Carbon Isotope Composition as a Tool to Characterize Photosynthetic Mechanism of Herbs, Spices, and Medicinal Plants. the José Abramo Marchese1,2*; Lin Chau Ming2, Carlos Ducatti3; Fernando Broetto4; Evandro Tadeu da Silva3; Marcelo Leonardo2; Juliano Toniato3 CEFET-PR, Agronomy College, Laboratory of Biochemistry and Plant Physiology, Pato Branco 85503-390, Brazil; 2São Paulo State University, Agronomic Sciences College, Botucatu 18603-970, Brazil; 3São Paulo State University, Isotopes Stables Center, Botucatu 18618-000, Brazil. 4São Paulo State University, Chemistry and Biochemistry Department, Botucatu 18618-000, Brazil. * Corresponding author: abramo@pb.cefetpr.br 1 RESUMO: Composição isotópica de carbono como ferramenta para caracterizar o mecanismo fotossintético de plantas medicinais, aromáticas e condimentares. O fracionamento isotópico é um teste simples para caracterizar vias fotossintéticas. Informações dos mecanismos fotossintéticos das plantas são importantes na introdução e cultivo de qualquer espécie, e neste caso específico, para espécies medicinais e aromáticas exóticas e selvagens. Um uso potencial para o fracionamento isotópico está no controle de qualidade dos fitomedicamentos, possibilitando a descoberta de fraudes através da composição dos isótopos estáveis na biomassa das plantas medicinais. O objetivo deste trabalho foi classificar o mecanismo fotossintético de algumas plantas medicinais e aromáticas através de estudos da composição isotópica de carbono (13C). A 13C de 54 espécies foi investigada para estudos de 13C (13C‰ = [R (amostra)/R (padrão) – 1] x 103 ), folhas secas e finamente moídas em moinho criogênico foram analisadas em um espectrômetro de massa acoplado a um analisador elemental para a determinação da razão R (R = 13CO2/12CO2). Como resultado, 23 famílias botânicas e 43 espécies apresentaram mecanismo fotossintético C3; 6 espécies pertencentes as famílias botânicas Apocynaceae e Poaceae apresentaram um mecanismo fotossintético de planta C4 e 5 pertencentes as famílias botânicas Agavaceae, Euphorbiaceae e Liliaceae apresentaram um mecanismo fotossintético de planta CAM. Palavras-chave: plantas C3, C4 e CAM, discriminação isotópica; fotossíntese. ABSTRACT: Carbon isotope composition as a tool to characterize the photosynthetic mechanism of herbs, spices, and medicinal plants. Isotopic screening has been a simple test for determining the photosynthetic pathway when it is unknown. Information on the photosynthetic mechanism is important when one wants to introduce and to cultivate any species, and in this specify case, the exotic and wild herbs, spices, and medicinal plants. A potential use of the isotopic fractionation this in the quality control of the Phytomedicines, allowing the discovery of frauds through of stable isotope composition of biomass of the medicinal plants. The scope of this work was to classify the photosynthetic mechanism of some herbs, spices, and medicinal plants through studies of the carbon isotope composition (13C). 13C of 54 species were investigated. For studies of 13C (13C‰ = [R (sample)/R (standard) – 1] x 10-3), dry leaves and powdered in cryogenic mill were analyzed in a mass spectrometer coupled in an analyser elemental for determination of the ratio R (R = 13CO2/12CO2). As results, 23 botanical families and 43 species presented photosynthetic mechanism C3; 6 species found among the botanical families Apocynaceae and Poaceae presented photosynthetic C4 species, and 5 species found among the botanical families Agavaceae, Euphorbiaceae, and Liliaceae presented photosynthetic CAM species. Keywords: C3, C4 and CAM plants, isotope discrimination, photosynthesis. INTRODUCTION The photosynthetic mechanism or biochemical pathways of photosynthesis are highly conserved. Most plants are C3 plants, in which the first product of photosynthesis is the three-carbon compound posphoglyceric acid. A second biochemical pathway that allows the concentration of CO2 in leaves has evolved in C4 plants, which initially fix inorganic carbon in mesophyll cells, through the enzyme PEP carboxylase, into four-carbon compound oxaloacetic acid. In C4 plants, oxaloacetate is converted into malate or aspartate, which then diffuses into bundle sheath cells that surround the vascular bundles where descarboxylation supplies high concentration of CO2 to Rubisco. In higher plants the C4 pathway involves both biochemical and anatomical modifications, but it is not clear which of these modifications evolved first. Some plants that possess characteristics of both C3 and C4 plants have been classified as C3-C4 intermediates, and these may represent transitional stages in the evolution of C4 photosynthesis from C3 photosynthesis (von Caemmerer, 1992; Lawlor, 2001; Hibberd & Quick, 2002). Finally, some plants present the Crassulacean Acid Metabolism (CAM). CAM plants assimilate atmospheric CO2 into C4 acids, through the enzyme PEP carboxylase, predominantly at night and subsequently refix this CO2, through the enzyme Rubisco, to the level of carbohydrates during the following day (Griffiths, 1992; Cushman & Bohnert, 1997; Lambers et al., 1998; Lawlor, 2001). The carbon dioxide in the earth’s atmosphere is composed of different carbon isotopes. The majority is 12CO2 (98.9%); only approximately 1.1% of the total amount of CO2 in the atmosphere is 13CO2; an even smaller fraction (10-10%,) is the radioactive species 14CO2. Modern ecophysiological research makes abundant use of the fact that the isotope composition of plant biomass differs from that of the atmosphere. It is of special interest that isotope composition differs between plants which differ in photosynthetic pathway (Lambers et al., 1998). The chemical properties of 13CO2 are identical to those of 12CO2, but because of the slight difference in mass (2.3%), plants use less 13CO2 than 12CO2. C3 plants (13C about – 28 ‰) discriminate more 13CO2 than the C4 plants (13C about –14 ‰). The largest isotope discrimination step is the carboxilation reaction catalyzed by Rubisco, the primary CO2 fixation enzyme of C3 plants, which has an intrinsic discrimination value (13C) of –30 ‰. By contrast, PEP carboxylase, the primary CO2 fixation enzyme of C4 plants, has a much smaller isotope discrimination effect (13C = –2 to 5.7 ‰) (Sternberg et al., 1984; Farquhar et al., 1989; O’Leary et al., 1992; O’Leary, 1993; Lambers et al., 1998; Condon et al., 2002). C3 species represent approximately 85% of all plant species, C4 species accounting for about 5%, and CAM species for 10% (Lambers et al., 1998). Isotopic screening has been a simple test for determining the photosynthetic pathway when it is unknown (Farquhar et al., 1989). Information on the photosynthetic mechanism is important when one wants to introduce and to cultivate any species, and in this specify case, the exotic and wild herbs, spices, and medicinal plants. In general, plants with photosynthetic mechanism of the type C4 adapt better in hot climates, while the C3 are going better in less hot climates (Loomis & Connor, 1992; Hall & Rao, 1995; Körner & Bazzaz, 1996; Lambers et al., 1998; Lawlor, 2001). A potential use of the isotopic fractionation this in the quality control of the Phytomedicines, allowing the discovery of frauds through of stable isotope composition of biomass of the medicinal plants. The scope of this work was to classify the photosynthetic mechanism of some herbs, spices, and medicinal plants through studies of the carbon isotope composition (13C). MATERIAL AND METHODS Leaves samples of medicinal plants collection of the Horticulture Section, Agronomic Sciences College, São Paulo State University, Brazil, were used in the experiment. The plants species were identified for the Dr. Lin Chau Ming and the first author. The leaves of plants were analysed in the Isotopes Stables Center of São Paulo State University. Leaves were dried at 800C overnight and powdered in cryogenic mill (-1960C). In triplicate, were analysed in a mass spectrometer coupled in an analyser elemental for determination of the ratio R (R = 13CO2/12CO2). The standard ratio is that of Pee Dee belemnite. Carbon isotope composition (13C) is a measured of the 13C/12C ratio in a sample of plant relative to the value of the same ratio in an accepted international standard, the limestone Pee Dee belemnite. Thus, 13C (‰) = (Rp/Rs – 1) x 1000 where Rp is the 13C/12C ratio measures in plant material and Rs is the ratio of standard and ‰ is per mil. Carbon isotope composition provides a means of relating samples of diverse origin for carbon isotope content. Samples of contemporary plant material have negative values of 13C because the 13C/12C ratio in the atmosphere is less than in Pee Dee belemnite and because there is a net discrimination against 13C by plants during uptake and fixation of CO2 into plant dry matter (O’Leary et al., 1992; O’Leary, 1993; Condon et al., 2002; Dawson et al., 2002). RESULTS AND DISCUSSION The most of the analysed plants, 23 botanical families and 43 species, presented photosynthetic mechanism C3, that possess on the average a 13C‰ = - 28 (O’Leary, 1993; Farquhar et al., 1989). The ratio of 13C/12C in dry matter of C3 plants is the result of discrimination against 13C during several processes. These processes include discrimination that occurs during diffusion of CO2 through the stomata; discrimination by Rubisco during the process of carboxilation of CO2 into first product of photosynthesis; and some downstream fractionations associated with metabolism and (possibly) respiration (O’leary et al., 1992; O’leary, 1993; Condon et al., 2002). The 6 species found among the botanical families Apocynaceae and Poaceae presented photosynthetic C4 species, that possess on the average a 13C‰ = - 14. In C4 plants most of the 13CO2 that is discriminated against by Rubisco does not diffuse back to the atmosphere. This is prevented first by the diffusion barrier between the vascular bundle sheath and the mesophyll cells. Second, mesophyll cells contain large quantities of carbonic anhydrase and of PEP carboxylase, which discriminate less against the 13CO2, and scavenge most of the CO2 that might escape from the bundle sheath (O’leary, 1993; Lambers et al., 1998, Farquhar et al., 1989). The 5 species found among the botanical families Agavaceae, Euphorbiaceae, and Liliaceae presented photosynthetic CAM species. Species of these genders are known for they present photosynthesis CAM (Martin et al., 1990; Luo et al., 1991; Griffiths, 1992; Winter & Holtum, 2002). Like Rubisco from C3 and C4 plants, the enzyme from CAM plants discriminates against 13CO2. The fractionation is considerably less than that of C3 plants and similar to that of C4 species (Sternberg et al., 1983; Lambers et al., 1998). This is expected, as the stomata are closed during malate descarboxylation and fixation of CO2 by Rubisco (Lambers et al., 1998). Table 1. Carbon isotope composition and photosynthetic mechanism of some herbs, spices, and medicinal plants from collection of Horticulture Section of the São Paulo State University. Botucatu-SP, Brazil, 2004. Legends: 13C = carbon isotope composition; NT = native; EX = exotic; HB = herbaceous; SB = shrub; SS = subshrub; AR = arboreous; PC = plant creeper. Botanical name Agavaceae Sansevieria zeylanica Willd. Amaranthaceae Pfaffia glomerata [Spreng] Pedersen Local name [13C‰] PDB Photosynthetic Mechanism Origin/growin g habit espada-de-são-jorge -15,29 0,04 CAM EX/HB fáfia -27,55 0,92 C3 NT/SB terramicina -27,88 0,09 C3 NT/EB aroeira -28,01 0,03 C3 NT/AR janaguba -17,45 0,05 C4 NT/AR Asteraceae Baccharis trimera Less. carqueja -31,72 0,16 C3 NT/SS Artemisia camphorata L. artemisia -28,76 0,09 EX/EB Tanacetum vulgare L. catinga-de-mulata -29,32 0,07 C3 C3 Achillea millefolium L. mil-folhas -28,97 0,52 C3 EX/EB guaco -30,71 0,03 C3 NT/PC carobinha -28,41 0,12 C3 NT/SS Boraginaceae Symphytum officinalis L. confrei -28,64 0,10 C3 EX/EB Cactaceae Peireskia aculeata Mill. ora-pro-nobis -30,88 0,05 C3 EX/SB Caesalpiniaceae Bauhinia forficata Link. pata-de-vaca -27,84 0,22 C3 NT/SB embaúba -29,75 0,23 C3 NT/AR espinheira-santa -27,84 0,03 C3 NT/AR espinheira-santa -30,27 0,16 C3 NT/AR erva-de-santa-maria -28,19 0,14 C3 NT/SS Equisetaceae Equisetum hiemale L. cavalinha -28,42 0,08 C3 NT/EB Euphorbiaceae Euphorbia tirucalli L. aveloz; coroa-de-cristo -14,97 0,18 CAM EX/SB malva-cheirosa -29,29 0,05 C3 EX/SS palmeirinha -29,36 0,20 C3 NT/HB hortelã -29,13 0,09 C3 EX/EB alfavaca-cheiro-de-anis -29,05 0,53 C3 EX/EB orelha-de-coelho -27,66 0,77 C3 EX/EB boldo-rasteiro -29,42 0,21 C3 EX/EB -28,53 0,01 C3 EX/SS Alternanthera brasiliana [L.] O. Kuntze Anacardiaceae Myracrodruon urundeuva Allemão Apocynaceae Himatanthus drasticus [Martius] Plumel Mikania glomerata Spreng. Bignoniaceae Jacaranda decurrens Cham. Cecropiaceae Cecropia glaziovii Snethlage Celastraceae Maytenus aquifolium Mart. Maytenus ilicifolia Reissek Chenopodiaceae Chenopodium ambrosioides L. Geraniaceae Pelargonium graveolens Art. Iridaceae Eleutherine bulbosa [Mill.] Urb. Lamiaceae Menhta sp. Ocimum selloi Benth. Stachys lanata L. Plectranthus neochylus Schlechter Tetradenia riparia [Hochst.] N.E.Br. incenso EX/EB Table 1. (Continued) Origin/growin g habit -27,83 0,11 Photosynthetic Mechanism C3 -29,73 0,07 C3 EX/HB falso-boldo -28,49 0,23 C3 EX/HB Ocimum basilicum L. manjericão, alfavaca -31,73 0,01 C3 EX/SS Liliaceae Aloe arborescens Mill. babosa -18,35 0,04 CAM EX/HB EX/HB Botanical name Local name [13C‰] PDB Rosmarinus officinalis L. alecrim Origanum vulgare L. orégano Plectranthus barbatus Andr. EX/SS Aloe sp. babosa -12,44 0,25 CAM Aloe Vera [L.] Burm. F. babosa -15,63 0,03 CAM EX/HB sete-sangrias -29,86 0,04 C3 NT/HB pitanga -29,16 0,04 C3 NT/AR Lythraceae Cuphea carthagenensis [Jacq.] Macbr. Myrtaceae Eugenia uniflora L. Piperaceae Potomorphe umbellata [L.] Miq. Piper aduncum L. Poaceae Cymbopogon citratus [DC.] Stapf. Cymbopogon flexuosus [DC.] Stapf. Eleonurus sp. Vetiveria zizanioides Stapf. pariparoba -28,19 0,28 C3 NT/EB falso-jaborandi -29,49 0,05 C3 NT/SB capim-limão -14,63 0,46 C4 EX/EB EX/EB -13,93 0,10 C4 barba-de-bode -13,99 0,09 C4 NT/EB vetiver -14,83 0,11 C4 EX/EB EX/EB capim-santo Cymbopogon winterianus Jowitt citronela -14,32 0,20 C4 Portulacaceae Talinum triangulare [Jacq.] Willd. maria-gorda -25,26 0,52 C3 NT/EB arruda -28,79 0,04 C3 EX/EB coentro-de-caboclo -28,93 0,37 C3 NT/EB funcho -29,65 0,00 C3 EX/HB erva-cidreira-brasileira -29,40 0,67 C3 NT/SS cidró -27,53 0,03 C3 EX/SS NT/SB Rutaceae Ruta graveolens L. Umbelliferae Eryingium foetidum L. Foeniculum vulgare [Mill.] Gaertner Verbenaceae Lippia alba [Mill.] N.E. Br. Aloysia triphylla [L' Hérit] Britt. Lippia sidoides Cham. alecrim-pimenta -30,11 0,15 C3 Lippia alba [Mill.]N.E.Br. cidreira-brasileira -30,29 0,16 C3 NT/SS Vitaceae Cissus verticillata [L.] Nich. & C.E. Jarvis insulina -27,73 0,06 C3 NT/ PC Zingiberaceae Curcuma longa L. açafrão -27,77 0,63 C3 EX/HB -26,44 0,54 C3 NT/HB Costus spicatus [Jacq.] Sw. cana-do-brejo REFERENCES Condon, A.G., Richards, R.A., Rebetzke, G.J. and Farquhar, G.D. Improving intrinsic water-use efficiency and crop yield. Crop Sci. v.42, p.122-131, 2002. Cushman, J.C.; Bohnert, H.J. Molecular Genetics of Crassulacean Acid Metabolism. Plant Physiology, v.113, p.667-676, 1997. Dawson, T. E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable Isotopes in Plant Ecology. Annu. Rev. Ecol. Syst. v.33, p.507–559, 2002. Farquhar, G.D., Ehleringer, J.R., and Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.40, p.503-537, 1989. Griffiths, H. Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant, Cell and Environment, v.15, n.9, p.10511162, 1992. Hall, D.O.; Rao, K.K. Photosynthesis. 5th ed., Cambridge: University Press, 1995. 211p. Hibberd, J.M. and Quick, W.P. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature, v.415, n.24. p. 451-454, 2002. Körner, C.; Bazzaz, F.A. Carbon dioxide, populations, and communities. San Diego: Academic Press, 1996. 465p. Lambers, H.; Chapin III, F.S.; Pons, T.L. Plant physiological ecology. 3rd. ed. New York: Springer Verlag, 1998. 540p. Lawlor, D.W. Photosynthesis: molecular, physiological and environmental processes, 3rd ed. New York: Springer Verlag, 2001. 386p. Loomis, R.S.; Connor, D.J. Crop ecology: productivity and management in agricultural systems. Wiltshire: Cambridje University Press, 1992. 538p. Luo, Y; Sternberg, L. Deuterium heterogeneity in starch and cellulose nitrate of CAM and C3 plants. Phytochemistry, v.30, n.4, p.1095-1098, 1991. Martin, C.E.; Loeschen, V.S.; Coke, L.B. Crassulacean acid metabolism in selected terrestrial succulents in southeastern Jamaica, including two species in the Commelinaceae. Oecologia, v.84, n.1, p.99-102, 1990. O’Leary, M.H. Biochemical basis of carbon isotope fractionation. In J.R. Ehleringer, A.E. Hall, and G.D. Farquhar (eds.), Stable Isotopes and Plant Carbon-Water Relations. New York: Academic Press, 1993. p.19-28. O’Leary, M.H.; Madhavan, S.; Paneth, P. Physical and chemical basis of carbon isotope fractionation in plants. Plant, Cell and Environment, v.15, n.9, p.1099-1104, 1992. von Caemmerer, S. Carbon isotope discrimination in C3-C4 intermediates. Plant, Cell and Environment, v.15, n.9, p.1063-1072, 1992. Winter, K.; Holtum, J.A.M. How closely do the 13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night. Plant Physiology, v.129, p.1843-1851, 2002.
© Copyright 2024 Paperzz