!"#$%&$'()*'+,&-./,'01' 2,3-456$'7"%/8'+93'958':4;<%5=' >4/&,'?/4@;,A$' :.AA,/':,$$%45'(*'BC((' ' 7",'D.%E'3%;;'&4AA,5&,'9-'F1GG')HI' J,#'K.,$L45$1'MN%$&.$$'3%-"'5,%="@4/$' @,O4/,'D.%EP' (P'Q"9-'%$'9'54/A9;'O4/&,R' BP'Q"9-'%$'-",'-"%/8';93'?9%/'4O'-",'54/A9;' O4/&,R' GP'S43'84'#4.'T543'3",5'$4A,-"%5='%$'9-' ,D.%;%@/%.AR' UP'Q"9-'"9??,5$'-4'95')-3448'A9&"%5,' 3%-"',D.9;'A9$$,$R' VP'Q"9-'%$'9'&45-9&-'O4/&,R' WP'N4'#4.'3,%="'A4/,'=4%5='.?'4/'=4%5=' 8435'%5'95'9&&,;,/9L5=',;,<9-4/R '' X,98%5='K.%E'YVZ(' • Q"9-'%$'9'54/A9;'O4/&,R' '' )P )'O4/&,'-"9-'%$'?,/?,58%&.;9/'-4'-",'A4L45' [P ')'O4/&,'-"9-'84,$'54-'5,,8'-4'@,'@/4T,5'.?'%5-4' &4A?45,5-$'' \P 7",'-"%/8';93'?9%/'4O'-",'O4/&,'4O'=/9<%-#' NP )'O4/&,'-"9-'4??4$,$'-",'O4/&,'4O'=/9<%-#' ]P )'&45-9&-'O4/&,'@,-3,,5'95'4@^,&-'958'-",' $./O9&,'%-'%$'?;9&,8'45' ' X,98%5='K.%E'YVZB' • Q"9-'%$'-",'-"%/8';93'?9%/'4O'-",'54/A9;'O4/&,R' '' )P'7",'O4/&,'4O'=/9<%-#' [P'7",'O4/&,'4O'O/%&L45' \P'7",'9@54/A9;'O4/&,' NP'7",'?9/9;;,;'O4/&,' ]P'245,'4O'-",'9@4<,' X,98%5='K.%E'YVZG' • S43'84'#4.'T543'3",5'$4A,-"%5='%$'9-' ,D.%;%@/%.AR' '' )P'_-'84,$'54-'"9<,'9'O4/&,'45'%-' [P'_-'84,$'54-'"9<,'9'5,-'O4/&,'45'%-' \P'7",'$.A'4O'-",'O4/&,$'%5'-",'`'8%/,&L45',D.9;'-",' $.A'4O'-",'O4/&,$'%5'-",'#'8%/,&L45' NP'_-'"9$'-"%/8';93'?9%/$'O4/'9;;'4O'%-$'O4/&,$' ]P');;'4O'-",'O4/&,$'45'%-'9/,',D.9;'%5'A9=5%-.8,' X,98%5='K.%E'YVZU' • Q"9-'"9??,5$'-4'95')-3448'A9&"%5,'3%-"',D.9;' A9$$,$R' )P _-'A4<,$'$4'-"9-'-",'A9$$,$'9/,'9-'-",'$9A,'",%="-' [P _-'A4<,$'$4'-"9-'-",'A9$$'-"9-'%$';43,/'8435'O9;;$'-4' -",'=/4.58' \P _-'A4<,$'$4'-"9-'-",'A9$$'-"9-'%$'"%=",/'.?'O9;;$'-4'-",' =/4.58' NP _-'84,$'54-'A4<,' ]P )5')-3448'A9&"%5,'34.;8'5,<,/'"9<,',D.9;'A9$$,$' X,98%5='K.%E'YVZV' • Q"9-'%$'9'&45-9&-'O4/&,R' '' )P')'O4/&,'@,-3,,5'-34'4@^,&-$'-"9-'9/,'A4<%5='9$'45,' [P')'O4/&,'@,-3,,5'-34'4@^,&-$'-"9-'9/,'&455,&-,8'@#'9' /4?,' \P')'O4/&,'@,-3,,5'-34'4@^,&-$'-"9-'9/,'?.;;%5='45',9&"' 4-",/' NP')'O4/&,'@,-3,,5'-34'4@^,&-$'-"9-'9/,'?.$"%5='45',9&"' 4-",/' ]P'245,'4O'-",'9@4<,' X,98%5='K.%E'YVZW' • N4'#4.'3,%="'A4/,'=4%5='.?'4/'=4%5='8435'%5'95' 9&&,;,/9L5=',;,<9-4/R' '' )P'a4%5='.?' [P'a4%5='8435' \P'7",#'9/,',D.9;' NP'_-'8,?,58$'45'3",-",/'#4.'9/,'$?,,8%5='.?'4/' $;43%5='8435' ' ' )554.5&,A,5-$' • \",&T'=/98,'O4/'>%/$-'K.%E'45;%5,' • 7"/,,'4b&,'"4./$c'M%5'H9#,/'S9;;'VWBGP' – HdQ'O/4A'(BZ(?A' – 7.,$'O/4A'VZW?A' • S4A,34/T'YG'%$'?4$-,8*'8.,'Q,85,$89#' • ]`-/9'?/4@;,A$'9/,'?4$-,8'M9;$4'$4;.L45$'-4',<,5' 5.A@,/,8'?/4@;,A$P' • \;%&T,/'=/98,$'3%;;'@,'.?'$445''' • !%&T'.?'4;8'"4A,34/T'O/4A'A,'%5'4b&,'"4./$'4/' -4A4//43' )554.5&,A,5-$' [4.589/%,$'O4/'e59;' =/98,$'M&4.;8'=4';43,/' @.-'54-'"%=",/P1' • • • • ffg'O4/'95')' 0Vg'O4/'9'[' WBg'O4/'9'\' VCg'O4/'9'N' +4-$'4O'4??4/-.5%L,$'-4' %A?/4<,'=/98,1' ' • N/4?';43,$-'K.%E' • N/4?';43,$-'S4A,34/T' • N/4?';43,$-'U'4.-'4O'(U' X,98%5='K.%EE,$' • 734'9;-,/59-,'/.@/%&$' • h?'-4'Vg',`-/9'&/,8%-' O4/'\;%&T,/$' )545#A4.$'?4;;' N4'#4.'?/,O,/'-4'$-.8#'3%-"'-",'-,`-@44T'?/4@;,A$'4/'-",' 34/T$",,-'?/4@;,A$R' '' )P'7",'-,`-@44T'%$'@,i,/I' [P'7",'34/T$",,-$'9/,'@,i,/I' \P'_';%T,'@4-"'4O'-",A*'%-6$'=448'-4'"9<,'9';4-'4O'?/9&L&,I' NP'_'8456-';%T,',%-",/'4O'-",A*'958'#4.6/,'9$T%5='.$'-4'84' -44'A.&"I' ]P'_'8456-'-"%5T',%-",/'9$$%=5A,5-'",;?,8'A,'?/,?9/,'O4/' -",'e/$-'K.%EI' \;%&T,/'D.,$L45'0Z(' • )'$-,,;'@9;;'%$'9i9&",8'-4'9' $-/%5='958'%$'$3.5='%5'9' &%/&.;9/'?9-"'%5'9'"4/%E45-9;' ?;95,'9$'%;;.$-/9-,8'%5'-",' e=./,I'')-'-",'?4%5-'!'-",' $-/%5='$.88,5;#'@/,9T$'5,9/' -",'@9;;'I''_O'-",$,',<,5-$'9/,' 4@$,/<,8'O/4A'8%/,&-;#'9@4<,' 9$'%5'-",'e=./,*'3"%&"'?9-"' 34.;8'-",'@9;;'A4$-'&;4$,;#' O4;;43'9j,/'-",'$-/%5=' @/,9T$R' \;%&T,/'D.,$L45'0ZB' • Q"%&"'4O'-",'O4;;43%5='$-9-,A,5-$'%$'&4//,&-R' )P )'E,/4'5,-'O4/&,'%A?;%,$'-"9-'95'4@^,&-'3%;;' &4A,'-4'/,$-' [P )'545E,/4'5,-'O4/&,'45'95'4@^,&-'%A?;%,$'-"9-'%-' 3%;;'A4<,'' \P')5'4@^,&-'9-'/,$-'&4.;8'"9<,'9'545E,/4'5,-'O4/&,' NP')5'4@^,&-'%5'A4L45'A.$-'"9<,'9'5,-'O4/&,'45'%-' ]P'245,'4O'-",'9@4<,' \;%&T,/'D.,$L45'0ZG' • )'k#'&4;;%8,$'3%-"'9'3%58$"%,;8I''Q"%&"'O4/&,'%$' =/,9-,/'%5'A9=5%-.8,R' )P 7",'O4/&,'-",'k#',`,/-$'45'-",'3%58$"%,;8' [P 7",'O4/&,'-",'3%58$"%,;8',`,/-$'45'-",'k#' \P''7",'-34'O4/&,$'9/,',D.9;' 2,3-456$'>%/$-'+93' An object continues in a state of rest or in a state of motion at a constant speed along a straight line, unless compelled to change that state by a net force. -which means- An object does not need need to be under the influence of a force to be in motion! 2,3-456$':,&458'+93' A net force (ΣF) on an object of mass (m) results in an acceleration (a) according to the following formula: ΣF=ma 2,3-456$'7"%/8'+93' If two object interact, the force exerted by object 1 on 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on 1 : F12= -F21 -In other words- For every action there is an equal and opposite reaction. 2,3-456$'7"%/8'+93' \' \45&,?-' • );;'O4/&,$'4@,#'2,3-456$'7"%/8'+931' >4/&,'45'@4`'' @#'=/4.58' >4/&,'45'@4`''Fn @#'A95' Fp A! >4/&,'45'A95' @#'@4`' >4/&,'45'@4`'' @#'O/%&L45' Fp Ff Fg >4/&,'45'@4`'' @#']9/-"' N4'>lA9'' 45'45,'4@^,&-'' 9-'9'LA,c'' >4/&,'45'' ]9/-"'@#'' @4`' >4/&,'4O'' O/%&L45'45' =/4.58' Fg Ff Fn Q,%="-'4O' @4`'45' =/4.58' \;%&T,/'K.,$L45'0ZU' !"#$%&'()*)+,-.&+%/* Q"9-'"9??,5$'3",5'95'4@^,&-',`,/-$'9'O4/&,'45' %-$,;OR' ' )P _-'3%;;'A4<,'%5'-",'' 8%/,&L45'4O'-",'O4/&,' [P'''_-'3%;;'$-958'$L;;'' 7",'54/A9;'O4/&,' \' \45&,?-' • _5'A9-",A9L&$'m54/A9;n'958'm?,/?,58%&.;9/n' 9/,'$#545#A$I' !'7",'54/A9;'O4/&,'%$'9;39#$'?,/?,58%&.;9/'-4'-",' $./O9&,'%-'%$'%5'&45-9&-'3%-"I' F Fn >4/&,'45'@4`'' @#'=/4.58' n >4/&,'45'@4`'' @#'=/4.58' A! o' \;%&T,/'K.,$L45'0ZV' )'@4`'%$'@,%5='?.$",8'.?'9=9%5$-'9'39;;I''Q"%&"' <,&-4/'$"43$'-",'8%/,&L45'-"9-'-",'"#$%&''O4/&,' %$'?4%5L5=R' ' )P' [P' Fn Fn NP' Fn ]P' Fn \P' Fn A! N/93%5='>/,,'' [48#'N%9=/9A$' • N/93'9'?%&-./,'3%-"'9' &44/8%59-,'$#$-,A' M/,?/,$,5-'4@^,&-'9$' ?4%5-'A9$$P' • N/93'9//43$'=4%5='939#' O/4A'-",'4@^,&-'-4' /,?/,$,5-'-",'O4/&,$*' ;9@,;'-",A' • 7/#'-4'A9T,';,5=-"'4O' 9//43'&4//,$?458'-4' $-/,5=-"'4O'O4/&,' • [/,9T'.?'%5-4' &4A?45,5-$'%O'5,&,$$9/#' ' !' !/4&,8./,' T o' T cos θ T sin θ Fg #' `' \;%&T,/'D.,$L45'0Z(' • Q"%&"'4O'-",$,'%$'?/4@9@;#'54-'%5',D.%;%@/%.AR' D) C) A) B) !/9&L&,'8/93%5='>[N$' • p4.'?.$"'9'@44T' • )'/4?,'?.;;$'95' 8435'<,/L&9;;#'45'9' ,;,<9-4/'.?'9-'9' -9@;,' &45$-95-'<,;4&%-#' FN FP Fg T Fg !/9&L&,'8/93%5='>[N$' • )'@4`'$;%8,$'8435'9' • p4.'@4.5&,'9'@9;;'4q' O/%&L45;,$$'/9A?' 4O'9'39;;' FN Fb Fg Fg o' !/9&L&,'8/93%5='>[N$' • p4.'?.$"'9'@4`'-"9-' ?.$",$'954-",/'@4`' 45'9'O/%&L45;,$$' $./O9&,' A(' FN 1 F21 FN 2 FP A(' Fg1 AB' AB' Fg2 F12 [/,9T%5='.?'O4/&,$'%5-4'' &4A?45,5-$'45'95'%5&;%5,' !' !/4&,8./,' Fg sin θ Fg Fg o' o' Fg cos θ [/,9T%5='.?'O4/&,$'%5-4'' &4A?45,5-$'45'95'%5&;%5,' !' !/4&,8./,' #' `' FN FN o' o' FN sin θ FN cos θ \;%&T,/'K.,$L45'0Z' &4A?45,5-$'45'95'%5&;%5,' A) A cos θ A sin θ o' A A A cos θ A sin θ o' B) D) A C) A cos θ A sin θ o' A o' A cos θ A sin θ o' A a%<,5'&9.$,'4O'A4L45*'?/,8%&-'%-c' • S43';45='3%;;'%-'-9T,'-4'?.$"'-34'@;4&T$'9' 8%$-95&,'(!%O'#4.'?.$"'45'@;4&T'('3%-"')*R' FN 1 F21 FN 2 FP A(' AB' Fg2 Fg1 � Fx1 = FP − F21 = m1 a F12 � Fx2 = F12 = m2 a a%<,5'&9.$,'4O'A4L45*'?/,8%&-'%-c' • S43';45='3%;;'%-'-9T,'-4'?.$"'-34'@;4&T$'9' 8%$-95&,'(!%O'#4.'?.$"'45'@;4&T'('3%-"')*R' � Fx1 = FP − F21 = m1 a 1 2 � d = at Fx2 = F12 = m2 a 2 � |F12 | = |F21 | FP = (m1 + m2 )a FP a= (m1 + m2 ) t= t= � 2d a 2d(m1 + m2 ) FP S4A,34/T' • X,98%5='D.%E'-4A4//43' • S4A,34/T'YG'%$'?4$-,8*'8.,'Q,85,$89#' • ]`-/9'?/4@;,A$'9/,'?4$-,8'M9;$4'$4;.L45$'-4' ,<,5'5.A@,/,8'?/4@;,A$P' • rb&,'"4./$'-489#'9-'5445*'9$T'9@4.-'-",'e/$-' K.%EI'
© Copyright 2025 Paperzz