Find the limit if it exists^ lim 20 3 15 20 3 15 20 3 15 n 2 n roots Solution Introduce a sequence x1 20 3 15 , xn 20 3 15 20 3 15 20 3 15 for n 2, 3, 2 n roots This sequence is 1. bounded from above: 3 3 3 3 xn 20 15 20 15 20 3 15 20 20 20 20 20 3 20 2 n roots 2 n roots 20 20 20 20 20 1 1 1 2 4 2 2n 2n 20 1 1 1 2 4 2 0.5 2010.5 20. 2 n roots 2. non-decreasing: 3 3 xn 1 20 15 20 15 20 3 15 n xn , 2( n 1) roots where n 20 3 15 mn 1 , as 20 3 15 1 Hence, the limit exists. Let it be equation for A 3 3 . A, A 0 . One has the following A 20 15 20 15 20 3 15 20 3 15 A , которое преобразуем к виду A6 203 15 A . The answer is given by the 15 non-zero root A 203 15 .
© Copyright 2025 Paperzz