1 Transport theory Course 16209 Prof. Dr. H. Ruhl and P. Böhl Exercise Sheet 1 May 05 , 2016 Problem 1: We know that the probability density C(x1 , . . . , xN , p1 , . . . , pN , t) = N Y δ 3 (xj − xj (t))δ 3 (pj − pj (t)) j=1 for a system of N classical point particles satisfies the Liouville-equation N N X ∂C ∂C X ∂C + + =0 vj ṗj ∂t ∂xj j=1 ∂pj j=1 Consider a force-free, non-interacting system of N point-particles where the initial positions x0,j and momenta p0,j are given by an arbitrary function f (x0,1 , . . . , x0,N , p0,1 , . . . p0,N ). Show that the averaged probability function Z Y N ρN (x1 , . . . , xN , p1 , . . . , pN , t) = d3 p0,j d3 x0,j C(x1 , . . . , xN , p1 , . . . , pN , t)f (x0,1 , . . . , x0,N , p0,1 , . . . , p0,N ) j=1 also satisfies the Liouville-equation. Hint: Integrate the equations of motion to obtain an explicit relation between the coordinates and momenta (xj (t), pj (t)) and the initial conditions (x0,j , p0,j ). Solution problem 1: For brevity we define X = (x1 , . . . , xN ) and P = (p1 , . . . , pN ). Since the system is force-free, we have dP =0 dt dX =0 dt → P(t) = P0 → X(t) = V0 t + X0 Now Z ρN (X, P) = d3N P0 d3N X0 f (X0 , P0 )δ 3N (X − (V0 t + X0 ))δ 3N (P − P0 )) = f (X − V0 t, P0 ) The Liouville equation in this case is given by: ∂C ∂C + V0 =0 ∂t ∂X For ρN we have: ∂ρN = −f (X − V0 t, P0 )V0 ∂t and therefore ∂ρN ∂ρN + V0 =0 ∂t ∂X 2 Problem 2: Consider the reduced s = 1 equation for hard spheres Z Z ∂t f (1) (~x1 , p~1 , t) + ~v1 · ∂~x1 f (1) (~x1 , p~1 , t) = d3 p2 dS12 ~n12 · (~v1 − ~v2 ) f (2) (~x1 , p~1 , ~x2 , p~2 , t) . The integration spheres. R dS12 is over the surface that fulfills the condition |~x1 − ~x2 | = σ, where σ is the diameter of the hard Show that in the limit N → ∞, σ → 0, and 4πσ 3 N/3V , where V is the box volume, it is obtained ∂t f (1) (~x1 , p~1 , t) + ~v1 · ∂~x1 f (1) (~x1 , p~1 , t) Z σ Z Z 2π h i 0 0 3 dbb f (2) (~x1 , p~1 , ~x2 , p~2 , t) − f (2) (~x1 , p~1 , ~x2 , p~2 , t) . dφ = d p2 |~v1 − ~v2 | 0 0 R Solution problem 2: We divide the surface integration into an integration over two hemispheres S + dS12 with 12 R ~n12 · (~v1 − ~v2 ) > 0 and S − dS12 with ~n12 · (~v1 − ~v2 ) < 0 and obtain 12 Z Z (1) (1) 3 ∂t f (~x1 , p~1 , t) + ~v1 · ∂~x1 f (~x1 , p~1 , t) = d p2 dS12 |~n12 · (~v1 − ~v2 )| f (2) (~x1 , p~1 , ~x2 , p~2 , t) + S12 Z − d3 p2 Z − S12 dS12 |~n12 · (~v1 − ~v2 )| f (2) (~x1 , p~1 , ~x2 , p~2 , t) . − + The points S12 are in-collisions points and points S12 out-collision points. We obtain further Z dS12 ~n12 · (~v1 − ~v2 ) f (2) (~x1 , p~1 , ~x2 , p~2 , t) − S12 = σ 2 |~v1 − ~v2 | Z 2π Z π dφ dθ sin θ cos θ 0 π/2 ×f (2) (~x1 , p~1 , ~x1 − σ ~n12 , p~2 , t) Z 2π Z π/2 = −σ 2 |~v1 − ~v2 | dφ dθ sin θ cos θ 0 0 ×f Z + S12 (2) (~x1 , p~1 , ~x1 − σ ~n12 , p~2 , t) , dS12 ~n12 · (~v1 − ~v2 ) f (2) (~x1 , p~1 , ~x2 , p~2 , t) = σ 2 |~v1 − ~v2 | Z 2π Z π/2 dφ 0 ×f dθ sin θ cos θ 0 (2) (~x1 , p~1 − ~n12 [~n12 · (~ p1 − p~2 )] , ~x1 − σ ~n12 , p~2 + ~n12 [~n12 · (~ p1 − p~2 )] , t) With the help of b = σ sin θ, where σ denotes the impact parameter, we obtain dθ sin θ cos θσ 2 = dbb. In the limit N → ∞, σ → 0, and 4πσ 3 N/3V , where V is the box volume, this leads to ∂t f (1) (~x1 , p~1 , t) + ~v1 · ∂~x1 f (1) (~x1 , p~1 , t) Z Z 2π Z σ h i 0 0 = d3 p2 |~v1 − ~v2 | dφ dbb f (2) (~x1 , p~1 , ~x2 , p~2 , t) − f (2) (~x1 , p~1 , ~x2 , p~2 , t) . 0 0
© Copyright 2025 Paperzz