dr/d?=3*cos(pi/4-?)^2, r(0)=(pi/8), solve the intial value problem %# ( dr = 3cos2 ' $ " * &4 ) d" %# ( dr = 3cos2 ' $ " *d" &4 ) r= %# ( + 3cos '& 4 $ " *)d" 2 Using the identity cos2 ( x ) = ! 1+ cos(2x ) : 2 %" ( 1+ cos' # 2$ * %" ( ( &2 ) 1 1 %" ! 2' # $ * = cos = + cos' # 2$ * &4 ) ) 2 2 2 &2 The integral is then: ! %" +1 ( (. r= 1 -, 2 + 2 cos'& 2 # 2$ *)0/d$ 2 +3 3 %" (. Substituting r(0) = π/8: ' 3 3 $# # (0) " sin& " 2(0)) + C = ( 2 4 %2 8 3 $#' # " sin& ) + C = 4 %2( 8 ! %" 1 3cos '& 4 # $ *)d$ = 1 3-, 2 + 2 cos'& 2 # 2$ *)0/d$ ( 3 3 %" r = $ # sin' # 2$ * + C ) 2 4 &2 ! 1 r= 3 # " +C = 4 8 C= ! # 3 + 8 4 The complete solution is then: ( $ 3 3 3 %$ r(" ) = " # sin' # 2" * + + ) 8 4 2 4 &2 !
© Copyright 2025 Paperzz