(15) 51(4) 54(3) 88(4) -18(3) 28(3) -20(3) C(7) 65(4) 72(3) 47(3) 3(3) -3(3) 17(3) C(6) 80(5) 53(3) 48(3) 12(2) 6(3) -14(3) C(16) 53(5) 115(7) 151(8) -54(6) 28(5) -40(5) C(18) 159(10) 163(10) 102(6) -62(7) 45(7) -119(9) C(17) 118(9) 57(4) 251(14) 30(6) 15(8) -20(5) C(21) 340(40) 190(20) 260(30) 29(19) -150(20) -40(20) C(22) 170(20) 280(30) 390(40) -110(30) -50(20) 100(20) C(23) 145(14) 250(20) 191(16) -27(15) -45(12) 16(15) C(24) 270(30) 510(70) 170(20) -110(30) -90(20) -140(40) C(25) 680(100) 520(100) 780(120) -130(100) -510(90) 190(80) C(26) 200(30) 280(30) 360(40) 30(30) -110(20) 0(30) C(27) 280(40) 650(120) 540(80) -180(70) -160(50) -150(60) ___________________________________________________________________________ Table L.3 Bond lengths [Å] for (Hpzt-Bu,4CN)4CoCl2. __________________________________ Co-N(3) 2.130(5) Co-N(3)#1 2.130(5) Co-N(1) 2.131(4) Co-N(1)#1 2.131(4) Co-Cl 2.449(4) Co-Cl#1 2.449(4) N(2)-C(3) 1.343(5) N(2)-N(1) 1.344(5) N(4)-N(3) 1.347(5) N(4)-C(13) 1.350(6) N(1)-C(1) 1.322(5) N(3)-C(11) 1.309(6) C(3)-C(2) 1.386(6) C(3)-C(5) 1.494(6) C(2)-C(1) 1.395(6) C(2)-C(4) 1.422(6) C(5)-C(8) 1.526(7) C(5)-C(6) 1.532(7) C(5)-C(7) 1.537(8) C(13)-C(12) 1.367(7) C(13)-C(15) 1.511(7) N(5)-C(4) 1.137(7) C(12)-C(11) 1.395(7) C(12)-C(14) 1.429(7) C(14)-N(6) 1.152(7) C(15)-C(18) 1.441(10) C(15)-C(16) 1.486(9) C(15)-C(17) 1.589(11) C(21)-C(26) 1.18(3) C(21)-C(23) 1.43(3) C(22)-C(24) 1.49(4) C(22)-C(25)#2 1.82(6) C(22)-C(26) 1.84(5) C(24)-C(27) 1.61(7) 189 C(25)-C(27) 1.78(7) C(25)-C(22)#3 1.82(6) _____________________________________ Table L.4 Bond angles [°] for (Hpzt-Bu,4CN)4CoCl2. __________________________________ N(3)-Co-N(3)#1 180.0(3) N(3)-Co-N(1) 87.57(18) N(3)#1-Co-N(1) 92.43(18) N(3)-Co-N(1)#1 92.43(18) N(3)#1-Co-N(1)#1 87.57(18) N(1)-Co-N(1)#1 180.0(3) N(3)-Co-Cl 91.97(16) N(3)#1-Co-Cl 88.03(16) N(1)-Co-Cl 89.62(14) N(1)#1-Co-Cl 90.38(14) N(3)-Co-Cl#1 88.03(16) N(3)#1-Co-Cl#1 91.97(16) N(1)-Co-Cl#1 90.38(14) N(1)#1-Co-Cl#1 89.62(14) Cl-Co-Cl#1 180.00(2) C(3)-N(2)-N(1) 114.0(4) N(3)-N(4)-C(13) 113.5(4) C(1)-N(1)-N(2) 105.0(4) C(1)-N(1)-Co 132.4(3) N(2)-N(1)-Co 122.1(3) C(11)-N(3)-N(4) 103.8(4) C(11)-N(3)-Co 134.7(3) N(4)-N(3)-Co 121.5(3) N(2)-C(3)-C(2) 104.0(4) N(2)-C(3)-C(5) 124.3(4) C(2)-C(3)-C(5) 131.7(4) C(3)-C(2)-C(1) 106.8(4) C(3)-C(2)-C(4) 126.7(5) C(1)-C(2)-C(4) 126.4(4) C(3)-C(5)-C(8) 111.5(4) C(3)-C(5)-C(6) 109.6(4) C(8)-C(5)-C(6) 109.2(4) C(3)-C(5)-C(7) 108.4(4) C(8)-C(5)-C(7) 108.9(5) C(6)-C(5)-C(7) 109.3(5) N(4)-C(13)-C(12) 105.2(4) N(4)-C(13)-C(15) 120.6(4) C(12)-C(13)-C(15) 134.1(4) N(5)-C(4)-C(2) 178.9(7) C(13)-C(12)-C(11) 105.3(4) C(13)-C(12)-C(14) 128.6(5) C(11)-C(12)-C(14) 126.0(5) N(1)-C(1)-C(2) 110.2(4) N(6)-C(14)-C(12) 177.1(6) N(3)-C(11)-C(12) 112.3(5) C(18)-C(15)-C(16) 115.5(8) C(18)-C(15)-C(13) 111.6(5) C(16)-C(15)-C(13) 111.0(5) C(18)-C(15)-C(17) 110.1(9) C(16)-C(15)-C(17) 104.1(8) C(13)-C(15)-C(17) 103.6(6) 190 C(26)-C(21)-C(23) 132(4) C(24)-C(22)-C(25)#2 146(4) C(24)-C(22)-C(26) 118(3) C(25)#2-C(22)-C(26) 83(4) C(22)-C(24)-C(27) 160(6) C(27)-C(25)-C(22)#3 161(8) C(21)-C(26)-C(22) 99(4) C(24)-C(27)-C(25) 131(8) _________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 -x-3/2,y-1/2,-z-1/2 #3 -x-3/2,y+1/2,-z-1/2 191 Table M.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Mn 0 0 0 17(1) S 3611(1) 2074(1) -583(1) 18(1) F(3) 1637(3) 4452(2) -1615(2) 51(1) O(2) 4219(2) 2036(2) -1980(2) 28(1) O(3) 2086(2) 1227(2) 115(2) 26(1) O(1) 4895(2) 1832(2) 239(2) 31(1) F(1) 4012(3) 5000(2) -1274(2) 55(1) O(4) -1820(3) 1631(2) 769(2) 28(1) F(2) 1947(3) 4231(2) 426(2) 46(1) N(2) 1332(2) 1895(2) -3164(2) 18(1) N(1) -91(2) 1272(2) -2247(2) 19(1) N(3) -1784(3) 1901(3) -6491(2) 28(1) C(1) -1205(3) 1238(3) -3005(2) 19(1) C(5) 2533(3) 2995(3) -5675(2) 21(1) C(2) -490(3) 1827(2) -4417(2) 17(1) C(3) 1150(3) 2255(2) -4477(2) 17(1) C(4) -1232(3) 1886(3) -5559(2) 20(1) C(6) 3210(4) 1875(3) -6524(3) 32(1) C(9) 2752(4) 4052(3) -767(3) 29(1) C(7) 1725(4) 4467(3) -6562(3) 34(1) C(8) 4033(4) 3376(4) -5175(3) 44(1) ___________________________________________________________________________ Table M.2 Anisotropic displacement parameters (Å2 x 103) for t-Bu,4CN )2Mn(CF3SO3)2·2H2O. The anisotropic displacement factor exponent takes the (Hpz form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Mn 18(1) 24(1) 7(1) -2(1) 0(1) -5(1) S 17(1) 27(1) 11(1) -5(1) -2(1) -4(1) F(3) 65(1) 45(1) 42(1) -6(1) -29(1) 17(1) O(2) 24(1) 48(1) 12(1) -12(1) 2(1) -6(1) O(3) 25(1) 32(1) 19(1) -5(1) 1(1) -13(1) O(1) 26(1) 48(1) 25(1) -13(1) -11(1) -1(1) F(1) 66(1) 36(1) 54(1) -7(1) 8(1) -27(1) O(4) 23(1) 43(1) 22(1) -16(1) -10(1) 5(1) F(2) 61(1) 41(1) 29(1) -15(1) 6(1) 6(1) N(2) 20(1) 27(1) 7(1) -3(1) 0(1) -9(1) N(1) 20(1) 24(1) 10(1) -1(1) 0(1) -8(1) N(3) 30(1) 38(1) 18(1) -9(1) -8(1) -2(1) C(1) 20(1) 22(1) 12(1) -3(1) -1(1) -6(1) C(5) 26(1) 27(1) 8(1) -3(1) 4(1) -10(1) C(2) 21(1) 19(1) 10(1) -3(1) -2(1) -2(1) C(3) 23(1) 18(1) 9(1) -3(1) -1(1) -4(1) C(4) 21(1) 23(1) 14(1) -4(1) -2(1) -4(1) C(6) 37(2) 33(1) 20(1) -9(1) 10(1) -4(1) C(9) 35(1) 29(1) 20(1) -6(1) -1(1) -4(1) C(7) 45(2) 26(1) 21(1) 1(1) 9(1) -4(1) C(8) 41(2) 76(2) 16(1) -9(1) 7(1) -36(2) ___________________________________________________________________________ 192 Table M.3 Bond lengths [Å] for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O. ____________________________________ Mn-O(4)#1 2.1494(19) Mn-O(4) 2.1494(19) Mn-O(3) 2.1673(17) Mn-O(3)#1 2.1673(17) Mn-N(1) 2.2721(19) Mn-N(1)#1 2.2721(19) S-O(1) 1.4203(18) S-O(2) 1.4367(17) S-O(3) 1.4493(17) S-C(9) 1.817(3) F(3)-C(9) 1.320(3) F(1)-C(9) 1.321(3) F(2)-C(9) 1.313(3) N(2)-C(3) 1.335(3) N(2)-N(1) 1.364(3) N(1)-C(1) 1.316(3) N(3)-C(4) 1.145(3) C(1)-C(2) 1.408(3) C(5)-C(3) 1.509(3) C(5)-C(8) 1.519(4) C(5)-C(7) 1.525(4) C(5)-C(6) 1.531(3) C(2)-C(3) 1.390(3) C(2)-C(4) 1.422(3) _______________________________________ Table M.4 Bond angles [°] for (Hpzt-Bu,4CN)2Mn(CF3SO3)2·2H2O. __________________________________ O(4)#1-Mn-O(4) 180.00(14) O(4)#1-Mn-O(3) 91.48(8) O(4)-Mn-O(3) 88.52(8) O(4)#1-Mn-O(3)#1 88.52(8) O(4)-Mn-O(3)#1 91.48(8) O(3)-Mn-O(3)#1 180.00(8) O(4)#1-Mn-N(1) 86.04(7) O(4)-Mn-N(1) 93.96(7) O(3)-Mn-N(1) 95.54(7) O(3)#1-Mn-N(1) 84.46(7) O(4)#1-Mn-N(1)#1 93.96(7) O(4)-Mn-N(1)#1 86.04(7) O(3)-Mn-N(1)#1 84.46(7) O(3)#1-Mn-N(1)#1 95.54(7) N(1)-Mn-N(1)#1 180.00(12) O(1)-S-O(2) 116.45(11) O(1)-S-O(3) 113.82(11) O(2)-S-O(3) 113.69(10) O(1)-S-C(9) 104.69(12) O(2)-S-C(9) 103.87(11) O(3)-S-C(9) 102.17(12) S-O(3)-Mn 148.69(11) C(3)-N(2)-N(1) 113.00(19) C(1)-N(1)-N(2) 105.40(18) C(1)-N(1)-Mn 130.22(15) N(2)-N(1)-Mn 122.13(14) N(1)-C(1)-C(2) 110.3(2) 193 C(3)-C(5)-C(8) 111.04(19) C(3)-C(5)-C(7) 108.6(2) C(8)-C(5)-C(7) 109.5(2) C(3)-C(5)-C(6) 108.64(19) C(8)-C(5)-C(6) 109.2(2) C(7)-C(5)-C(6) 109.9(2) C(3)-C(2)-C(1) 106.03(19) C(3)-C(2)-C(4) 126.4(2) C(1)-C(2)-C(4) 127.5(2) N(2)-C(3)-C(2) 105.28(19) N(2)-C(3)-C(5) 122.8(2) C(2)-C(3)-C(5) 131.9(2) N(3)-C(4)-C(2) 177.7(3) F(2)-C(9)-F(3) 108.3(2) F(2)-C(9)-F(1) 108.0(2) F(3)-C(9)-F(1) 108.2(2) F(2)-C(9)-S 111.26(18) F(3)-C(9)-S 110.08(18) F(1)-C(9)-S 110.86(19) ___________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z 194 Table N.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for (Hpzt-Bu,CN)2CuCl2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Cu 1569(1) 6627(1) 1226(1) 18(1) Cl(1) 386(1) 8628(1) 2021(1) 29(1) N(3) 32(2) 5728(2) 2653(2) 19(1) N(1) 3098(2) 7535(2) -180(2) 19(1) N(4) -214(2) 4578(2) 2501(2) 20(1) N(2) 2892(2) 8932(2) -475(2) 18(1) C(11) -848(2) 5966(2) 3878(2) 19(1) C(13) -1203(2) 4061(2) 3583(2) 18(1) C(12) -1643(2) 4940(2) 4515(2) 19(1) C(2) 5046(3) 8140(2) -1832(2) 20(1) C(1) 4424(3) 7037(2) -1019(2) 21(1) C(5) 4035(3) 10859(2) -1986(2) 22(1) C(15) -1678(3) 2795(2) 3645(3) 23(1) N(6) -3290(3) 4605(2) 7013(2) 32(1) C(14) -2593(3) 4774(2) 5890(2) 22(1) C(4) 6454(3) 8017(3) -2857(3) 25(1) N(5) 7577(3) 7924(2) -3682(2) 35(1) C(3) 4025(2) 9351(2) -1461(2) 18(1) C(6) 3978(3) 11222(3) -3454(3) 31(1) C(7) 5439(3) 11099(3) -1950(3) 32(1) C(8) 2702(3) 11779(3) -1098(3) 31(1) C(17) -3322(3) 3248(3) 3786(3) 32(1) C(18) -1394(3) 1714(3) 4881(3) 32(1) C(16) -799(3) 2194(3) 2348(3) 32(1) Cl(2) 2400(1) 4832(1) 103(1) 26(1) ___________________________________________________________________________ Table N.2 Anisotropic displacement parameters (Å2 x 103) for (Hpzt-Bu,CN)2CuCl2. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Cu 19(1) 14(1) 19(1) -4(1) 2(1) -7(1) Cl(1) 29(1) 17(1) 31(1) -10(1) 8(1) -9(1) N(3) 20(1) 13(1) 22(1) -5(1) -2(1) -6(1) N(1) 20(1) 14(1) 22(1) -3(1) -4(1) -6(1) N(4) 23(1) 14(1) 19(1) -5(1) -1(1) -7(1) N(2) 18(1) 14(1) 21(1) -5(1) -1(1) -6(1) C(11) 17(1) 15(1) 22(1) -4(1) -3(1) -4(1) C(13) 17(1) 15(1) 20(1) 0(1) -5(1) -3(1) C(12) 17(1) 17(1) 19(1) -2(1) -3(1) -4(1) C(2) 19(1) 20(1) 19(1) -4(1) -3(1) -7(1) C(1) 20(1) 19(1) 21(1) -5(1) -4(1) -4(1) C(5) 26(1) 18(1) 22(1) -1(1) -6(1) -10(1) C(15) 26(1) 16(1) 28(1) -2(1) -5(1) -10(1) N(6) 36(1) 28(1) 27(1) -8(1) 4(1) -14(1) C(14) 22(1) 18(1) 26(1) -5(1) -3(1) -7(1) C(4) 26(1) 21(1) 25(1) -5(1) -2(1) -9(1) N(5) 30(1) 32(1) 36(1) -11(1) 5(1) -10(1) C(3) 18(1) 20(1) 17(1) -3(1) -5(1) -7(1) 195 C(6) 40(2) 24(1) 25(1) 3(1) -10(1) -9(1) C(7) 34(2) 30(1) 37(2) 0(1) -8(1) -21(1) C(8) 38(2) 18(1) 35(2) -9(1) -4(1) -9(1) C(17) 27(1) 34(2) 38(2) -6(1) -8(1) -14(1) C(18) 39(2) 21(1) 34(2) 2(1) -8(1) -13(1) C(16) 40(2) 22(1) 35(2) -11(1) -5(1) -12(1) Cl(2) 31(1) 19(1) 24(1) -9(1) 5(1) -12(1) ___________________________________________________________________________ Table N.3 Bond lengths [Å] for (Hpzt-Bu,CN)2CuCl2. ____________________________________ Cu-N(1) 1.989(2) Cu-N(3) 1.997(2) Cu-Cl(1) 2.2541(12) Cu-Cl(2) 2.2595(12) N(3)-C(11) 1.322(3) N(3)-N(4) 1.355(3) N(1)-C(1) 1.335(3) N(1)-N(2) 1.356(3) N(4)-C(13) 1.329(3) N(2)-C(3) 1.334(3) C(11)-C(12) 1.407(3) C(13)-C(12) 1.393(3) C(13)-C(15) 1.513(3) C(12)-C(14) 1.428(3) C(2)-C(3) 1.391(3) C(2)-C(1) 1.401(3) C(2)-C(4) 1.429(3) C(5)-C(3) 1.508(3) C(5)-C(7) 1.530(3) C(5)-C(8) 1.533(4) C(5)-C(6) 1.534(3) C(15)-C(16) 1.522(4) C(15)-C(18) 1.531(4) C(15)-C(17) 1.531(4) N(6)-C(14) 1.143(3) C(4)-N(5) 1.143(3) ___________________________________ Table N.4 Bond angles [°] for (Hpzt-Bu,CN)2CuCl2. _________________________________ N(1)-Cu-N(3) 179.34(8) N(1)-Cu-Cl(1) 89.95(7) N(3)-Cu-Cl(1) 89.54(7) N(1)-Cu-Cl(2) 90.08(7) N(3)-Cu-Cl(2) 90.51(7) Cl(1)-Cu-Cl(2) 166.14(3) C(11)-N(3)-N(4) 105.54(18) C(11)-N(3)-Cu 133.10(16) N(4)-N(3)-Cu 121.25(15) C(1)-N(1)-N(2) 105.57(18) C(1)-N(1)-Cu 132.65(16) N(2)-N(1)-Cu 121.77(15) C(13)-N(4)-N(3) 113.38(19) C(3)-N(2)-N(1) 113.25(19) N(3)-C(11)-C(12) 109.8(2) 196 N(4)-C(13)-C(12) 105.1(2) N(4)-C(13)-C(15) 123.1(2) C(12)-C(13)-C(15) 131.8(2) C(13)-C(12)-C(11) 106.1(2) C(13)-C(12)-C(14) 127.6(2) C(11)-C(12)-C(14) 126.0(2) C(3)-C(2)-C(1) 106.8(2) C(3)-C(2)-C(4) 127.5(2) C(1)-C(2)-C(4) 125.6(2) N(1)-C(1)-C(2) 109.3(2) C(3)-C(5)-C(7) 109.6(2) C(3)-C(5)-C(8) 110.6(2) C(7)-C(5)-C(8) 108.5(2) C(3)-C(5)-C(6) 107.9(2) C(7)-C(5)-C(6) 110.3(2) C(8)-C(5)-C(6) 109.8(2) C(13)-C(15)-C(16) 109.9(2) C(13)-C(15)-C(18) 108.6(2) C(16)-C(15)-C(18) 109.5(2) C(13)-C(15)-C(17) 107.7(2) C(16)-C(15)-C(17) 110.2(2) C(18)-C(15)-C(17) 110.8(2) N(6)-C(14)-C(12) 176.4(3) N(5)-C(4)-C(2) 179.6(3) N(2)-C(3)-C(2) 105.1(2) N(2)-C(3)-C(5) 122.9(2) C(2)-C(3)-C(5) 132.0(2) ________________________________ Symmetry transformations used to generate equivalent atoms: 197 Table O.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for (HpzMe2)2CuCl2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Cu(1) 8834(1) 2224(1) 6218(1) 51(1) Cl(1) 8252(1) 907(2) 5453(1) 72(1) Cl(2) 10002(1) 1105(3) 6733(1) 71(1) N(1) 7990(3) 2607(6) 6800(2) 45(1) N(2) 8224(3) 2500(6) 7356(2) 49(1) N(3) 9060(3) 4412(6) 5900(2) 49(1) N(4) 8808(4) 4769(7) 5361(2) 55(1) C(1) 7152(4) 3172(7) 6743(3) 48(1) C(6) 9395(4) 5779(8) 6129(3) 53(2) C(8) 8966(4) 6321(8) 5242(3) 56(2) C(3) 7560(4) 2981(8) 7648(3) 54(2) C(2) 6873(4) 3405(9) 7265(3) 56(2) C(7) 9338(5) 6988(8) 5726(3) 62(2) C(4) 6676(5) 3442(11) 6175(3) 76(2) C(015) 9740(6) 5850(10) 6734(3) 76(2) C(016) 8739(6) 6992(10) 4665(3) 80(2) C(5) 7682(6) 3002(12) 8274(3) 84(3) ___________________________________________________________________________ Table O.2 Anisotropic displacement parameters (Å2 x 103) for (HpzMe2)2CuCl2. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Cu(1) 53(1) 51(1) 47(1) -2(1) -7(1) 7(1) Cl(1) 96(1) 54(1) 60(1) -17(1) -27(1) 12(1) Cl(2) 58(1) 89(1) 60(1) -8(1) -18(1) 33(1) N(1) 45(3) 50(3) 38(2) 4(2) -2(2) 7(2) N(2) 50(3) 53(3) 43(3) 3(2) -9(2) 6(2) N(3) 55(3) 52(3) 39(3) 2(2) -7(2) 0(2) N(4) 70(3) 57(3) 35(3) -4(2) -4(2) -3(3) C(1) 45(3) 48(3) 51(3) 2(3) 0(3) 8(3) C(6) 55(4) 54(4) 48(3) -5(3) -6(3) 5(3) C(8) 59(4) 58(4) 49(4) 9(3) -2(3) 0(3) C(3) 57(4) 55(4) 51(4) -2(3) 4(3) 6(3) C(2) 47(3) 62(4) 58(4) -5(3) 3(3) 13(3) C(7) 70(4) 49(4) 63(4) 6(3) -7(3) 0(3) C(4) 61(4) 105(6) 59(4) -9(4) -9(3) 36(4) C(015) 96(6) 66(5) 58(4) -9(4) -25(4) -6(4) C(016) 96(6) 84(6) 58(4) 21(4) 2(4) 11(5) C(5) 88(6) 108(7) 53(4) -7(4) 2(4) 21(5) ___________________________________________________________________________ Table O.3 Bond lengths [Å] for (HpzMe2)2CuCl2. ___________________________________ Cu(1)-N(3) 2.007(5) Cu(1)-N(1) 2.010(5) Cu(1)-Cl(1) 2.234(2) Cu(1)-Cl(2) 2.2392(19) 198 N(1)-C(1) 1.336(7) N(1)-N(2) 1.348(6) N(2)-C(3) 1.340(8) N(2)-H(2) 0.8600 N(3)-C(6) 1.333(8) N(3)-N(4) 1.343(6) N(4)-C(8) 1.341(9) N(4)-H(4) 0.8600 C(1)-C(2) 1.379(8) C(1)-C(4) 1.488(8) C(6)-C(7) 1.389(9) C(6)-C(015) 1.493(8) C(8)-C(7) 1.353(9) C(8)-C(016) 1.500(9) C(3)-C(2) 1.355(9) C(3)-C(5) 1.497(9) C(2)-H(2A) 0.9300 C(7)-H(7) 0.9300 C(4)-H(4A) 0.9600 C(4)-H(4B) 0.9600 C(4)-H(4C) 0.9600 C(015)-H(01A) 0.9600 C(015)-H(01B) 0.9600 C(015)-H(01C) 0.9600 C(016)-H(01D) 0.9600 C(016)-H(01E) 0.9600 C(016)-H(01F) 0.9600 C(5)-H(5A) 0.9600 C(5)-H(5B) 0.9600 C(5)-H(5C) 0.9600 __________________________________ Table O.4 Bond angles [°] for (HpzMe2)2CuCl2. __________________________________ N(3)-Cu(1)-N(1) 105.5(2) N(3)-Cu(1)-Cl(1) 101.13(15) N(1)-Cu(1)-Cl(1) 115.38(16) N(3)-Cu(1)-Cl(2) 115.41(16) N(1)-Cu(1)-Cl(2) 101.24(15) Cl(1)-Cu(1)-Cl(2) 118.03(9) C(1)-N(1)-N(2) 105.7(5) C(1)-N(1)-Cu(1) 129.7(4) N(2)-N(1)-Cu(1) 124.2(4) C(3)-N(2)-N(1) 111.7(5) C(3)-N(2)-H(2) 124.1 N(1)-N(2)-H(2) 124.1 C(6)-N(3)-N(4) 105.5(5) C(6)-N(3)-Cu(1) 132.7(4) N(4)-N(3)-Cu(1) 121.6(4) C(8)-N(4)-N(3) 112.2(5) C(8)-N(4)-H(4) 123.9 N(3)-N(4)-H(4) 123.9 N(1)-C(1)-C(2) 109.1(5) N(1)-C(1)-C(4) 120.3(6) C(2)-C(1)-C(4) 130.6(6) N(3)-C(6)-C(7) 109.3(6) N(3)-C(6)-C(015) 120.9(6) 199 C(7)-C(6)-C(015) 129.9(7) N(4)-C(8)-C(7) 105.9(6) N(4)-C(8)-C(016) 121.5(6) C(7)-C(8)-C(016) 132.6(7) N(2)-C(3)-C(2) 106.0(6) N(2)-C(3)-C(5) 120.8(6) C(2)-C(3)-C(5) 133.3(6) C(3)-C(2)-C(1) 107.5(6) C(3)-C(2)-H(2A) 126.2 C(1)-C(2)-H(2A) 126.2 C(8)-C(7)-C(6) 107.2(6) C(8)-C(7)-H(7) 126.4 C(6)-C(7)-H(7) 126.4 C(1)-C(4)-H(4A) 109.5 C(1)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 109.5 C(1)-C(4)-H(4C) 109.5 H(4A)-C(4)-H(4C) 109.5 H(4B)-C(4)-H(4C) 109.5 C(6)-C(015)-H(01A) 109.5 C(6)-C(015)-H(01B) 109.5 H(01A)-C(015)-H(01B) 109.5 C(6)-C(015)-H(01C) 109.5 H(01A)-C(015)-H(01C) 109.5 H(01B)-C(015)-H(01C) 109.5 C(8)-C(016)-H(01D) 109.5 C(8)-C(016)-H(01E) 109.5 H(01D)-C(016)-H(01E) 109.5 C(8)-C(016)-H(01F) 109.5 H(01D)-C(016)-H(01F) 109.5 H(01E)-C(016)-H(01F) 109.5 C(3)-C(5)-H(5A) 109.5 C(3)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 109.5 C(3)-C(5)-H(5C) 109.5 H(5A)-C(5)-H(5C) 109.5 H(5B)-C(5)-H(5C) 109.5 ________________________________ Symmetry transformations used to generate equivalent atoms: 200 Table P.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for TpPhCo(HpzPh,4CN)(NO3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Co 3194(1) 2242(1) 4938(1) 21(1) N(3) 3619(4) 160(4) 5193(3) 26(2) N(10) 3181(5) 4133(6) 4331(4) 40(2) O(1) 2703(3) 3395(4) 4254(3) 41(2) N(4) 3884(4) 1070(4) 5484(3) 24(1) N(5) 2059(4) 459(5) 4884(3) 27(2) N(2) 3359(3) 1550(4) 3814(3) 23(1) N(8) 3104(3) 2385(4) 6821(3) 28(2) N(1) 3046(4) 610(4) 3739(3) 27(2) O(3) 2943(5) 4901(4) 3977(4) 82(2) N(6) 2007(3) 1461(4) 5022(3) 28(2) N(7) 3108(3) 2905(4) 6092(3) 28(2) C(4) 3965(4) 2745(6) 2883(4) 28(2) C(14) 5105(4) 1719(6) 6435(5) 26(2) C(13) 4583(5) 916(5) 6045(4) 25(2) C(24) 1033(4) 2566(6) 5672(4) 33(2) N(9) 2241(5) 5360(5) 7945(4) 57(2) C(33) 2935(4) 2928(6) 7474(4) 29(2) C(23) 1292(5) 1582(6) 5409(4) 30(2) C(35) 2913(5) 2525(5) 8333(4) 30(2) C(1) 3041(4) 315(6) 2940(4) 32(2) C(11) 4124(5) -539(5) 5580(4) 29(2) C(5) 3685(5) 3322(6) 2183(5) 38(2) C(19) 5200(5) 2588(6) 6021(5) 39(2) C(16) 6064(5) 2308(8) 7589(5) 55(3) C(21) 1409(5) -12(7) 5182(5) 48(2) C(2) 3356(4) 1052(5) 2465(4) 29(2) C(12) 4728(5) -98(6) 6115(4) 31(2) O(2) 3866(4) 4044(7) 4776(3) 108(3) C(25) 718(4) 2694(7) 6454(4) 38(2) C(3) 3550(4) 1816(5) 3039(4) 23(2) C(32) 2799(5) 3867(6) 7162(5) 36(2) C(9) 4675(5) 3063(6) 3403(5) 35(2) C(6) 4087(5) 4195(6) 2021(5) 43(2) C(15) 5537(5) 1583(7) 7226(5) 46(2) C(34) 2498(6) 4687(7) 7589(5) 45(2) C(26) 508(5) 3621(7) 6713(6) 49(2) C(7) 4779(5) 4507(6) 2553(5) 45(2) B 2856(6) 43(7) 4525(5) 28(2) C(18) 5709(5) 3331(7) 6388(6) 53(3) C(29) 1084(5) 3365(6) 5164(5) 45(2) C(38) 2882(6) 1817(6) 9954(5) 52(3) C(39) 2153(6) 1985(8) 9458(5) 70(3) C(31) 2919(5) 3803(6) 6317(5) 40(2) C(17) 6152(6) 3192(8) 7176(6) 61(3) C(22) 903(5) 678(7) 5515(5) 49(3) C(28) 869(6) 4296(7) 5423(6) 61(3) C(8) 5076(5) 3952(6) 3251(5) 43(2) C(40) 2157(5) 2353(7) 8653(5) 57(3) C(27) 563(5) 4420(7) 6207(6) 59(3) C(36) 3665(5) 2342(7) 8834(5) 57(3) C(37) 3646(6) 1995(8) 9649(5) 75(4) 201 ___________________________________________________________________________ Table P.2 Anisotropic displacement parameters (Å2 x 103) for TpPhCo(HpzPh,4CN)(NO3). The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Co 22(1) 21(1) 20(1) 0(1) 2(1) 0(1) N(3) 36(4) 15(3) 27(4) -1(3) -1(3) -4(3) N(10) 44(5) 47(5) 30(4) 5(4) 16(4) 7(4) O(1) 53(4) 33(4) 39(3) 3(3) 10(3) -13(3) N(4) 27(4) 22(3) 21(3) -1(3) -4(3) -5(3) N(5) 22(4) 36(4) 23(3) -10(3) 7(3) -6(3) N(2) 20(3) 26(4) 24(3) -1(3) 3(3) -1(3) N(8) 39(4) 22(4) 21(3) 1(3) 2(3) 10(3) N(1) 26(4) 29(4) 25(3) -2(3) 1(3) 1(3) O(3) 136(7) 31(4) 82(5) 24(4) 33(5) 7(5) N(6) 28(4) 30(4) 25(3) -9(3) 2(3) 3(3) N(7) 24(3) 28(4) 31(3) 3(3) -3(3) 0(3) C(4) 22(4) 35(4) 26(4) 3(4) -1(3) 7(5) C(14) 17(4) 27(5) 33(4) -11(4) -2(3) 1(4) C(13) 26(4) 28(4) 22(4) 1(3) 7(3) 6(4) C(24) 24(4) 41(6) 34(4) -5(4) -1(3) 1(4) N(9) 93(7) 28(4) 53(5) 1(4) 29(5) 10(5) C(33) 35(4) 30(5) 23(4) -6(4) 7(3) -6(4) C(23) 19(4) 41(5) 32(4) -7(4) 6(4) -4(4) C(35) 36(4) 26(5) 27(4) -3(3) 4(4) 3(4) C(1) 27(4) 43(5) 26(4) -12(4) -5(3) 4(4) C(11) 37(5) 11(4) 38(5) -1(3) 3(4) 3(4) C(5) 40(5) 46(6) 27(4) 5(4) 10(4) 5(5) C(19) 32(5) 39(6) 47(5) -2(4) 6(4) -10(4) C(16) 44(6) 55(6) 58(6) -24(6) -30(5) 14(6) C(21) 44(6) 50(6) 51(6) -8(5) 16(5) -31(5) C(2) 28(5) 34(5) 24(4) -5(4) -1(3) 9(4) C(12) 33(5) 36(5) 21(4) 9(4) -4(3) 8(4) O(2) 32(4) 260(11) 32(4) 3(5) 3(3) -16(5) C(25) 30(4) 45(5) 39(4) -12(5) 7(3) -13(5) C(3) 13(4) 29(4) 28(4) 7(3) 1(3) 1(4) C(32) 56(6) 24(5) 29(5) -4(4) 6(4) 1(4) C(9) 31(5) 40(6) 34(4) 11(4) -1(4) -4(4) C(6) 48(6) 47(6) 36(5) 10(4) 11(4) 17(5) C(15) 40(5) 58(7) 36(5) 0(5) -8(4) 10(5) C(34) 64(6) 45(6) 28(5) -4(4) 11(4) 0(5) C(26) 36(5) 54(6) 59(6) -16(5) 17(5) 0(5) C(7) 50(6) 40(6) 48(5) 2(5) 18(5) -8(5) B 33(6) 22(5) 29(5) 0(4) 3(4) -5(5) C(18) 33(5) 42(6) 84(7) -8(6) 13(5) -6(5) C(29) 37(5) 48(6) 52(6) 17(5) 8(4) 23(5) C(38) 83(8) 43(6) 29(5) 3(4) -2(5) -4(6) C(39) 51(6) 123(10) 36(5) 20(6) 6(5) 3(7) C(31) 60(6) 28(5) 34(5) 5(4) 17(4) -7(5) C(17) 35(6) 54(7) 91(8) -25(6) -15(6) -6(6) C(22) 35(6) 64(7) 50(6) -17(5) 19(5) -24(5) C(28) 54(7) 61(7) 72(7) 19(6) 20(6) 25(6) C(8) 27(5) 51(6) 52(6) 5(5) 4(4) -1(5) C(40) 30(4) 95(8) 45(5) 26(6) 2(4) 7(6) 202 C(27) 47(6) 48(7) 83(8) 3(6) 16(6) 23(5) C(36) 32(5) 70(7) 66(6) 18(6) -6(4) -2(5) C(37) 65(7) 107(10) 49(6) 30(6) -18(6) -13(7) ___________________________________________________________________________ Table P.3 Bond lengths [Å] for TpPhCo(HpzPh,4CN)(NO3). __________________________________ Co-O(1) 2.016(5) Co-N(2) 2.060(5) Co-N(7) 2.061(6) Co-N(4) 2.065(6) Co-N(6) 2.163(6) N(3)-C(11) 1.346(8) N(3)-N(4) 1.371(7) N(3)-B 1.526(9) N(10)-O(3) 1.226(8) N(10)-O(2) 1.233(8) N(10)-O(1) 1.250(8) N(4)-C(13) 1.359(8) N(5)-C(21) 1.334(8) N(5)-N(6) 1.382(7) N(5)-B 1.537(9) N(2)-C(3) 1.347(8) N(2)-N(1) 1.370(7) N(8)-C(33) 1.322(8) N(8)-N(7) 1.357(7) N(1)-C(1) 1.331(8) N(1)-B 1.523(9) N(6)-C(23) 1.344(8) N(7)-C(31) 1.314(9) C(4)-C(9) 1.388(9) C(4)-C(5) 1.395(9) C(4)-C(3) 1.453(9) C(14)-C(19) 1.368(9) C(14)-C(15) 1.380(9) C(14)-C(13) 1.463(9) C(13)-C(12) 1.398(9) C(24)-C(29) 1.361(10) C(24)-C(25) 1.395(9) C(24)-C(23) 1.470(10) N(9)-C(34) 1.169(9) C(33)-C(32) 1.378(9) C(33)-C(35) 1.475(9) C(23)-C(22) 1.390(10) C(35)-C(40) 1.359(9) C(35)-C(36) 1.379(9) C(1)-C(2) 1.376(9) C(11)-C(12) 1.349(9) C(5)-C(6) 1.381(10) C(19)-C(18) 1.379(10) C(16)-C(15) 1.375(11) C(16)-C(17) 1.383(12) C(21)-C(22) 1.370(11) C(2)-C(3) 1.395(9) C(25)-C(26) 1.376(10) C(32)-C(31) 1.379(9) C(32)-C(34) 1.410(10) 203 C(9)-C(8) 1.394(10) C(6)-C(7) 1.373(10) C(26)-C(27) 1.359(11) C(7)-C(8) 1.384(10) C(18)-C(17) 1.383(11) C(29)-C(28) 1.382(11) C(38)-C(39) 1.342(10) C(38)-C(37) 1.363(11) C(39)-C(40) 1.376(10) C(28)-C(27) 1.391(11) C(36)-C(37) 1.382(10) ____________________________________ Table P.4 Bond angles [°] for TpPhCo(HpzPh,4CN)(NO3). ________________________________ O(1)-Co-N(2) 87.7(2) O(1)-Co-N(7) 94.9(2) N(2)-Co-N(7) 176.3(2) O(1)-Co-N(4) 168.8(2) N(2)-Co-N(4) 84.6(2) N(7)-Co-N(4) 92.4(2) O(1)-Co-N(6) 97.4(2) N(2)-Co-N(6) 90.9(2) N(7)-Co-N(6) 91.3(2) N(4)-Co-N(6) 90.9(2) C(11)-N(3)-N(4) 109.7(6) C(11)-N(3)-B 129.1(7) N(4)-N(3)-B 121.3(6) O(3)-N(10)-O(2) 123.7(9) O(3)-N(10)-O(1) 119.1(8) O(2)-N(10)-O(1) 117.3(8) N(10)-O(1)-Co 112.2(5) C(13)-N(4)-N(3) 106.3(6) C(13)-N(4)-Co 138.5(5) N(3)-N(4)-Co 115.1(4) C(21)-N(5)-N(6) 110.8(6) C(21)-N(5)-B 129.7(7) N(6)-N(5)-B 119.1(6) C(3)-N(2)-N(1) 106.4(5) C(3)-N(2)-Co 137.0(5) N(1)-N(2)-Co 115.1(4) C(33)-N(8)-N(7) 113.6(6) C(1)-N(1)-N(2) 109.3(6) C(1)-N(1)-B 130.4(7) N(2)-N(1)-B 119.9(6) C(23)-N(6)-N(5) 105.1(6) C(23)-N(6)-Co 137.3(5) N(5)-N(6)-Co 114.0(4) C(31)-N(7)-N(8) 103.3(6) C(31)-N(7)-Co 133.3(5) N(8)-N(7)-Co 122.6(4) C(9)-C(4)-C(5) 118.0(8) C(9)-C(4)-C(3) 121.1(7) C(5)-C(4)-C(3) 120.9(7) C(19)-C(14)-C(15) 119.1(8) C(19)-C(14)-C(13) 121.6(7) C(15)-C(14)-C(13) 119.3(7) 204 N(4)-C(13)-C(12) 108.5(7) N(4)-C(13)-C(14) 123.0(7) C(12)-C(13)-C(14) 128.3(7) C(29)-C(24)-C(25) 118.5(8) C(29)-C(24)-C(23) 121.4(7) C(25)-C(24)-C(23) 120.1(7) N(8)-C(33)-C(32) 105.7(6) N(8)-C(33)-C(35) 123.1(7) C(32)-C(33)-C(35) 131.2(7) N(6)-C(23)-C(22) 110.2(7) N(6)-C(23)-C(24) 120.7(7) C(22)-C(23)-C(24) 129.1(7) C(40)-C(35)-C(36) 118.8(7) C(40)-C(35)-C(33) 121.0(7) C(36)-C(35)-C(33) 120.1(7) N(1)-C(1)-C(2) 109.7(7) N(3)-C(11)-C(12) 108.7(6) C(6)-C(5)-C(4) 121.2(8) C(14)-C(19)-C(18) 121.0(8) C(15)-C(16)-C(17) 120.5(8) N(5)-C(21)-C(22) 107.8(7) C(1)-C(2)-C(3) 104.4(6) C(11)-C(12)-C(13) 106.8(7) C(26)-C(25)-C(24) 120.0(8) N(2)-C(3)-C(2) 110.2(7) N(2)-C(3)-C(4) 122.3(6) C(2)-C(3)-C(4) 127.3(6) C(33)-C(32)-C(31) 105.1(7) C(33)-C(32)-C(34) 127.2(7) C(31)-C(32)-C(34) 127.3(8) C(4)-C(9)-C(8) 121.1(7) C(7)-C(6)-C(5) 119.9(8) C(16)-C(15)-C(14) 120.4(8) N(9)-C(34)-C(32) 179.2(11) C(27)-C(26)-C(25) 121.4(8) C(6)-C(7)-C(8) 120.5(8) N(1)-B-N(3) 108.2(6) N(1)-B-N(5) 110.8(6) N(3)-B-N(5) 108.3(6) C(19)-C(18)-C(17) 120.0(9) C(24)-C(29)-C(28) 121.4(8) C(39)-C(38)-C(37) 119.4(8) C(38)-C(39)-C(40) 121.6(8) N(7)-C(31)-C(32) 112.4(7) C(16)-C(17)-C(18) 118.9(9) C(21)-C(22)-C(23) 106.1(7) C(29)-C(28)-C(27) 119.7(9) C(7)-C(8)-C(9) 119.3(8) C(35)-C(40)-C(39) 120.0(8) C(26)-C(27)-C(28) 118.9(9) C(35)-C(36)-C(37) 120.3(8) C(38)-C(37)-C(36) 119.9(9) __________________________________ Symmetry transformations used to generate equivalent atoms: 205 Table Q.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for TpPhCu(HpzPh,4CN)(NO3). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Cu(1) 10067(1) 7788(1) 1761(1) 11(1) B(1) 10459(1) 9993(2) 2140(1) 14(1) N(1) 11174(1) 8462(1) 1622(1) 14(1) N(2) 11248(1) 9404(1) 1938(1) 14(1) C(1) 12063(1) 9702(1) 1952(1) 16(1) C(2) 12528(1) 8952(1) 1639(1) 16(1) C(3) 11951(1) 8186(1) 1434(1) 14(1) C(4) 12100(1) 7237(1) 1015(1) 15(1) C(5) 12811(1) 6663(1) 1287(1) 19(1) C(6) 12960(1) 5785(2) 881(1) 23(1) C(7) 12411(1) 5468(2) 200(1) 23(1) C(8) 11709(1) 6029(2) -78(1) 22(1) C(9) 11558(1) 6913(1) 325(1) 18(1) N(3) 9508(1) 8939(1) 1103(1) 13(1) N(4) 9779(1) 9858(1) 1376(1) 13(1) C(10) 9396(1) 10546(1) 861(1) 16(1) C(11) 8863(1) 10089(1) 239(1) 15(1) C(12) 8960(1) 9075(1) 406(1) 13(1) C(13) 8579(1) 8254(1) -111(1) 14(1) C(14) 7791(1) 8379(2) -585(1) 20(1) C(15) 7454(1) 7635(2) -1122(1) 26(1) C(16) 7893(1) 6755(2) -1183(1) 26(1) C(17) 8669(1) 6615(2) -706(1) 22(1) C(18) 9010(1) 7361(1) -178(1) 18(1) N(5) 9985(1) 8587(1) 3010(1) 15(1) N(6) 10116(1) 9582(1) 2937(1) 15(1) C(19) 9791(1) 10071(2) 3571(1) 20(1) C(38) 9444(1) 9392(2) 4079(1) 21(1) C(21) 9581(1) 8472(1) 3710(1) 16(1) C(22) 9335(1) 7480(1) 3986(1) 17(1) C(23) 8555(1) 7335(2) 4311(1) 20(1) C(24) 8306(1) 6398(2) 4535(1) 24(1) C(25) 8833(2) 5592(2) 4443(1) 26(1) C(26) 9612(1) 5732(2) 4141(1) 26(1) C(27) 9866(1) 6668(2) 3914(1) 21(1) N(7) 8943(1) 7110(1) 1875(1) 13(1) N(8) 8211(1) 7640(1) 1862(1) 14(1) C(28) 7559(1) 7103(1) 2080(1) 14(1) C(29) 7884(1) 6160(1) 2257(1) 16(1) C(30) 8743(1) 6205(1) 2114(1) 16(1) C(31) 6691(1) 7500(1) 2092(1) 16(1) C(32) 6207(1) 7727(2) 1336(1) 24(1) C(33) 5379(1) 8072(2) 1346(2) 31(1) C(34) 5047(1) 8204(2) 2114(2) 29(1) C(35) 5531(1) 7984(2) 2861(2) 32(1) C(36) 6350(1) 7620(2) 2856(2) 28(1) C(37) 7443(1) 5335(1) 2563(1) 20(1) N(9) 7104(1) 4681(1) 2836(1) 25(1) N(10) 10688(1) 5806(1) 1834(1) 18(1) O(1) 10732(1) 6643(1) 2223(1) 17(1) O(2) 10232(1) 5726(1) 1152(1) 23(1) O(3) 11102(1) 5114(1) 2172(1) 31(1) 206 ___________________________________________________________________________ Table Q.2 Anisotropic displacement parameters (Å2 x 103) for TpPhCu(HpzPh,4CN)(NO3). The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Cu(1) 11(1) 10(1) 13(1) 1(1) 2(1) 0(1) B(1) 15(1) 12(1) 16(1) -2(1) 2(1) 0(1) N(1) 14(1) 13(1) 14(1) 1(1) 2(1) 0(1) N(2) 14(1) 13(1) 13(1) 0(1) 1(1) -3(1) C(1) 16(1) 18(1) 13(1) 2(1) -2(1) -4(1) C(2) 13(1) 21(1) 14(1) 2(1) 0(1) -2(1) C(3) 11(1) 17(1) 13(1) 4(1) 1(1) 2(1) C(4) 13(1) 16(1) 17(1) 5(1) 6(1) 1(1) C(5) 17(1) 23(1) 19(1) 6(1) 5(1) 2(1) C(6) 19(1) 23(1) 29(1) 10(1) 8(1) 8(1) C(7) 28(1) 17(1) 28(1) 1(1) 16(1) 2(1) C(8) 24(1) 23(1) 21(1) -3(1) 7(1) -3(1) C(9) 15(1) 21(1) 19(1) 3(1) 3(1) 2(1) N(3) 13(1) 10(1) 14(1) -1(1) 2(1) -2(1) N(4) 15(1) 10(1) 16(1) -1(1) 4(1) -1(1) C(10) 18(1) 11(1) 19(1) 2(1) 7(1) 1(1) C(11) 16(1) 15(1) 15(1) 2(1) 2(1) 3(1) C(12) 12(1) 14(1) 12(1) 1(1) 4(1) 1(1) C(13) 16(1) 16(1) 10(1) 1(1) 4(1) -2(1) C(14) 20(1) 20(1) 18(1) 3(1) 1(1) -1(1) C(15) 24(1) 32(1) 20(1) 2(1) -7(1) -7(1) C(16) 36(1) 24(1) 16(1) -3(1) -1(1) -11(1) C(17) 31(1) 18(1) 18(1) -2(1) 7(1) -2(1) C(18) 19(1) 20(1) 14(1) 0(1) 2(1) -1(1) N(5) 16(1) 15(1) 14(1) 0(1) 2(1) -1(1) N(6) 14(1) 14(1) 16(1) -3(1) 2(1) -2(1) C(19) 20(1) 20(1) 21(1) -8(1) 5(1) -2(1) C(38) 23(1) 24(1) 19(1) -6(1) 8(1) -3(1) C(21) 14(1) 21(1) 11(1) -2(1) 1(1) -2(1) C(22) 21(1) 21(1) 9(1) 0(1) 2(1) -2(1) C(23) 21(1) 23(1) 16(1) -2(1) 4(1) 0(1) C(24) 26(1) 30(1) 18(1) 0(1) 8(1) -8(1) C(25) 40(1) 21(1) 19(1) 5(1) 5(1) -6(1) C(26) 35(1) 24(1) 20(1) 6(1) 4(1) 7(1) C(27) 22(1) 27(1) 14(1) 4(1) 4(1) 3(1) N(7) 13(1) 12(1) 15(1) 0(1) 4(1) 2(1) N(8) 13(1) 11(1) 17(1) 2(1) 4(1) 2(1) C(28) 16(1) 13(1) 14(1) 0(1) 3(1) -1(1) C(29) 17(1) 14(1) 19(1) 1(1) 3(1) -2(1) C(30) 17(1) 13(1) 19(1) 0(1) 3(1) 0(1) C(31) 14(1) 13(1) 22(1) 2(1) 4(1) -2(1) C(32) 25(1) 27(1) 21(1) 2(1) 3(1) 4(1) C(33) 25(1) 32(1) 32(1) 4(1) -7(1) 6(1) C(34) 16(1) 27(1) 44(1) 4(1) 1(1) 5(1) C(35) 22(1) 44(1) 31(1) 2(1) 11(1) 10(1) C(36) 20(1) 39(1) 24(1) 6(1) 4(1) 6(1) C(37) 17(1) 15(1) 27(1) 0(1) 4(1) 1(1) N(9) 22(1) 16(1) 39(1) 3(1) 10(1) 0(1) N(10) 15(1) 18(1) 22(1) 5(1) 7(1) 3(1) 207 O(1) 17(1) 16(1) 19(1) 2(1) 2(1) 1(1) O(2) 22(1) 28(1) 21(1) -5(1) 2(1) 1(1) O(3) 34(1) 19(1) 40(1) 5(1) 0(1) 12(1) ___________________________________________________________________________ Table Q.3 Bond lengths [Å] for TpPhCu(HpzPh,4CN)(NO3). ____________________________________ Cu(1)-O(1) 1.9664(13) Cu(1)-N(1) 2.0033(15) Cu(1)-N(3) 2.0206(15) Cu(1)-N(7) 2.0229(15) Cu(1)-N(5) 2.2669(16) B(1)-N(6) 1.528(3) B(1)-N(2) 1.540(3) B(1)-N(4) 1.540(3) N(1)-C(3) 1.345(2) N(1)-N(2) 1.368(2) N(2)-C(1) 1.346(2) C(1)-C(2) 1.374(3) C(2)-C(3) 1.395(3) C(3)-C(4) 1.473(3) C(4)-C(9) 1.384(3) C(4)-C(5) 1.394(3) C(5)-C(6) 1.381(3) C(6)-C(7) 1.378(3) C(7)-C(8) 1.375(3) C(8)-C(9) 1.388(3) N(3)-C(12) 1.341(2) N(3)-N(4) 1.368(2) N(4)-C(10) 1.337(2) C(10)-C(11) 1.371(3) C(11)-C(12) 1.400(2) C(12)-C(13) 1.469(3) C(13)-C(14) 1.393(3) C(13)-C(18) 1.396(3) C(14)-C(15) 1.385(3) C(15)-C(16) 1.385(3) C(16)-C(17) 1.381(3) C(17)-C(18) 1.382(3) N(5)-C(21) 1.345(2) N(5)-N(6) 1.366(2) N(6)-C(19) 1.346(2) C(19)-C(38) 1.372(3) C(38)-C(21) 1.399(3) C(21)-C(22) 1.474(3) C(22)-C(27) 1.391(3) C(22)-C(23) 1.398(3) C(23)-C(24) 1.384(3) C(24)-C(25) 1.387(3) C(25)-C(26) 1.379(3) C(26)-C(27) 1.385(3) N(7)-C(30) 1.327(2) N(7)-N(8) 1.357(2) N(8)-C(28) 1.335(2) C(28)-C(29) 1.391(3) C(28)-C(31) 1.473(3) C(29)-C(30) 1.399(3) 208 C(29)-C(37) 1.427(3) C(31)-C(32) 1.384(3) C(31)-C(36) 1.385(3) C(32)-C(33) 1.389(3) C(33)-C(34) 1.384(3) C(34)-C(35) 1.369(3) C(35)-C(36) 1.384(3) C(37)-N(9) 1.140(2) N(10)-O(3) 1.229(2) N(10)-O(2) 1.237(2) N(10)-O(1) 1.287(2) __________________________________ Table Q.4 Bond angles [°] for TpPhCu(HpzPh,4CN)(NO3). __________________________________ O(1)-Cu(1)-N(1) 87.73(6) O(1)-Cu(1)-N(3) 169.57(6) N(1)-Cu(1)-N(3) 86.14(6) O(1)-Cu(1)-N(7) 92.84(6) N(1)-Cu(1)-N(7) 178.81(6) N(3)-Cu(1)-N(7) 93.15(6) O(1)-Cu(1)-N(5) 97.35(6) N(1)-Cu(1)-N(5) 90.62(6) N(3)-Cu(1)-N(5) 91.15(6) N(7)-Cu(1)-N(5) 90.35(6) N(6)-B(1)-N(2) 110.44(15) N(6)-B(1)-N(4) 109.02(15) N(2)-B(1)-N(4) 106.74(15) C(3)-N(1)-N(2) 107.11(14) C(3)-N(1)-Cu(1) 136.52(12) N(2)-N(1)-Cu(1) 115.06(11) C(1)-N(2)-N(1) 109.16(15) C(1)-N(2)-B(1) 129.42(15) N(1)-N(2)-B(1) 121.15(14) N(2)-C(1)-C(2) 108.69(16) C(1)-C(2)-C(3) 105.65(17) N(1)-C(3)-C(2) 109.38(16) N(1)-C(3)-C(4) 122.25(16) C(2)-C(3)-C(4) 128.21(17) C(9)-C(4)-C(5) 118.54(18) C(9)-C(4)-C(3) 120.94(17) C(5)-C(4)-C(3) 120.48(18) C(6)-C(5)-C(4) 120.40(19) C(7)-C(6)-C(5) 120.40(19) C(8)-C(7)-C(6) 119.86(19) C(7)-C(8)-C(9) 120.0(2) C(4)-C(9)-C(8) 120.83(18) C(12)-N(3)-N(4) 106.72(14) C(12)-N(3)-Cu(1) 137.53(12) N(4)-N(3)-Cu(1) 115.56(11) C(10)-N(4)-N(3) 109.44(15) C(10)-N(4)-B(1) 128.96(15) N(3)-N(4)-B(1) 121.52(14) N(4)-C(10)-C(11) 109.08(16) C(10)-C(11)-C(12) 105.05(17) N(3)-C(12)-C(11) 109.68(16) N(3)-C(12)-C(13) 123.03(16) 209 C(11)-C(12)-C(13) 127.18(17) C(14)-C(13)-C(18) 118.65(17) C(14)-C(13)-C(12) 119.88(17) C(18)-C(13)-C(12) 121.38(17) C(15)-C(14)-C(13) 120.36(19) C(16)-C(15)-C(14) 120.2(2) C(17)-C(16)-C(15) 120.12(19) C(16)-C(17)-C(18) 119.77(19) C(17)-C(18)-C(13) 120.91(19) C(21)-N(5)-N(6) 105.79(15) C(21)-N(5)-Cu(1) 137.62(13) N(6)-N(5)-Cu(1) 111.85(11) C(19)-N(6)-N(5) 110.34(15) C(19)-N(6)-B(1) 129.20(16) N(5)-N(6)-B(1) 119.74(14) N(6)-C(19)-C(38) 108.36(17) C(19)-C(38)-C(21) 105.11(17) N(5)-C(21)-C(38) 110.39(17) N(5)-C(21)-C(22) 120.77(16) C(38)-C(21)-C(22) 128.84(17) C(27)-C(22)-C(23) 118.79(18) C(27)-C(22)-C(21) 120.87(17) C(23)-C(22)-C(21) 120.33(17) C(24)-C(23)-C(22) 120.51(19) C(23)-C(24)-C(25) 120.04(19) C(26)-C(25)-C(24) 119.78(19) C(25)-C(26)-C(27) 120.5(2) C(26)-C(27)-C(22) 120.37(19) C(30)-N(7)-N(8) 105.24(14) C(30)-N(7)-Cu(1) 132.80(13) N(8)-N(7)-Cu(1) 120.88(11) C(28)-N(8)-N(7) 112.85(14) N(8)-C(28)-C(29) 105.72(16) N(8)-C(28)-C(31) 123.37(16) C(29)-C(28)-C(31) 130.91(17) C(28)-C(29)-C(30) 105.75(16) C(28)-C(29)-C(37) 126.92(18) C(30)-C(29)-C(37) 127.25(17) N(7)-C(30)-C(29) 110.44(16) C(32)-C(31)-C(36) 119.76(19) C(32)-C(31)-C(28) 120.02(18) C(36)-C(31)-C(28) 120.20(18) C(31)-C(32)-C(33) 120.0(2) C(34)-C(33)-C(32) 119.9(2) C(35)-C(34)-C(33) 120.0(2) C(34)-C(35)-C(36) 120.6(2) C(35)-C(36)-C(31) 119.8(2) N(9)-C(37)-C(29) 177.6(2) O(3)-N(10)-O(2) 123.09(17) O(3)-N(10)-O(1) 117.54(17) O(2)-N(10)-O(1) 119.36(15) N(10)-O(1)-Cu(1) 121.00(11) ___________________________________ Symmetry transformations used to generate equivalent atoms: 210 Table R.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Rh(1) 3649(1) 4394(1) 4118(1) 9(1) C(1) 6277(2) 5791(1) 3471(1) 12(1) O(1) 4747(1) 5061(1) 2967(1) 14(1) O(2) 7308(1) 6155(1) 4611(1) 15(1) C(2) 6986(2) 6364(1) 2592(1) 16(1) F(1) 6667(1) 7701(1) 2840(1) 32(1) F(2) 6146(1) 5661(1) 1349(1) 28(1) F(3) 8770(1) 6288(1) 2786(1) 28(1) C(3) 6583(2) 2723(1) 4556(1) 13(1) O(3) 4995(1) 2635(1) 3817(1) 15(1) O(4) 7542(1) 3772(1) 5456(1) 15(1) C(4) 7453(2) 1323(1) 4334(1) 19(1) F(4) 9255(1) 1515(1) 4843(1) 47(1) F(5) 6740(2) 547(1) 4846(1) 44(1) F(6) 7101(1) 599(1) 3089(1) 28(1) N(1) 1159(1) 3296(1) 2519(1) 12(1) N(2) 1046(1) 2776(1) 1250(1) 12(1) C(5) -694(1) 2357(1) 477(1) 11(1) C(6) -1198(2) 1837(1) -972(1) 13(1) C(7) 427(2) 1234(2) -1432(1) 23(1) C(8) -2828(2) 689(2) -1565(1) 27(1) C(9) -1724(2) 3104(2) -1388(1) 25(1) C(10) -1778(1) 2617(1) 1314(1) 13(1) C(11) -3729(2) 2402(1) 1006(1) 17(1) N(3) -5294(2) 2279(1) 817(1) 24(1) C(12) -550(2) 3200(1) 2566(1) 14(1) ___________________________________________________________________________ Table R.2 Anisotropic displacement parameters (Å2 x 103) for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4. The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Rh(1) 6(1) 11(1) 8(1) 2(1) 1(1) -1(1) C(1) 11(1) 15(1) 12(1) 5(1) 4(1) 2(1) O(1) 11(1) 19(1) 11(1) 5(1) 2(1) -1(1) O(2) 12(1) 20(1) 12(1) 5(1) 2(1) -3(1) C(2) 14(1) 20(1) 15(1) 8(1) 5(1) 1(1) F(1) 45(1) 23(1) 40(1) 17(1) 23(1) 8(1) F(2) 28(1) 40(1) 15(1) 10(1) 5(1) -6(1) F(3) 15(1) 47(1) 30(1) 22(1) 9(1) 3(1) C(3) 12(1) 14(1) 14(1) 4(1) 5(1) 2(1) O(3) 12(1) 13(1) 15(1) 2(1) 1(1) 1(1) O(4) 10(1) 15(1) 14(1) 2(1) 1(1) 2(1) C(4) 16(1) 16(1) 20(1) 3(1) 3(1) 4(1) F(4) 18(1) 25(1) 66(1) -5(1) -11(1) 9(1) F(5) 73(1) 28(1) 56(1) 28(1) 43(1) 23(1) F(6) 31(1) 23(1) 24(1) 0(1) 9(1) 10(1) N(1) 9(1) 17(1) 9(1) 2(1) 1(1) -1(1) N(2) 7(1) 17(1) 10(1) 2(1) 2(1) 0(1) 211 C(5) 7(1) 14(1) 10(1) 3(1) 1(1) 0(1) C(6) 10(1) 19(1) 9(1) 3(1) 2(1) 1(1) C(7) 18(1) 35(1) 14(1) 5(1) 8(1) 9(1) C(8) 23(1) 34(1) 15(1) -2(1) 3(1) -12(1) C(9) 28(1) 31(1) 18(1) 13(1) 7(1) 11(1) C(10) 7(1) 18(1) 11(1) 2(1) 2(1) 0(1) C(11) 11(1) 22(1) 13(1) 1(1) 4(1) 0(1) N(3) 12(1) 33(1) 19(1) 1(1) 5(1) -1(1) C(12) 9(1) 20(1) 11(1) 2(1) 2(1) -1(1) ___________________________________________________________________________ Table R.3 Bond lengths [Å] for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4. ___________________________________ Rh(1)-O(2)#1 2.0345(8) Rh(1)-O(3) 2.0352(8) Rh(1)-O(1) 2.0354(8) Rh(1)-O(4)#1 2.0400(8) Rh(1)-N(1) 2.2099(9) Rh(1)-Rh(1)#1 2.41695(16) C(1)-O(1) 1.2510(13) C(1)-O(2) 1.2561(13) C(1)-C(2) 1.5355(15) O(2)-Rh(1)#1 2.0345(8) C(2)-F(3) 1.3175(14) C(2)-F(1) 1.3264(14) C(2)-F(2) 1.3315(14) C(3)-O(3) 1.2510(13) C(3)-O(4) 1.2538(13) C(3)-C(4) 1.5400(16) O(4)-Rh(1)#1 2.0399(8) C(4)-F(4) 1.3153(15) C(4)-F(6) 1.3228(14) C(4)-F(5) 1.3239(16) N(1)-C(12) 1.3196(14) N(1)-N(2) 1.3573(12) N(2)-C(5) 1.3445(13) C(5)-C(10) 1.3980(14) C(5)-C(6) 1.5071(15) C(6)-C(7) 1.5261(16) C(6)-C(8) 1.5295(17) C(6)-C(9) 1.5351(17) C(10)-C(12) 1.4073(15) C(10)-C(11) 1.4217(15) C(11)-N(3) 1.1457(15) ____________________________________ Table R.4 Bond angles [°] for (Hpzt-Bu,4CN)2-Rh2(CF3COO)4. __________________________________ O(2)#1-Rh(1)-O(3) 89.04(3) O(2)#1-Rh(1)-O(1) 175.51(3) O(3)-Rh(1)-O(1) 92.10(3) O(2)#1-Rh(1)-O(4)#1 90.17(3) O(3)-Rh(1)-O(4)#1 175.68(3) O(1)-Rh(1)-O(4)#1 88.38(3) O(2)#1-Rh(1)-N(1) 91.47(3) O(3)-Rh(1)-N(1) 92.61(3) 212 O(1)-Rh(1)-N(1) 92.82(3) O(4)#1-Rh(1)-N(1) 91.66(3) O(2)#1-Rh(1)-Rh(1)#1 88.05(2) O(3)-Rh(1)-Rh(1)#1 87.79(2) O(1)-Rh(1)-Rh(1)#1 87.65(2) O(4)#1-Rh(1)-Rh(1)#1 87.93(2) N(1)-Rh(1)-Rh(1)#1 179.37(2) O(1)-C(1)-O(2) 129.19(10) O(1)-C(1)-C(2) 116.01(9) O(2)-C(1)-C(2) 114.78(10) C(1)-O(1)-Rh(1) 117.77(7) C(1)-O(2)-Rh(1)#1 117.25(7) F(3)-C(2)-F(1) 108.71(10) F(3)-C(2)-F(2) 107.62(10) F(1)-C(2)-F(2) 107.90(10) F(3)-C(2)-C(1) 111.33(9) F(1)-C(2)-C(1) 108.96(9) F(2)-C(2)-C(1) 112.20(10) O(3)-C(3)-O(4) 129.45(10) O(3)-C(3)-C(4) 114.55(10) O(4)-C(3)-C(4) 115.99(10) C(3)-O(3)-Rh(1) 117.60(7) C(3)-O(4)-Rh(1)#1 117.14(7) F(4)-C(4)-F(6) 107.34(11) F(4)-C(4)-F(5) 108.90(12) F(6)-C(4)-F(5) 107.83(11) F(4)-C(4)-C(3) 112.31(10) F(6)-C(4)-C(3) 111.00(10) F(5)-C(4)-C(3) 109.34(10) C(12)-N(1)-N(2) 105.74(9) C(12)-N(1)-Rh(1) 127.59(7) N(2)-N(1)-Rh(1) 125.91(7) C(5)-N(2)-N(1) 113.05(9) N(2)-C(5)-C(10) 104.88(9) N(2)-C(5)-C(6) 123.24(9) C(10)-C(5)-C(6) 131.74(9) C(5)-C(6)-C(7) 110.90(9) C(5)-C(6)-C(8) 110.36(9) C(7)-C(6)-C(8) 108.69(10) C(5)-C(6)-C(9) 107.12(9) C(7)-C(6)-C(9) 109.72(10) C(8)-C(6)-C(9) 110.04(11) C(5)-C(10)-C(12) 106.11(9) C(5)-C(10)-C(11) 128.59(10) C(12)-C(10)-C(11) 125.26(10) N(3)-C(11)-C(10) 176.56(13) N(1)-C(12)-C(10) 110.21(9) ___________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1 213 Table S.1 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2 x 103) for (pzPh,4CN)2Ni(cyclam). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ___________________________________________________________________________ x y z U(eq) ___________________________________________________________________________ Ni(1) 10000 5000 10000 19(1) N(1) 10306(1) 3879(1) 9266(1) 23(1) N(2) 10564(1) 6338(1) 9464(1) 22(1) N(3) 8274(1) 5308(1) 9551(1) 21(1) N(4) 8207(1) 6135(1) 9099(1) 22(1) N(5) 4261(2) 4829(1) 9003(1) 30(1) C(1) 10318(2) 2802(2) 9594(1) 26(1) C(2) 11371(2) 4100(2) 8871(1) 26(1) C(3) 11308(2) 5221(2) 8548(1) 28(1) C(4) 11519(2) 6207(2) 8985(1) 25(1) C(5) 10700(2) 7251(2) 9925(1) 25(1) C(6) 7226(2) 4828(1) 9583(1) 22(1) C(7) 6444(2) 5322(1) 9153(1) 20(1) C(8) 7113(2) 6154(1) 8857(1) 20(1) C(9) 6762(2) 6978(2) 8377(1) 21(1) C(10) 5794(2) 6824(2) 7969(1) 28(1) C(11) 5462(2) 7631(2) 7533(1) 35(1) C(12) 6088(2) 8598(2) 7495(1) 36(1) C(13) 7051(2) 8758(2) 7896(1) 33(1) C(14) 7385(2) 7959(2) 8333(1) 26(1) C(15) 5242(2) 5049(1) 9070(1) 22(1) ___________________________________________________________________________ Table S.2 Anisotropic displacement parameters (Å2 x 103) for (pzPh,4CN)2Ni(cyclam). The anisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. ___________________________________________________________________________ U11 U22 U33 U23 U13 U12 ___________________________________________________________________________ Ni(1) 16(1) 18(1) 22(1) 1(1) -3(1) 0(1) N(1) 20(1) 22(1) 27(1) -1(1) -1(1) -1(1) N(2) 21(1) 21(1) 24(1) 1(1) -2(1) -2(1) N(3) 20(1) 21(1) 23(1) 2(1) -4(1) 1(1) N(4) 19(1) 23(1) 23(1) 2(1) -4(1) 1(1) N(5) 23(1) 36(1) 32(1) 2(1) -3(1) -4(1) C(1) 25(1) 21(1) 33(1) -3(1) -5(1) 1(1) C(2) 21(1) 30(1) 27(1) -5(1) 2(1) -1(1) C(3) 24(1) 36(1) 24(1) 0(1) 0(1) -3(1) C(4) 20(1) 29(1) 26(1) 7(1) -1(1) -4(1) C(5) 24(1) 20(1) 33(1) 2(1) -6(1) -2(1) C(6) 22(1) 20(1) 23(1) 1(1) -2(1) 0(1) C(7) 17(1) 22(1) 21(1) -2(1) -2(1) 1(1) C(8) 17(1) 22(1) 20(1) -3(1) -1(1) 2(1) C(9) 19(1) 26(1) 19(1) -1(1) 2(1) 5(1) C(10) 25(1) 34(1) 24(1) 2(1) -2(1) 2(1) C(11) 31(1) 49(1) 24(1) 3(1) -5(1) 11(1) C(12) 47(1) 37(1) 25(1) 8(1) 3(1) 14(1) C(13) 44(1) 28(1) 27(1) 3(1) 5(1) 2(1) C(14) 28(1) 28(1) 22(1) -1(1) 1(1) 2(1) C(15) 24(1) 23(1) 20(1) 0(1) -1(1) 1(1) ___________________________________________________________________________ 214 Table S.3 Bond lengths [Å] for (pzPh,4CN)2Ni(cyclam). ____________________________________ Ni(1)-N(1)#1 2.0729(15) Ni(1)-N(1) 2.0729(15) Ni(1)-N(2) 2.0787(14) Ni(1)-N(2)#1 2.0787(14) Ni(1)-N(3)#1 2.2002(14) Ni(1)-N(3) 2.2003(14) N(1)-C(1) 1.482(2) N(1)-C(2) 1.484(2) N(2)-C(4) 1.476(2) N(2)-C(5) 1.477(2) N(3)-C(6) 1.329(2) N(3)-N(4) 1.380(2) N(4)-C(8) 1.339(2) N(5)-C(15) 1.154(3) C(1)-C(5)#1 1.526(3) C(2)-C(3) 1.529(3) C(3)-C(4) 1.527(3) C(5)-C(1)#1 1.526(3) C(6)-C(7) 1.393(3) C(7)-C(8) 1.410(3) C(7)-C(15) 1.416(3) C(8)-C(9) 1.471(2) C(9)-C(14) 1.397(3) C(9)-C(10) 1.397(3) C(10)-C(11) 1.389(3) C(11)-C(12) 1.384(3) C(12)-C(13) 1.386(3) C(13)-C(14) 1.383(3) _______________________________________ Table S.4 Bond angles [°] for (pzPh,4CN)2Ni(cyclam). __________________________________ N(1)#1-Ni(1)-N(1) 179.999(1) N(1)#1-Ni(1)-N(2) 85.27(6) N(1)-Ni(1)-N(2) 94.73(6) N(1)#1-Ni(1)-N(2)#1 94.73(6) N(1)-Ni(1)-N(2)#1 85.27(6) N(2)-Ni(1)-N(2)#1 180.0 N(1)#1-Ni(1)-N(3)#1 87.45(6) N(1)-Ni(1)-N(3)#1 92.55(6) N(2)-Ni(1)-N(3)#1 94.87(6) N(2)#1-Ni(1)-N(3)#1 85.13(6) N(1)#1-Ni(1)-N(3) 92.55(6) N(1)-Ni(1)-N(3) 87.45(6) N(2)-Ni(1)-N(3) 85.13(6) N(2)#1-Ni(1)-N(3) 94.87(6) N(3)#1-Ni(1)-N(3) 180.00(3) C(1)-N(1)-C(2) 113.92(14) C(1)-N(1)-Ni(1) 105.02(11) C(2)-N(1)-Ni(1) 114.70(11) C(4)-N(2)-C(5) 115.86(14) C(4)-N(2)-Ni(1) 119.76(11) C(5)-N(2)-Ni(1) 106.71(11) C(6)-N(3)-N(4) 108.00(14) C(6)-N(3)-Ni(1) 134.50(12) 215 N(4)-N(3)-Ni(1) 117.38(11) C(8)-N(4)-N(3) 108.39(14) N(1)-C(1)-C(5)#1 109.14(14) N(1)-C(2)-C(3) 111.43(15) C(4)-C(3)-C(2) 116.47(15) N(2)-C(4)-C(3) 111.48(15) N(2)-C(5)-C(1)#1 107.90(14) N(3)-C(6)-C(7) 110.30(16) C(6)-C(7)-C(8) 104.26(15) C(6)-C(7)-C(15) 126.05(17) C(8)-C(7)-C(15) 129.64(17) N(4)-C(8)-C(7) 109.05(15) N(4)-C(8)-C(9) 120.96(15) C(7)-C(8)-C(9) 129.95(16) C(14)-C(9)-C(10) 118.39(17) C(14)-C(9)-C(8) 119.82(16) C(10)-C(9)-C(8) 121.77(16) C(11)-C(10)-C(9) 120.47(19) C(12)-C(11)-C(10) 120.48(19) C(11)-C(12)-C(13) 119.48(18) C(14)-C(13)-C(12) 120.35(19) C(13)-C(14)-C(9) 120.82(18) N(5)-C(15)-C(7) 179.8(2) ___________________________________ Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+2 216
© Copyright 2025 Paperzz