S. P. Miao
National Cheng Kung University, Taiwan
FRW Geometry
ο¬Homogeneous, isotropic and spatial flat:
ππππ 2 = βπππ‘π‘ 2 + ππ 2 π‘π‘ πππ₯π₯β β πππ₯π₯β
ο¬Physical distance: ππ π‘π‘ πππ₯π₯β
ππ
ο¬Physical momentum: ππ(π‘π‘)
ο¬Max. accelerated: π»π» π‘π‘ = π»π» = const. ο¨ ππ(π‘π‘)~ππ π»π»π»π»
ο¬πΊπΊπ»π» 2 < 5 × 10β11 ο¨ π»π» < 1014 Gev
ο¬QG still perturbative, not negligible
ο¬Particles almost effectively massless
ο¬Locally de Sitter Background
Spacetime Expansion Strengthens
Loop Effects
ο¬ How to think about QFT Effects?
ο¬ Classical response to virtual particles
ο¬ Maximum IR Enhancements:
ο¬ PERSISTENCE TIME ο¨ m = 0 + inflation
ο¬ EMERGENCE RATE ο¨ no conformal invariance
ο¬ Realized by
ο¬ Massless, minimally coupled scalars
ο¬ Gravitons
E-Time Uncertainty Principle
ο¬ βπ‘π‘βπΈπΈ > 1 to resolve βπΈπΈ ο¨ Hence βπ‘π‘βπΈπΈ < 1 to NOT resolve
ο¬ Flat Space: Virtual pair has βE = 2 ππ2 + ππ2
ο¬ Hence can last βt < 2
1
ππ2+ππ2
ο¬ Eg: Vacuum polarization
ο¬ Most for e± because smallest m
ο¬ Smallest kβs live longest ο¨ EM stronger at shorter distance (less
polarization)
ο¬ FRW: E(t) = 2
ο¬
ο¬
ππ2
+
ππ 2
ππ 2 (π‘π‘)
π‘π‘+βπ‘π‘
βπ‘π‘βπΈπΈ ο¨ 2 β«π‘π‘
πππ‘π‘ β² πΈπΈ π‘π‘ β² < 1
π‘π‘+Ξπ‘π‘
ππ
ππ = 0 ο¨ 2k β«π‘π‘
πππ‘π‘ β² ππ π‘π‘ β² < 1
ο¬ Any m = 0 virtual with k < Ha(t) live forever (in de Sitter)
Killer Symmetry Suppresses
Emergence Rate
ο¬ Conformal invariance is a killer symmetry:
πππµΞ½ = Ξ©2 ππµΞ½ ο¨ β β ββ²
ο¨ re-defined fields ο¨ ββ² β β
1
ο¬ EM: β β² = β 4 πΉπΉµΟ πΉπΉΞ½Ο ππµΞ½ ππΟΟ βππΞ©π·π·β4 = β in D =4
ο¬ βπππ‘π‘ 2 + ππ 2 πππ₯π₯ 2 = ππ 2 (βππΞ·2 + πππ₯π₯ 2 ) ο¨ ππππΞ· = ππππ
ο¬ Conformal invariance ο¨ same locally (in conformal
coordinates) as flat
ο¬ Hence
ο¬ Hence
ππππ
ππΞ·
ππππ
πππ‘π‘
= Ξππππππππ
=
Ξππππππππ
ππ(π‘π‘)
ο¬ Any m=0, conformal virtuals that emerge Do live forever, but
few emerge
MMC + Fermions β Fermion self energy
β1 = β
1
2
οΏ½ Ξ¨Ο βππ
βππ ππµΟππΞ½ Οππ µΞ½ β f Ξ¨
οΏ½ ππ µ (ππππµ β 1 π΄π΄µππππ π½π½ ππππ )Ξ¨
+ βππ Ξ¨
ππ
2
(astro-ph/0309593 by Prokopec, Woodard)
1
1
οΏ½ Ξ¨Ο βππ
β 2 = β 2 βππ ππµ ΟππΞ½ Οππ µΞ½ β 2 ππ 2 Ο2 β ΞΎπ
π
Ο2 β fΞ¨
οΏ½ ππ µ (ππππµ β
+ βππ Ξ¨
ππ
1
2
π΄π΄µππππ π½π½ ππππ )Ξ¨
(gr-qc/0602011 by Garbrecht. Prokopec)
ο¬ Compute i [ππ Ξ£ππ ] (x; xβ) from mmc at 1-loop in dim. Reg.
MMC + Fermions β consequence I
ο¬ Absorb UV using field strength renormalization
iΞ΄π§π§2 (πππππ)
π·π·β1
2
µ
Ξ³ππππ
iππµ Ξ΄π·π· (x-xβ) ; Ξ΄π§π§2 =
π·π·
Ξ( β1)
ππ2
2
π·π·/2
(π·π·β4)(π·π·β3)
16 Ο
ο¬ Quantum-correct Dirac Equation using S-K formalism
βππππ(Ξ³µ π·π·µ )ππππ Ξ¨ππ (x)β β« ππ 4 π₯π₯ β² [ππ Ξ£ππ ] π₯π₯; π₯π₯ β² Ξ¨ππ (xβ²) = 0
ο¬ particle production ο¨ |Ο| grow ο¨ develop mass for β1 & β 2
ο¬
2
E.g. ππ Ξ¨
β
3ππ2 π»π» 4
8Ο2 (ππ2 + ΞΎπ
π
)
for β 2
ο¬ β 1 : Ξ¨ (late time) ο¨ (ππ β
Ο
ο¬ β 2 : Ξ¨± = β exp [ i 2 Ξ½± ] [
3 β1
)4
4
exp [ ±ππ
Οππ 1/2
]
4π»π»π»π»
(1)
ππ
3Ο
π»π»± (
3
4
(ππ β ) 3/2 ] ; ππ β‘ ln (ππ)
ππ
)
π»π»π»π»
1
2
; Ξ½± = β ππππ Ξ¨ /π»π»
ο¬ Fermion mode fun. ~ declining oscillatory behavior
MMC + Fermions β Consequence IIa
β3 = β
1
2
βππ ππµ ΟππΞ½
Οππ µΞ½
οΏ½ ππ µ (ππππµ β
+ βππ Ξ¨
ππ
1
2
β
δξπ
π
Ο2
π΄π΄µππππ π½π½ ππππ )Ξ¨
1
β 4! δλΟ4
οΏ½ Ξ¨Ο βππ
βππ β f Ξ¨
(gr-qc/0602110 by Miao, Woodard)
ο¬ Integrate out fermions at leading log. order ο¨ ππππππππ (Ο)
δξ =
π·π·
2
4ππ 2 π»π» π·π·β4 Ξ(1β )
(4Ο)π·π·/2 π·π·(π·π·β1)
ππππππππ (Ο) = β
=
π»π» 4
+
ππ 2
24Ο 2
{2Ξ³π§π§
8Ο 2
(1 β Ξ³) ; δλ =
π·π·
2
24ππ 4 π»π» π·π·β4 Ξ(1β )
π§π§
(4Ο)π·π·/2
+
3ππ 4
(ΞΎ(3)
Ο2
β Ξ³)
β ΞΆ 3 β Ξ³ π§π§ 2 + 2 οΏ½ ππππ π₯π₯ + π₯π₯ 3 ππ 1 + ππππ + ππ 1 β ππππ
π»π» 4 β
β1 ππ
β 4Ο2 βππ=2 ππ+1
0
ππΟ
ππ 2ππ β 1 β ππ 2ππ + 1 π§π§ ππ+1 ; π§π§ β‘ ( π»π» )2 ; π§π§ βͺ 1
ο¬ ππππππππ (Ο) unbounded below (always negative)
MMC + Fermions β Consequence IIb
ο¬ Compute ππµΞ½ at leading log. order ο¨ ππµΞ½ β βπππ π (Ο)ππµΞ½
πππ π (Ο) =
=
π»π» 4
β 8Ο2
{
π»π» 4 1
{ π§π§
8Ο2 2
1
2
1
1
β Ξ³ π§π§ +[ 4 β Ξ³ + ΞΆ 3 ]π§π§ 2 β 2 [π§π§ + π§π§ 2 ] ππ 1 + ππππ + ππ 1 β ππππ ]
1
ππ
ππ+1 } ; π§π§ βͺ 1
+ 4 π§π§ 2 β ββ
ππ=2 (β1) ππ 2ππ β 1 β ππ 2ππ + 1 π§π§
ο¬ unbounded below but positive first, then negative
ο¬ π§π§ β« 1, ππππππππ (Ο) & πππ π (Ο) both ο¨ Coleman-Weinberg form
ο¨
π»π» 4 1 2
β 8Ο2 {2 π§π§ ln(|π§π§|) β
1
ΞΆ 3 + 4 β Ξ³ π§π§ 2 + zln π§π§ β
ο¬ Flat space Standard Model ο¨ stable
5
6
β 2Ξ³ z + O(ln z )}
β΅ negative V + positive V of gauge boson ο¨ constraint on Higgs mass
ππ
ο¬ Negative growing fermion vacuum energy: πΈπΈ = β ππ 2 + ( ππ) 2
ο¬ particle production ο¨ |Ο| grow ο¨ develop mass
ππππππππ & πππ π for Yukawa
ππππππππ =
π»π» 4
β 8Ο2 ππππππππ
z
; πππ π =
π»π» 4
β 8Ο2 πππ π
z
ππππππππ falls for Yukawa & grows for SQED
Gravitons + Massless Fermion
arXiv:0511140 by Miao, Woodard
β=
1
π
π
16ΟπΊπΊ
οΏ½ ππ µ Ξ³ππ πππ·π·µ Ξ¨ βππ + c-terms
βππ +Ξ¨
ππ
ο¬ Compute i[ππ Ξ£ππ ](π₯π₯; π₯π₯ β² )from gravitons at 1 loop in dim. reg.
ο¬ Renormalize with BPHZ counter terms
οΏ½ [ππ(πΎπΎ µ π·π·µ)2 +
ββ = Ξ±1ΞΊ2 Ξ¨
π·π·
π
π
π·π·β1
οΏ½ ππ(πΎπΎ µ π·π·µ)Ξ¨ βππ
]ππ(πΎπΎ µπ·π·µ )Ξ¨ βππ +Ξ± 2ΞΊ2 π
π
Ξ¨
οΏ½ π»π» 2ππ(Ξ³ππ π·π·ππ )Ξ¨ βππ (non-invariant c-term: comment later)
+Ξ± 3ΞΊ2 Ξ¨
ο¬ Quantum-correct Dirac equation using S-K formalism
βππππ(Ξ³µπ·π·µ )ππππ Ξ¨ππ (x)β β« ππ 4 π₯π₯ β² [ ππ Ξ£ππ ] π₯π₯; π₯π₯ β² Ξ¨ππ (xβ²) = 0
Gravitons + Massless Fermion
ο¬ 1st IR log using dimensional regularization in de Sitter
ο¬ Fermion mode fun. ~#πΊπΊπ»π» 2 ln[ππ π‘π‘ ] at 1-loop
ο¬ Perturbation breaks down at ln [ππ π‘π‘
1
]~ 2
πΊπΊπ»π»
ο¬ fermions propagate through the sea of IR gravitons ο¨
buffed by random walking of them ο¨ mode fun. grows
ο¬ secular effects from spin-spin interactions
ο¬
ο¬
ο¬
ο¬
No #πΊπΊπ»π»2 ln[ππ π‘π‘ ] in ``QG + MMCββ (Kahya & Woodard)
IR gravitons only couple to mmc through red-shift K.E.
But fermions has extra SPIN in addition (0803.2377)
simple rules for catching leading log. has derived
ο¬ It differs from Starobinskyβs IR truncation
Gravitons + Massless Fermion β Consequences
ο¬ QG + light fermions ( m βͺ H )
ο¬ Suppress: how fermions propagate
Ο
ο¬ π’π’(π‘π‘, ππ)~ππ(π»π» )ππ βππΟπ‘π‘ , Ο =
ππ2 + ππ2/ππ2(π‘π‘)
ο¬ u oscillates ο¨ interactions at different times cancel
ο¬ Enhance: how they interact with gravity
ο¬ New (mass) interaction does not fall
ο¬ Expect field strength ~#πΊπΊπ»π»2 ππ π‘π‘ ln[ππ π‘π‘ ]
ο¬ Change πΈπΈππππππππππππππππ : < ππµΞ½ >β 0
ο¬ B-mode polarization but it is order of (πΊπΊπ»π»2 )2
ο¬ Toy model for the inflationary baryogenesis
ο¬ QG + EM ( Leonard, Woodard ) : show secular effects
ο¬ QG + QG ( Mora, Woodard ) : expect secular effects
Gravitons + Massive Fermion
arXiv: 1207.5241 by Miao
β=
1
π
π
16ΟπΊπΊ
οΏ½ ππ µ Ξ³ππ πππ·π·µ Ξ¨ βππ β ππΞ¨
οΏ½ Ξ¨ + c-terms
βππ +Ξ¨
ππ
ο¬ Massive fermion propagator is not that simple in dS
ο¬ From the solution of Candelas and Raine
ο¬
ππππ ππ π₯π₯; π₯π₯
πΆπΆ.π
π
=
π·π·β1
ππππβ² β 2
ππππ ππ (π₯π₯; π₯π₯ β² )
Gravitons + Massive FermionβMassive
Fermion Propagator
ο¬ Infinite series canβt be reduced to any elementary function
ο¬ Finite from the infinite series even in π·π· = 4
ο¬ In π·π· = 4, the series tend to cancel
π·π·
2
ο¬ But they both are multiplied by Ξ(2 β )
ο¬ ππ βͺ π»π» (order m,1-loop)
ο¬ Massless fermion prop. ο¨ ππππ π₯π₯; π₯π₯ β² =
π·π·
Ξ( 2 β1)
4Οπ·π·/2
1
ππΞ³µ ππµ βπ₯π₯ π·π·β2
Old GR. Prop. & Non-inv. C-terms
ο¬ Old gauge noncovariant but SIMPLE
ππππΞ½ β‘ ππ 2 [Ξ· ππΞ½ + ΞΊβπππ ]
πΌπΌ
ππ[ππΞ½ βππππ ] π₯π₯; π₯π₯ β² = βπΌπΌ=π΄π΄,π΅π΅,πΆπΆ [ππΞ½ ππππΞ½
] × ππβπΌπΌ π₯π₯; π₯π₯ β²
πΌπΌ ] are constants
ο¬ [ππΞ½ ππππππ
ο¬ ππβπΌπΌ (π₯π₯; π₯π₯ β² ) are simple functions in D=4
ο¬ π¦π¦(π₯π₯; π₯π₯ β² ) β‘ π»π»2 πππππ π₯π₯β β π₯π₯ββ²
ο¬ ππβπ΄π΄ ~
1
π¦π¦
2
β Ξ· β Ξ·β² β ππππ
β ln π¦π¦ + ln(ππππβ² ) ,
ππβπ΅π΅ ~ ππβπΆπΆ ~
2
1
π¦π¦
ο¬ C-terms: regulation tech. + gauge fixing (break special spatial conf.)
ο¨ non-inv. C-term
ο¬ Old GR. Prop. breaks time dilatation
Gauge Issue of Graviton Prop.
ο¬ Average gauge fixing versus exact gauge fixing
ο¬ Covariant gauge fixing term to β ο¨
ο¬ Divergent response for a point source (GR) (Mottola et al.)
ο¬ On-shell singularity for M2(x; xβ²) of SQED in the de Sitter invariant
analogue of Feynman gauge (Woodard & Kahya)
ο¬ linearization instability
ο¬ Gauge theory, background isometries, spatial Tn
ο¬ Non de Sitter invariant gauge (old graviton prop.)
ο¬ imposing exact gauge condition (new graviton prop.)
(arXiv:1106.0925 by Miao,Tsamis & Woodard)
(arXiv:1205.4468 by Mora, Tsamis & Woodard)
ο¬ The coefficient of ln[ππ π‘π‘ ] for the old GR. Prop. the same as that
in the new GR. Prop.
Our Conjecture, Inv. Op. & observables
arXiv:1204.1784 by Miao & Woodard
ο¬Throw away gauge-fixed Greenβs fun. ?
ο¬ We construct the flat space S-matrix from them!
ο¬ Need to separate physical information from unphysical
ο¬ Inv. Op. β observable
ο¬
Every gauge fixed GF represents some invariant
π‘π‘
π΄π΄ 0 π‘π‘, π₯π₯ = 0 = π΄π΄1(0, π₯π₯) ο¨ π΄π΄1 π‘π‘, π₯π₯ = β«0 ππππ πΉπΉ01 (π π , π₯π₯)
ο¬ No cosmological S-matrix ο¨ what is being measured?
ο¬ Maybe leading secular effects gauge independent
ο¬ The coefficient of ln[ππ π‘π‘ ] for the old GR. Prop. the same as that
in the new GR. Prop.
ο¬ NB these effects arenβt present in flat space
ο¬ Cf. poles terms of gauge fixed GFβs in flat space QFT
ο¬ How to check ο¨ re-compute in other gauges
Why some QG Results are Reliable
ο¬ QG not renomalizable
ο¬ No physical principle fixes the finite part
ππΞΊ2 { βΞ±1
ππ 2
ππ
ππ
+ βΞ±2 ππππππ0 + βΞ±3 ππππΞ³0 Ξ³ππ ππππ + βΞ±4 π»π»2 ππππ }Ξ΄4 (π₯π₯ β π₯π₯ β² )
ο¬But loops of massless ο¨ non-analytic contribution canβt be affected by
local counterterms
ο¬ Nonlocal terms dominated over ΞΞ± at late time
ππππ2
16Ο2
{ 3ln[ππ] ππ 2 +
97ln [ππ]
ππππππ0
16
+
9ln[ππ]
0 Ξ³ππ ππ
ππππΞ³
ππ
16
ο¬ Low energy effective theory
+
ο¬ Fermi theory versus Standard Model etc.
ο¬ The UV completion of QG cannot
ο¬ Add new massless particles
ο¬ Change the behavior of long range forces
95ln[ππ] 2
π»π» ππππ
8
} Ξ΄4 (π₯π₯ β π₯π₯ β² )
Massive βππ[ππ Ξ£ππ ] π₯π₯; π₯π₯ β² at 1-loop(still on going)
+ 2-page long tabulated nonlocal terms!
ο¬ Some ππ 3 ln[ππ π‘π‘ ] (or ππ 2 ln[ππ π‘π‘ ]) might get cancelled!
Non-Pertuabative Technique I
ο¬ Starobinskyβs formalism for a scalar model
ο¬ Truncate scalars in IR & set in D = 4 (No UV div. at leading log)
ο¬ Re-sum IR logs for ππ(Ο) from below
β=β
DΟ +
1
2
βππ ππµ ΟππΞ½ ΟππµΞ½ β V(Ο) βππ
πππ(Ο)
1+Ξ΄π§π§
= 0 ο¨ Ο = Ο0 β
Ο π‘π‘, π₯π₯β = Ο0 π‘π‘, π₯π₯β β
1 ππ β² Ο0
π·π· 1+Ξ΄π§π§
1 πππ(Ο0 )
π·π· 1+Ξ΄π§π§
+
;
1 ππ β²β² Ο0
π·π· 2 1+Ξ΄π§π§
1
π·π·
β‘ πΊπΊ(π₯π₯; π₯π₯π₯) retarded GF
+β―
ο¬ Each and only scalars produces IR Log (no derivative)
ο¬ Actives: produce IR Log
ο¬ Passives: propagate through IR Log
Non-Pertuabative Technique II
ο¬ actives + passives (ββ²s passives), Eg: Yukawa, SQED
ο¬ integrate out passives & evaluate the effective action with
constant actives (effective potential)
ο¬ UV div. at leading Log ο¨ turn D on
ο¬ ββ²s actives + passives or ββ²s passives, Eg: all QG model
(0803.2377 by Miao & Woodard)
ο¬
ο¬
ο¬
ο¬
Canβt infrared truncate the field
canβt either ignore or integrate out ββ²s actives
Keep dimensional regulation on
Simple rule:
Questions
ο¬ How to construct non-perturbative Tech. for QG models?
ο¬ Check simple rules for other QG models
ο¬ Eg: QG + massive fermions serves as ``dataββ
ο¬ Can QFT effects play a role for a modification of gravity on
galactic (& larger) scales ?
ο¬ Effective potential from Yukawa, ππππππππ =
π»π» 4
ππ2 Ο2
β 8Ο2 ππππππππ π»π» 2
ο¬ π
π
= 12π»π»2 in de Sitter ο¨ what are those factors of H for a
general metric?
ο¬ Is the leading IR effects a gauge artifact?
ο¬ Conjecture: leading IR might be gauge-independent
ο¬ No S matrix or invariant rates in FRW
ο¬ Invariant op. doesnβt guarantee ``physical observablesββ
© Copyright 2025 Paperzz