SMA and ALMA Studies of Disk- and PlanetFormation around Low-mass Protostars Shigehisa Takakuwa (Kagoshima U. / ASIAA) Image Credit: ESO/L. Calçada Collaborators Hsi-Wei Yen (ASIAA —> ESO) Nagayoshi Ohashi (NAOJ / ASIAA) Yusuke Aso (U. of Tokyo) Ti-Lin Chou (NTU —> U. Chicago) Patrick Koch (ASIAA) Ruben Krasnopolsky (ASIAA) Paul T. P. Ho (ASIAA) Hauyu Baobab Liu (ESO) Naomi Hirano (ASIAA) Pingao Gu (ASIAA) ChinFei Lee (ASIAA) Evaria Puspitaningrum (ITB) Yuri Aikawa (Kobe U.) Masahiro N. Machida (Kyushu U.) Kazuya Saigo (Osaka Prefecture U.) Masao Saito (NRO / SOKENDAI) Kengo Tomida (Osaka U. / Princeton U.) Kohji Tomisaka (SOKENDAI / NAOJ) 0. Introduction Keplerian Disks are ubiquitous around T-Tauri Stars. (Rkep 100 - 800 AU, Disk Mass 0.0001 - 0.1 Msun) Sites of Planet Formation ̶> ``Protoplanetary Disk (ALMA HL Tau Image) How the Disks form around protostars, embedded in protostellar envelopes ? Our group ̶> Systematic SMA and ALMA Observations of Protostars. Table of Contents 1. SMA and ALMA Observations of Class I Protostars —> Ubiquity of Keplerian Disks embedded in Infalling Envelopes around Class I 2. High-Resolution ALMA Observations of Class 0 Protostars —> No Keplerian Disk or Large Keplerian Disk 3. ALMA Observations of Gas Gaps in HL Tau —> Evidence for planet formation in the Class I stage 1. SMA and ALMA Observations of Class I Protostars SMA+ASTE CS (7-6) Observations of L1551 IRS 5 (Chou, Takakuwa et al. 2014) !"#$%&'()*"+, -).%&'()*"+, 140 AU Gray: 0.9-mm Continuum High velocity ̶> Northwest - Southeast velocity gradient along the major axis of the continuum emission. Low velocity ̶> Extended, slight North - South velocity gradient. High-Velocity CS Emission in L1551 IRS 5 ̶> Keplerian Circumbinary Disk !"#$ M* 0.5 Msolar %&'() *(#$ !"#$ %&'() *(#$ rkep 64 AU Low-Velocity CS Emission in L1551 IRS 5 ̶> Infalling Envelope slower than the free-fall (<̶ M* derived from the Keplerian rotation) SMA+ASTE CS (7-6) P-V Diagrams of L1551 IRS 5 Inner Keplerian Disk ̶> Kep. Rot along maj ̶> No minor vel. grad. Outer Envelope ̶> r-1 Rotation (Momose et al. 1998) connect to inner Kep. @r 64 AU ̶> Slight minor vel. grad. Slower Infall than free-fall. Summary: SMA and ALMA Observations of Class I Protostars Tbol (K) M*(solar mass) Envelope L1551 NE 91 0.8 Slow Infall, Slow rotation L1551 IRS 5 92 0.5 Protostars TMC-1A 172 L1489 IRS 238 Slow Infall, r-1 rotation Rkep (AU) Our Publications 300 AU 64 AU Takakuwa et al. 2012, 2013, 2014, 2015 Takakuwa et al. 2004; Chou et al. 2014 0.64 Slow Infall, r-1 rotation 100 AU Yen et al. 2013; Aso et al. 2015 1.6 Freefall, r-1 rotation 300 AU Yen et al. 2013, 2014 • Large-Scale (r>~100 AU) Keplerian Disks. • r-1 rotation in the Infalling Envelopes, Envelope rotation connects smoothly to the Keplerian rotation in the disks. • Infalling velocity ~3 times slower than free-fall. Keplerian Disks are well developed at the Class I stage. 2. High-Resolution ALMA Observations of Class 0 Protostars B335 in C18O (2-1) (Yen, Takakuwa, et al. 2015) Contour mom0 Color mom1 Clear Velocity gradient along the envelope minor axis ̶> Infalling Motion. No Velocity gradient along the major axis at 0.35 beam. P-V Modeling of the C18O (2-1) Emission in B335 Contour: Obs Color: Model Infall (Freefall) to the Protostar with 0.05 Msun (Vinfall 2.0 km s-1 at r = 10 AU) No Rotation, Upper limit of Rkep < 3 AU. B335 is an early Class 0 source. ̶> Disk Formation has not proceeded much ? (a) 12 CO (2-1) (a) 12 CO (2-1) Our Latest ALMA Observations of Class 0 Protostars at ~0.4” resolution (Yen et al. 2016b) IRAS 16253-2429 IRAS 15398-3559 (d) C18O (2-1) No clear velocity gradient along the major axis, but along the minor axis (e) -45) (d)SO C18(5 O 6(2-1) Clear velocity gradient both along the major and minor axis Lupus 3 MMS (e)(d) SOC18 (5O (2-1) 6-4 5) Velocity gradient primarily along the major axis P-V Diagrams along the major axis & the Rotational Profiles (a) (b) r-0.5 —> Keplerian!! Lupus 3 MMS Lupus 3 MMS (c) (d) r-1 —> Conserved Specific Angular Momentum IRAS 15398-3559 (e) IRAS 16253-2429 IRAS 15398-3559 Observed (black) and Model (Red) P-V Diagrams Major axis (a) Minor axis (b) —> Keplerian Disk Lupus 3 MMS (c) (d) —> Infall + r-1 Rotation IRAS 15398-3559 (e) (f) —> Infall only IRAS 16253-2429 Our ALMA Results of Class 0 Protostars Protostars Tbol (K) M*(solar mass) Envelope Rkep (AU) Our Publications B335 31 0.05 Infall, slow rotation <3 Yen et al. 2010, 2011, 2013, 2015a, b IRAS 16293-2429 36 0.03 Infall, slow rotation <6 Yen et al. 2016 Lupus 3 MMS 39 0.3 Keplerian Disk only 130 Yen et al. 2016 L1527 IRS 59 0.3 Slow Infall, r-1 rotation 54 0.01 Infall, r-1 rotation <20 IRAS 15398-3559 61 Class 0 with Keplerian Disks Yen et al. 2013, 2015a; Ohashi et al. 2014 Yen et al. 2016 Keplerian Disk Radii v.s. Protostellar Mass L1455 IRS 1 Class 0 VLA1623 Lupus 3 MMS HH212 L1527 IRS IRAS 15398-3559 Class I Rd~M* IRAS 16293-2429 B335 unresolved, inferred disks Rd~M*3 Our results + the other literatures Two groups of Class 0: with r~100 AU scale disks, without any disks (r< 20 AU) —> Rapid Growth of Disks within the Class 0 phase ? Summary: High-Resolution ALMA Observations of Class 0 Protostars Two Groups of Class 0 with large (~100 AU) Keplerian Disks, and without any Keplerian Disks (r< 20 AU). The radii of the identified Keplerian Disks around Class 0 appear to be comparable to those around Class I, while the protostellar mass larger in Class I. Well-developed Keplerian Disks, i.e., protoplanetary Disks, have already been formed in the Class 0 stage ? Planet Formation starts at Class I ? 3. ALMA Observations of Gas Gaps in HL Tau (Yen et al. 2016a; ALMA press release May 25, 2016) The dust gaps in the disk induced numerous discussions. Sub-Jovian Planets (Dipierro et al. 2015; Kanagawa et al. 2015; Tamayo et al. 2015; Jin et al. 2016). Secular Gravitational Instability (Takahashi & Inutsuka 2014) Pebble growths (Zhang et al. 2015) Dust aggregates (Okuzumi et al. 2015) Gas Distribution (~100×dusts) must be a key!! ALMA partnership et al. 2015 Obtaining High-Resolution HCO+ (1-0) Radial Profile in HL Tau (from the same ALMA Long Baseline Data) Intensity radius1 radius2 radius3 3 Annular Averaging ̶>Higher S/N Ratio 2 1 radius Annular Averaged Image with the high resolution Note: Azimuthal information has been lost. HCO+ Radial Profile at 0.07 (= 10 AU) resolution in HL Tau N (HCO+) (1016 cm-2) Dust Gaps Blue: HCO+; Red: Dust 2-color image Dust Rings 69 AU 28 AU ( Neptune Orbit) Gas Gap Gas Gap Radius (AU) Two Gas Gaps at similar locations to those of Dusts —> The Gaps are “real” gaps of materials, not just change of dust properties. In particular, around the inner gap at ~Neptune orbit, the surface density is high enough to produce planets. From the depths and widths, 0.8 MJ planet 2.1 MJ planet Direct Imaging of Gas Gaps without annular averaging (Our submitted Cycle 4 Proposal) (a) (b) HCO+ (3-2) HCO+ (4-3) HCO+ (1-0) HCO+ (3-2) HCO+ (4-3) At the same resolution, brightness sensitivities of the higher transitions are better (i.e., TB~freq-2×S). 2 mJy / 0.07”—> 62.7 K for (1-0), 7.0 K for (3-2), & 3.9 K for (4-3) Direct Imaging of the Gas Gaps Feasible!! Concluding Remarks: SMA and ALMA Studies of Diskand Planet-Formation around Low-mass Protostars Rapid (<106 yr) formation of Keplerian Disks in the Class 0 stage. Class I Keplerian Disks are ubiquitous. Infalling Envelope often exhibits r-1 rotation, and the rotation connects smoothly to the Keplerian Disks. The infalling velocity ~3 time slower than free-fall. Planet formation may start at the Class I stage. Imaging of gas gaps in Class I Disks, promising sign of planet formation, is feasible.
© Copyright 2025 Paperzz