1. à u Sin@a + b Log@c xn DDp â x Rules for integrands of the form xm Trig@a + b Log@c xnDDp 1. à Sin@a + b Log@c xn DDp â x 1: à Sin@a + b Log@c xn DDp â x when b2 n2 Hp + 2L2 + 1 0 ì p ¹ - 1 Note: When p 1 it is better to use rule for Sin@a + b Log@c xn DD. Rule: If b2 n2 Hp + 2L2 + 1 0 ì p ¹ - 1, then Program code: p n à Sin@a + b Log@c x DD â x x Hp + 2L Sin@a + b Log@c xn DDp+2 + p+1 x Cot@a + b Log@c xn DD Sin@a + b Log@c xn DDp+2 b n Hp + 1L Int@Sin@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x*Hp+2L*Sin@a+b*Log@c*x^nDD^Hp+2LHp+1L + x*Cot@a+b*Log@c*x^nDD*Sin@a+b*Log@c*x^nDD^Hp+2LHb*n*Hp+1LL ; FreeQ@8a,b,c,n,p<,xD && ZeroQ@b^2*n^2*Hp+2L^2+1D && NonzeroQ@p+1D Int@Cos@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x*Hp+2L*Cos@a+b*Log@c*x^nDD^Hp+2LHp+1L x*Tan@a+b*Log@c*x^nDD*Cos@a+b*Log@c*x^nDD^Hp+2LHb*n*Hp+1LL ; FreeQ@8a,b,c,n,p<,xD && ZeroQ@b^2*n^2*Hp+2L^2+1D && NonzeroQ@p+1D 2. à Sin@a + b Log@c xn DDp â x when p > 0 1: à Sin@a + b Log@c xn DDp â x when p Î Z+ ì b2 n2 p2 + 1 0 Derivation: Algebraic expansion Basis: If b2 n2 p2 + 1 0 ì p Î Z, then Sin@a + b Log@c xn DDp K 2ã b n p Hc xn L abnp Basis: If b2 n2 p2 + 1 0 ì p Î Z, then Cos@a + b Log@c xn DDp K ã abnp 2 - Hc xn L - 1 np - ã-a b n p 2bnp + ã-a b n p 2 1 np Note: The above identities need to be formally derived, and possibly the domain of p expanded. Rule: If p Î Z+ ì b2 n2 p2 + 1 0, then Hc xn L n p O 1 Hc xn L n p O 1 p p Rules for integrands of the form x^m trig(a+b log(c x^n))^p Program code: 2 p n à Sin@a + b Log@c x DD â x à ExpandIntegrandB ãa b n p 2bnp Hc xn L - ã-a b n p 1 np 2bnp Hc xn L n p 1 p , xF â x Int@Sin@a_.+b_.*Log@c_.*x_^n_.DD^p_.,x_SymbolD := Int@ExpandIntegrand@HE^Ha*b*n*pLH2*b*n*pL*Hc*x^nL^H-1Hn*pLL-E^H-a*b*n*pLH2*b*n*pL*Hc*x^nL^H1Hn*pLLL^p,xD,xD ; FreeQ@8a,b,c,n<,xD && PositiveIntegerQ@pD && ZeroQ@b^2*n^2*p^2+1D Int@Cos@a_.+b_.*Log@c_.*x_^n_.DD^p_.,x_SymbolD := Int@ExpandIntegrand@HE^Ha*b*n*pL2*Hc*x^nL^H-1Hn*pLL-E^H-a*b*n*pL2*Hc*x^nL^H1Hn*pLLL^p,xD,xD ; FreeQ@8a,b,c,n<,xD && PositiveIntegerQ@pD && ZeroQ@b^2*n^2*p^2+1D 2. à Sin@a + b Log@c xn DDp â x when p > 0 ì b2 n2 p2 + 1 ¹ 0 1: à Sin@a + b Log@c xn DD â x when b2 n2 + 1 ¹ 0 Rule: If b2 n2 + 1 ¹ 0, then Program code: n à Sin@a + b Log@c x DD â x x Sin@a + b Log@c xn DD - b2 n2 + 1 b n x Cos@a + b Log@c xn DD b2 n2 + 1 Int@Sin@a_.+b_.*Log@c_.*x_^n_.DD,x_SymbolD := x*Sin@a+b*Log@c*x^nDDHb^2*n^2+1L b*n*x*Cos@a+b*Log@c*x^nDDHb^2*n^2+1L ; FreeQ@8a,b,c,n<,xD && NonzeroQ@b^2*n^2+1D Int@Cos@a_.+b_.*Log@c_.*x_^n_.DD,x_SymbolD := x*Cos@a+b*Log@c*x^nDDH1+b^2*n^2L + b*n*x*Sin@a+b*Log@c*x^nDDHb^2*n^2+1L ; FreeQ@8a,b,c,n<,xD && NonzeroQ@b^2*n^2+1D 2: à Sin@a + b Log@c xn DDp â x when p > 1 ì b2 n2 p2 + 1 ¹ 0 Rule: If p > 1 ì b2 n2 p2 + 1 ¹ 0, then - p n à Sin@a + b Log@c x DD â x + Rules for integrands of the form x^m trig(a+b log(c x^n))^p x Sin@a + b Log@c xn DDp b2 n2 p2 + 1 - p n à Sin@a + b Log@c x DD â x 3 b n p x Cos@a + b Log@c xn DD Sin@a + b Log@c xn DDp-1 b2 n2 p2 + 1 + b2 n2 p Hp - 1L b2 n2 p2 + 1 Program code: p-2 n âx à Sin@a + b Log@c x DD Int@Sin@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x*Sin@a+b*Log@c*x^nDD^pHb^2*n^2*p^2+1L b*n*p*x*Cos@a+b*Log@c*x^nDD*Sin@a+b*Log@c*x^nDD^Hp-1LHb^2*n^2*p^2+1L + b^2*n^2*p*Hp-1LHb^2*n^2*p^2+1L*Int@Sin@a+b*Log@c*x^nDD^Hp-2L,xD ; FreeQ@8a,b,c,n<,xD && RationalQ@pD && p>1 && NonzeroQ@b^2*n^2*p^2+1D Int@Cos@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x*Cos@a+b*Log@c*x^nDD^pHb^2*n^2*p^2+1L + b*n*p*x*Cos@a+b*Log@c*x^nDD^Hp-1L*Sin@a+b*Log@c*x^nDDHb^2*n^2*p^2+1L + b^2*n^2*p*Hp-1LHb^2*n^2*p^2+1L*Int@Cos@a+b*Log@c*x^nDD^Hp-2L,xD ; FreeQ@8a,b,c,n<,xD && RationalQ@pD && p>1 && NonzeroQ@b^2*n^2*p^2+1D 3: à Sin@a + b Log@c xn DDp â x when p < - 1 ì p ¹ - 2 ì b2 n2 Hp + 2L2 + 1 ¹ 0 Rule: If p < - 1 ì p ¹ - 2 ì b2 n2 Hp + 2L2 + 1 ¹ 0, then x Cot@a + b Log@c xn DD Sin@a + b Log@c xn DDp+2 Program code: b n Hp + 1L p n à Sin@a + b Log@c x DD â x - x Sin@a + b Log@c xn DDp+2 b2 n2 Hp + 1L Hp + 2L + b2 n2 Hp + 2L2 + 1 b2 n2 Hp + 1L Hp + 2L Int@Sin@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x*Cot@a+b*Log@c*x^nDD*Sin@a+b*Log@c*x^nDD^Hp+2LHb*n*Hp+1LL x*Sin@a+b*Log@c*x^nDD^Hp+2LHb^2*n^2*Hp+1L*Hp+2LL + Hb^2*n^2*Hp+2L^2+1LHb^2*n^2*Hp+1L*Hp+2LL*Int@Sin@a+b*Log@c*x^nDD^Hp+2L,xD ; FreeQ@8a,b,c,n<,xD && RationalQ@pD && p<-1 && p¹-2 && NonzeroQ@b^2*n^2*Hp+2L^2+1D Int@Cos@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := -x*Tan@a+b*Log@c*x^nDD*Cos@a+b*Log@c*x^nDD^Hp+2LHb*n*Hp+1LL x*Cos@a+b*Log@c*x^nDD^Hp+2LHb^2*n^2*Hp+1L*Hp+2LL + Hb^2*n^2*Hp+2L^2+1LHb^2*n^2*Hp+1L*Hp+2LL*Int@Cos@a+b*Log@c*x^nDD^Hp+2L,xD ; FreeQ@8a,b,c,n<,xD && RationalQ@pD && p<-1 && p¹-2 && NonzeroQ@b^2*n^2*Hp+2L^2+1D p+2 n âx à Sin@a + b Log@c x DD Rules for integrands of the form x^m trig(a+b log(c x^n))^p 4 4: à Sin@a + b Log@c xn DDp â x when p Ï Z+ ì b2 n2 p2 + 1 ¹ 0 Rule: If b2 n2 p2 + 1 ¹ 0, then x Iä ã-ä a Hc xn L-ä b - ä ãä a Hc xn Lä b M p Program code: H1 - ä b n pL I2 - 2 ã2 ä a Hc p xn L2 ä b M p n à Sin@a + b Log@c x DD â x 1-äbnp Hypergeometric2F1B- p, 2äbn 1-äbnp , 1+ 2äbn , ã2 ä a Hc xn L2 ä b F Int@Sin@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x*HIHE^HI*aL*Hc*x^nL^HI*bLL-I*E^HI*aL*Hc*x^nL^HI*bLL^pHH1-I*b*n*pL*H2-2*E^H2*I*aL*Hc*x^nL^H2*I*bLL^pL* Hypergeometric2F1@-p,H1-I*b*n*pLH2*I*b*nL,1+H1-I*b*n*pLH2*I*b*nL,E^H2*I*aL*Hc*x^nL^H2*I*bLD ; FreeQ@8a,b,c,n,p<,xD && NonzeroQ@b^2*n^2*p^2+1D Int@Cos@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x*H1HE^HI*aL*Hc*x^nL^HI*bLL+E^HI*aL*Hc*x^nL^HI*bLL^pHH1-I*b*n*pL*H2+2*E^H2*I*aL*Hc*x^nL^H2*I*bLL^pL* Hypergeometric2F1@-p,H1-I*b*n*pLH2*I*b*nL,1+H1-I*b*n*pLH2*I*b*nL,-E^H2*I*aL*Hc*x^nL^H2*I*bLD ; FreeQ@8a,b,c,n,p<,xD && NonzeroQ@b^2*n^2*p^2+1D 2. à xm Sin@a + b Log@c xn DDp â x 1: à xm Sin@a + b Log@c xn DDp â x when b2 n2 Hp + 2L2 + Hm + 1L2 0 ì p ¹ - 1 ì m ¹ - 1 Note: When p 1 it is better to use rule for xm Sin@a + b Log@c xn DD. Rule: If b2 n2 Hp + 2L2 + Hm + 1L2 0 ì p ¹ - 1 ì m ¹ - 1, then p m n à x Sin@a + b Log@c x DD â x Program code: Hp + 2L xm+1 Sin@a + b Log@c xn DDp+2 Hm + 1L Hp + 1L + xm+1 Cot@a + b Log@c xn DD Sin@a + b Log@c xn DDp+2 b n Hp + 1L Int@x_^m_.*Sin@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := Hp+2L*x^Hm+1L*Sin@a+b*Log@c*x^nDD^Hp+2LHHm+1L*Hp+1LL + x^Hm+1L*Cot@a+b*Log@c*x^nDD*Sin@a+b*Log@c*x^nDD^Hp+2LHb*n*Hp+1LL ; FreeQ@8a,b,c,m,n,p<,xD && ZeroQ@b^2*n^2*Hp+2L^2+Hm+1L^2D && NonzeroQ@p+1D && NonzeroQ@m+1D Rules for integrands of the form x^m trig(a+b log(c x^n))^p 5 Int@x_^m_.*Cos@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := Hp+2L*x^Hm+1L*Cos@a+b*Log@c*x^nDD^Hp+2LHHm+1L*Hp+1LL x^Hm+1L*Tan@a+b*Log@c*x^nDD*Cos@a+b*Log@c*x^nDD^Hp+2LHb*n*Hp+1LL ; FreeQ@8a,b,c,m,n,p<,xD && ZeroQ@b^2*n^2*Hp+2L^2+Hm+1L^2D && NonzeroQ@p+1D && NonzeroQ@m+1D 2. à xm Sin@a + b Log@c xn DDp â x when p > 0 1: à xm Sin@a + b Log@c xn DDp â x when p Î Z+ ì b2 n2 p2 + Hm + 1L2 0 Derivation: Algebraic expansion Basis: If b2 n2 p2 + Hm + 1L2 0 ì p Î Z, then Sin@a + b Log@c xn DDp Basis: If b2 n2 p2 + Hm + 1L2 0 ì p Î Z, then Cos@a + b Log@c xn DDp 1 2p 1 2p K bm+1 ã np Kã abnp m+1 abnp m+1 Hc xn L - Hc xn L - m+1 np m+1 np + ã- - m+1 bnp abnp m+1 Note: The above identities need to be formally derived, and possibly the domain of p expanded. Rule: If p Î Z+ ì b2 n2 p2 + Hm + 1L2 0, then Program code: p m n à x Sin@a + b Log@c x DD â x 1 2p à ExpandIntegrandBx m m+1 abnp ã bnp m+1 Hc xn L - m+1 m+1 np bnp Int@x_^m_.*Sin@a_.+b_.*Log@c_.*x_^n_.DD^p_.,x_SymbolD := 12^p*Int@ExpandIntegrand@x^m*HHm+1LHb*n*pL*E^Ha*b*n*pHm+1LL*Hc*x^nL^H-Hm+1LHn*pLL Hm+1LHb*n*pL*E^H-a*b*n*pHm+1LL*Hc*x^nL^HHm+1LHn*pLLL^p,xD,xD ; FreeQ@8a,b,c,m,n<,xD && PositiveIntegerQ@pD && ZeroQ@b^2*n^2*p^2+Hm+1L^2D Int@x_^m_.*Cos@a_.+b_.*Log@c_.*x_^n_.DD^p_.,x_SymbolD := 12^p*Int@ExpandIntegrand@x^m*HE^Ha*b*n*pHm+1LL*Hc*x^nL^H-Hm+1LHn*pLL E^H-a*b*n*pHm+1LL*Hc*x^nL^HHm+1LHn*pLLL^p,xD,xD ; FreeQ@8a,b,c,m,n<,xD && PositiveIntegerQ@pD && ZeroQ@b^2*n^2*p^2+Hm+1L^2D 2. à xm Sin@a + b Log@c xn DDp â x when p > 0 ì b2 n2 p2 + Hm + 1L2 ¹ 0 1: à xm Sin@a + b Log@c xn DD â x when b2 n2 + Hm + 1L2 ¹ 0 Rule: If b2 n2 + Hm + 1L2 ¹ 0, then ã- abnp m+1 Hc xn L n p O Hc xn L n p O m+1 ã- abnp m+1 m+1 p p Hc xn L n p m+1 p , xF â x Rules for integrands of the form x^m trig(a+b log(c x^n))^p Program code: 6 m n à x Sin@a + b Log@c x DD â x Hm + 1L xm+1 Sin@a + b Log@c xn DD b2 n2 + Hm + 1L2 - b n xm+1 Cos@a + b Log@c xn DD b2 n2 + Hm + 1L2 Int@x_^m_.*Sin@a_.+b_.*Log@c_.*x_^n_.DD,x_SymbolD := Hm+1L*x^Hm+1L*Sin@a+b*Log@c*x^nDDHb^2*n^2+Hm+1L^2L b*n*x^Hm+1L*Cos@a+b*Log@c*x^nDDHb^2*n^2+Hm+1L^2L ; FreeQ@8a,b,c,m,n<,xD && NonzeroQ@b^2*n^2+Hm+1L^2D Int@x_^m_.*Cos@a_.+b_.*Log@c_.*x_^n_.DD,x_SymbolD := Hm+1L*x^Hm+1L*Cos@a+b*Log@c*x^nDDHb^2*n^2+Hm+1L^2L + b*n*x^Hm+1L*Sin@a+b*Log@c*x^nDDHb^2*n^2+Hm+1L^2L ; FreeQ@8a,b,c,m,n<,xD && NonzeroQ@b^2*n^2+Hm+1L^2D 2: à xm Sin@a + b Log@c xn DDp â x when p > 1 ì b2 n2 p2 + Hm + 1L2 ¹ 0 Rule: If p > 1 ì b2 n2 p2 + Hm + 1L2 ¹ 0, then Hm + 1L xm+1 Sin@a + b Log@c xn DDp b2 n2 p2 + Hm + 1L2 Program code: - p m n à x Sin@a + b Log@c x DD â x b n p xm+1 Cos@a + b Log@c xn DD Sin@a + b Log@c xn DDp-1 b2 n2 p2 + Hm + 1L2 + b2 n2 p Hp - 1L b2 n2 p2 + Hm + 1L2 Int@x_^m_.*Sin@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := Hm+1L*x^Hm+1L*Sin@a+b*Log@c*x^nDD^pHb^2*n^2*p^2+Hm+1L^2L b*n*p*x^Hm+1L*Cos@a+b*Log@c*x^nDD*Sin@a+b*Log@c*x^nDD^Hp-1LHb^2*n^2*p^2+Hm+1L^2L + b^2*n^2*p*Hp-1LHb^2*n^2*p^2+Hm+1L^2L*Int@x^m*Sin@a+b*Log@c*x^nDD^Hp-2L,xD ; FreeQ@8a,b,c,m,n<,xD && RationalQ@pD && p>1 && NonzeroQ@b^2*n^2*p^2+Hm+1L^2D Int@x_^m_.*Cos@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := Hm+1L*x^Hm+1L*Cos@a+b*Log@c*x^nDD^pHb^2*n^2*p^2+Hm+1L^2L + b*n*p*x^Hm+1L*Sin@a+b*Log@c*x^nDD*Cos@a+b*Log@c*x^nDD^Hp-1LHb^2*n^2*p^2+Hm+1L^2L + b^2*n^2*p*Hp-1LHb^2*n^2*p^2+Hm+1L^2L*Int@x^m*Cos@a+b*Log@c*x^nDD^Hp-2L,xD ; FreeQ@8a,b,c,m,n<,xD && RationalQ@pD && p>1 && NonzeroQ@b^2*n^2*p^2+Hm+1L^2D p-2 m n âx à x Sin@a + b Log@c x DD Rules for integrands of the form x^m trig(a+b log(c x^n))^p 7 3: à xm Sin@a + b Log@c xn DDp â x when p < - 1 ì p ¹ - 2 ì b2 n2 Hp + 2L2 + Hm + 1L2 ¹ 0 Rule: If p < - 1 ì p ¹ - 2 ì b2 n2 Hp + 2L2 + Hm + 1L2 ¹ 0, then xm+1 Cot@a + b Log@c xn DD Sin@a + b Log@c xn DDp+2 Program code: b n Hp + 1L - p m n à x Sin@a + b Log@c x DD â x Hm + 1L xm+1 Sin@a + b Log@c xn DDp+2 b2 n2 Hp + 1L Hp + 2L + b2 n2 Hp + 2L2 + Hm + 1L2 b2 n2 Hp + 1L Hp + 2L p+2 m n âx à x Sin@a + b Log@c x DD Int@x_^m_.*Sin@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x^Hm+1L*Cot@a+b*Log@c*x^nDD*Sin@a+b*Log@c*x^nDD^Hp+2LHb*n*Hp+1LL Hm+1L*x^Hm+1L*Sin@a+b*Log@c*x^nDD^Hp+2LHb^2*n^2*Hp+1L*Hp+2LL + Hb^2*n^2*Hp+2L^2+Hm+1L^2LHb^2*n^2*Hp+1L*Hp+2LL*Int@x^m*Sin@a+b*Log@c*x^nDD^Hp+2L,xD ; FreeQ@8a,b,c,m,n<,xD && RationalQ@pD && p<-1 && p¹-2 && NonzeroQ@b^2*n^2*Hp+2L^2+Hm+1L^2D Int@x_^m_.*Cos@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := -x^Hm+1L*Tan@a+b*Log@c*x^nDD*Cos@a+b*Log@c*x^nDD^Hp+2LHb*n*Hp+1LL Hm+1L*x^Hm+1L*Cos@a+b*Log@c*x^nDD^Hp+2LHb^2*n^2*Hp+1L*Hp+2LL + Hb^2*n^2*Hp+2L^2+Hm+1L^2LHb^2*n^2*Hp+1L*Hp+2LL*Int@x^m*Cos@a+b*Log@c*x^nDD^Hp+2L,xD ; FreeQ@8a,b,c,m,n<,xD && RationalQ@pD && p<-1 && p¹-2 && NonzeroQ@b^2*n^2*Hp+2L^2+Hm+1L^2D 4: à xm Sin@a + b Log@c xn DDp â x when p Ï Z+ ì b2 n2 p2 + Hm + 1L2 ¹ 0 Rule: If b2 n2 p2 + Hm + 1L2 ¹ 0, then xm+1 Iä ã-ä a Hc xn L-ä b - ä ãä a Hc xn Lä b M p Program code: Hm + 1 - ä b n pL I2 - 2 ã2 ä a Hc p xn L2 ä b M p m n à x Sin@a + b Log@c x DD â x m+1-äbnp Hypergeometric2F1B- p, 2äbn m+1-äbnp , 1+ 2äbn , ã2 ä a Hc xn L2 ä b F Int@x_^m_.*Sin@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x^Hm+1L*HI*E^H-I*aL*Hc*x^nL^H-I*bL-I*E^HI*aL*Hc*x^nL^HI*bLL^pHHm+1-I*b*n*pL*H2-2*E^H2*I*aL*Hc*x^nL^H2*I*bLL^pL* Hypergeometric2F1@-p,Hm+1-I*b*n*pLH2*I*b*nL,1+Hm+1-I*b*n*pLH2*I*b*nL,E^H2*I*aL*Hc*x^nL^H2*I*bLD ; FreeQ@8a,b,c,m,n,p<,xD && NonzeroQ@b^2*n^2*p^2+Hm+1L^2D Rules for integrands of the form x^m trig(a+b log(c x^n))^p 8 Int@x_^m_.*Cos@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x^Hm+1L*HE^H-I*aL*Hc*x^nL^H-I*bL+E^HI*aL*Hc*x^nL^HI*bLL^pHHm+1-I*b*n*pL*H2+2*E^H2*I*aL*Hc*x^nL^H2*I*bLL^pL* Hypergeometric2F1@-p,Hm+1-I*b*n*pLH2*I*b*nL,1+Hm+1-I*b*n*pLH2*I*b*nL,-E^H2*I*aL*Hc*x^nL^H2*I*bLD ; FreeQ@8a,b,c,m,n,p<,xD && NonzeroQ@b^2*n^2*p^2+Hm+1L^2D 2. à u Sec@a + b Log@c xn DDp â x 1. à Sec@a + b Log@c xn DDp â x 1. à Sec@a + b Log@c xn DDp â x when b2 n2 Hp - 2L2 + 1 0 1: à Sec@a + b Log@c xn DD â x when b2 n2 + 1 0 Derivation: Algebraic expansion Basis: If b2 n2 + 1 0, then Sec@a + b Log@c xn DD 2 ãa b n Hc xn L1n ã2 a b n +Hc xn L2n Basis: If b2 n2 + 1 0, then Csc@a + b Log@c xn DD 2 b n ãa b n Note: The above identities need to be formally derived. Hc xn L1n xn L2n ã2 a b n -Hc Rule: If b2 n2 + 1 0, then Program code: n abn à Sec@a + b Log@c x DD â x 2 ã à Int@Sec@a_.+b_.*Log@c_.*x_^n_.DD,x_SymbolD := 2*E^Ha*b*nL*Int@Hc*x^nL^H1nLHE^H2*a*b*nL+Hc*x^nL^H2nLL,xD ; FreeQ@8a,b,c,n<,xD && ZeroQ@b^2*n^2+1D Int@Csc@a_.+b_.*Log@c_.*x_^n_.DD,x_SymbolD := 2*b*n*E^Ha*b*nL*Int@Hc*x^nL^H1nLHE^H2*a*b*nL-Hc*x^nL^H2nLL,xD ; FreeQ@8a,b,c,n<,xD && ZeroQ@b^2*n^2+1D 2: à Sec@a + b Log@c xn DDp â x when b2 n2 Hp - 2L2 + 1 0 ì p ¹ 1 Rule: If b2 n2 Hp - 2L2 + 1 0 ì p ¹ 1, then Hc xn L1n ã2 a b n + Hc xn L2n âx Rules for integrands of the form x^m trig(a+b log(c x^n))^p Program code: p n à Sec@a + b Log@c x DD â x 9 Hp - 2L x Sec@a + b Log@c xn DDp-2 + p-1 x Tan@a + b Log@c xn DD Sec@a + b Log@c xn DDp-2 b n Hp - 1L Int@Sec@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := Hp-2L*x*Sec@a+b*Log@c*x^nDD^Hp-2LHp-1L + x*Tan@a+b*Log@c*x^nDD*Sec@a+b*Log@c*x^nDD^Hp-2LHb*n*Hp-1LL ; FreeQ@8a,b,c,n,p<,xD && ZeroQ@b^2*n^2*Hp-2L^2+1D && NonzeroQ@p-1D Int@Csc@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := Hp-2L*x*Csc@a+b*Log@c*x^nDD^Hp-2LHp-1L x*Cot@a+b*Log@c*x^nDD*Csc@a+b*Log@c*x^nDD^Hp-2LHb*n*Hp-1LL ; FreeQ@8a,b,c,n,p<,xD && ZeroQ@b^2*n^2*Hp-2L^2+1D && NonzeroQ@p-1D 2: à Sec@a + b Log@c xn DDp â x when p > 1 ì p ¹ 2 ì b2 n2 Hp - 2L2 + 1 ¹ 0 Rule: If p > 1 ì p ¹ 2 ì b2 n2 Hp - 2L2 + 1 ¹ 0, then x Tan@a + b Log@c xn DD Sec@a + b Log@c xn DDp-2 Program code: b n Hp - 1L p n à Sec@a + b Log@c x DD â x - x Sec@a + b Log@c xn DDp-2 b2 n2 Hp - 1L Hp - 2L + b2 n2 Hp - 2L2 + 1 b2 n2 Hp - 1L Hp - 2L Int@Sec@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x*Tan@a+b*Log@c*x^nDD*Sec@a+b*Log@c*x^nDD^Hp-2LHb*n*Hp-1LL x*Sec@a+b*Log@c*x^nDD^Hp-2LHb^2*n^2*Hp-1L*Hp-2LL + Hb^2*n^2*Hp-2L^2+1LHb^2*n^2*Hp-1L*Hp-2LL*Int@Sec@a+b*Log@c*x^nDD^Hp-2L,xD ; FreeQ@8a,b,c,n<,xD && RationalQ@pD && p>1 && p¹2 && NonzeroQ@b^2*n^2*Hp-2L^2+1D Int@Csc@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := -x*Cot@a+b*Log@c*x^nDD*Csc@a+b*Log@c*x^nDD^Hp-2LHb*n*Hp-1LL x*Csc@a+b*Log@c*x^nDD^Hp-2LHb^2*n^2*Hp-1L*Hp-2LL + Hb^2*n^2*Hp-2L^2+1LHb^2*n^2*Hp-1L*Hp-2LL*Int@Csc@a+b*Log@c*x^nDD^Hp-2L,xD ; FreeQ@8a,b,c,n<,xD && RationalQ@pD && p>1 && p¹2 && NonzeroQ@b^2*n^2*Hp-2L^2+1D p-2 n âx à Sec@a + b Log@c x DD Rules for integrands of the form x^m trig(a+b log(c x^n))^p 10 3: à Sec@a + b Log@c xn DDp â x when p < - 1 ì b2 n2 p2 + 1 ¹ 0 Rule: If p < - 1 ì b2 n2 p2 + 1 ¹ 0, then - p n à Sec@a + b Log@c x DD â x b n p x Sin@a + b Log@c xn DD Sec@a + b Log@c xn DDp+1 b2 n2 p2 + 1 + x Sec@a + b Log@c xn DDp b2 n2 p2 + 1 + b2 n2 p Hp + 1L b2 n2 p2 + 1 Program code: p+2 n âx à Sec@a + b Log@c x DD Int@Sec@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := -b*n*p*x*Sin@a+b*Log@c*x^nDD*Sec@a+b*Log@c*x^nDD^Hp+1LHb^2*n^2*p^2+1L + x*Sec@a+b*Log@c*x^nDD^pHb^2*n^2*p^2+1L + b^2*n^2*p*Hp+1LHb^2*n^2*p^2+1L*Int@Sec@a+b*Log@c*x^nDD^Hp+2L,xD ; FreeQ@8a,b,c,n<,xD && RationalQ@pD && p<-1 && NonzeroQ@b^2*n^2*p^2+1D Int@Csc@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := b*n*p*x*Cos@a+b*Log@c*x^nDD*Csc@a+b*Log@c*x^nDD^Hp+1LHb^2*n^2*p^2+1L + x*Csc@a+b*Log@c*x^nDD^pHb^2*n^2*p^2+1L + b^2*n^2*p*Hp+1LHb^2*n^2*p^2+1L*Int@Csc@a+b*Log@c*x^nDD^Hp+2L,xD ; FreeQ@8a,b,c,n<,xD && RationalQ@pD && p<-1 && NonzeroQ@b^2*n^2*p^2+1D 4: à Sec@a + b Log@c xn DDp â x when p Ï Z- ì b2 n2 p2 + 1 ¹ 0 Rule: If b2 n2 p2 + 1 ¹ 0, then x I2 + 2 ã2 ä a Hc xn L2 ä b M p 1+äbnp Program code: 1+ ãä a Hc xn Lä b ã2 ä a Hc p n à Sec@a + b Log@c x DD â x xn L2 ä b p 1+äbnp Hypergeometric2F1Bp, 1+äbnp , 1+ 2äbn 2äbn , - ã2 ä a Hc xn L2 ä b F Int@Sec@a_.+b_.*Log@c_.*x_^n_.DD^p_.,x_SymbolD := x*H2+2*E^H2*I*aL*Hc*x^nL^H2*I*bLL^pH1+I*b*n*pL* HE^HI*aL*Hc*x^nL^HI*bLH1+E^H2*I*aL*Hc*x^nL^H2*I*bLLL^p* Hypergeometric2F1@p,H1+I*b*n*pLH2*I*b*nL,1+H1+I*b*n*pLH2*I*b*nL,-E^H2*I*aL*Hc*x^nL^H2*I*bLD ; FreeQ@8a,b,c,n,p<,xD && NonzeroQ@b^2*n^2*p^2+1D Rules for integrands of the form x^m trig(a+b log(c x^n))^p 11 Int@Csc@a_.+b_.*Log@c_.*x_^n_.DD^p_.,x_SymbolD := x*H2-2*E^H2*I*aL*Hc*x^nL^H2*I*bLL^pH1+I*b*n*pL* H-I*E^HI*aL*Hc*x^nL^HI*bLH1-E^H2*I*aL*Hc*x^nL^H2*I*bLLL^p* Hypergeometric2F1@p,H1+I*b*n*pLH2*I*b*nL,1+H1+I*b*n*pLH2*I*b*nL,E^H2*I*aL*Hc*x^nL^H2*I*bLD ; FreeQ@8a,b,c,n,p<,xD && NonzeroQ@b^2*n^2*p^2+1D 2. à xm Sec@a + b Log@c xn DDp â x 1. à xm Sec@a + b Log@c xn DDp â x when b2 n2 Hp - 2L2 + Hm + 1L2 0 1: à xm Sec@a + b Log@c xn DD â x when b2 n2 + Hm + 1L2 0 Derivation: Algebraic expansion Basis: If b2 n2 + Hm + 1L2 0, then Sec@a + b Log@c xn DD 2 ã m+1 abn Basis: If b2 n2 + Hm + 1L2 0, then Csc@a + b Log@c xn DD 2bn m+1 Program code: 2abn ã m+1 +Hc abn ã m+1 m+1 n xn L m+1 2 Im+1M n Hc xn L 2abn ã Note: The above identities need to be formally derived. Rule: If b2 n2 + Hm + 1L2 0, then Hc xn L -Hc m+1 n xn L 2 Im+1M á x Sec@a + b Log@c x DD â x 2 ã m+1 á n abn m n xm Hc xn L 2abn ã m+1 m+1 n + Hc xn L 2 Hm+1L âx n Int@x_^m_.*Sec@a_.+b_.*Log@c_.*x_^n_.DD,x_SymbolD := 2*E^Ha*b*nHm+1LL*Int@x^m*Hc*x^nL^HHm+1LnLHE^H2*a*b*nHm+1LL+Hc*x^nL^H2*Hm+1LnLL,xD ; FreeQ@8a,b,c,m,n<,xD && ZeroQ@b^2*n^2+Hm+1L^2D Int@x_^m_.*Csc@a_.+b_.*Log@c_.*x_^n_.DD,x_SymbolD := 2*b*nHm+1L*E^Ha*b*nHm+1LL*Int@x^m*Hc*x^nL^HHm+1LnLHE^H2*a*b*nHm+1LL-Hc*x^nL^H2*Hm+1LnLL,xD ; FreeQ@8a,b,c,m,n<,xD && ZeroQ@b^2*n^2+Hm+1L^2D 2: à xm Sec@a + b Log@c xn DDp â x when b2 n2 Hp - 2L2 + Hm + 1L2 0 ì m ¹ - 1 ì p ¹ 1 Rule: If b2 n2 Hp - 2L2 + Hm + 1L2 0 ì m ¹ - 1 ì p ¹ 1, then Rules for integrands of the form x^m trig(a+b log(c x^n))^p p m n à x Sec@a + b Log@c x DD â x 12 Hp - 2L xm+1 Sec@a + b Log@c xn DDp-2 Hm + 1L Hp - 1L Program code: + xm+1 Tan@a + b Log@c xn DD Sec@a + b Log@c xn DDp-2 b n Hp - 1L Int@x_^m_.*Sec@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := Hp-2L*x^Hm+1L*Sec@a+b*Log@c*x^nDD^Hp-2LHHm+1L*Hp-1LL + x^Hm+1L*Tan@a+b*Log@c*x^nDD*Sec@a+b*Log@c*x^nDD^Hp-2LHb*n*Hp-1LL ; FreeQ@8a,b,c,m,n,p<,xD && ZeroQ@b^2*n^2*Hp-2L^2+Hm+1L^2D && NonzeroQ@m+1D && NonzeroQ@p-1D Int@x_^m_.*Csc@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := Hp-2L*x^Hm+1L*Csc@a+b*Log@c*x^nDD^Hp-2LHHm+1L*Hp-1LL x^Hm+1L*Cot@a+b*Log@c*x^nDD*Csc@a+b*Log@c*x^nDD^Hp-2LHb*n*Hp-1LL ; FreeQ@8a,b,c,m,n,p<,xD && ZeroQ@b^2*n^2*Hp-2L^2+Hm+1L^2D && NonzeroQ@m+1D && NonzeroQ@p-1D 2: à xm Sec@a + b Log@c xn DDp â x when p > 1 ì p ¹ 2 ì b2 n2 Hp - 2L2 + Hm + 1L2 ¹ 0 Rule: If p > 1 ì p ¹ 2 ì b2 n2 Hp - 2L2 + Hm + 1L2 ¹ 0, then xm+1 Tan@a + b Log@c xn DD Sec@a + b Log@c xn DDp-2 Program code: b n Hp - 1L - p m n à x Sec@a + b Log@c x DD â x Hm + 1L xm+1 Sec@a + b Log@c xn DDp-2 b2 n2 Hp - 1L Hp - 2L + b2 n2 Hp - 2L2 + Hm + 1L2 b2 n2 Hp - 1L Hp - 2L Int@x_^m_.*Sec@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := x^Hm+1L*Tan@a+b*Log@c*x^nDD*Sec@a+b*Log@c*x^nDD^Hp-2LHb*n*Hp-1LL Hm+1L*x^Hm+1L*Sec@a+b*Log@c*x^nDD^Hp-2LHb^2*n^2*Hp-1L*Hp-2LL + Hb^2*n^2*Hp-2L^2+Hm+1L^2LHb^2*n^2*Hp-1L*Hp-2LL*Int@x^m*Sec@a+b*Log@c*x^nDD^Hp-2L,xD ; FreeQ@8a,b,c,m,n<,xD && RationalQ@pD && p>1 && p¹2 && NonzeroQ@b^2*n^2*Hp-2L^2+Hm+1L^2D Int@x_^m_.*Csc@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := -x^Hm+1L*Cot@a+b*Log@c*x^nDD*Csc@a+b*Log@c*x^nDD^Hp-2LHb*n*Hp-1LL Hm+1L*x^Hm+1L*Csc@a+b*Log@c*x^nDD^Hp-2LHb^2*n^2*Hp-1L*Hp-2LL + Hb^2*n^2*Hp-2L^2+Hm+1L^2LHb^2*n^2*Hp-1L*Hp-2LL*Int@x^m*Csc@a+b*Log@c*x^nDD^Hp-2L,xD ; FreeQ@8a,b,c,m,n<,xD && RationalQ@pD && p>1 && p¹2 && NonzeroQ@b^2*n^2*Hp-2L^2+Hm+1L^2D p-2 m n âx à x Sec@a + b Log@c x DD Rules for integrands of the form x^m trig(a+b log(c x^n))^p 13 3: à xm Sec@a + b Log@c xn DDp â x when p < - 1 ì b2 n2 p2 + Hm + 1L2 ¹ 0 Rule: If p < - 1 ì b2 n2 p2 + Hm + 1L2 ¹ 0, then - p m n à x Sec@a + b Log@c x DD â x b n p xm+1 Sin@a + b Log@c xn DD Sec@a + b Log@c xn DDp+1 Program code: b2 n2 p2 + Hm + 1L2 + Hm + 1L xm+1 Sec@a + b Log@c xn DDp b2 n2 p2 + Hm + 1L2 + b2 n2 p Hp + 1L b2 n2 p2 + Hm + 1L2 p+2 m n âx à x Sec@a + b Log@c x DD Int@x_^m_.*Sec@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := -b*n*p*x^Hm+1L*Sin@a+b*Log@c*x^nDD*Sec@a+b*Log@c*x^nDD^Hp+1LHb^2*n^2*p^2+Hm+1L^2L + Hm+1L*x^Hm+1L*Sec@a+b*Log@c*x^nDD^pHb^2*n^2*p^2+Hm+1L^2L + b^2*n^2*p*Hp+1LHb^2*n^2*p^2+Hm+1L^2L*Int@x^m*Sec@a+b*Log@c*x^nDD^Hp+2L,xD ; FreeQ@8a,b,c,m,n<,xD && RationalQ@pD && p<-1 && NonzeroQ@b^2*n^2*p^2+Hm+1L^2D Int@x_^m_.*Csc@a_.+b_.*Log@c_.*x_^n_.DD^p_,x_SymbolD := b*n*p*x^Hm+1L*Cos@a+b*Log@c*x^nDD*Csc@a+b*Log@c*x^nDD^Hp+1LHb^2*n^2*p^2+Hm+1L^2L + Hm+1L*x^Hm+1L*Csc@a+b*Log@c*x^nDD^pHb^2*n^2*p^2+Hm+1L^2L + b^2*n^2*p*Hp+1LHb^2*n^2*p^2+Hm+1L^2L*Int@x^m*Csc@a+b*Log@c*x^nDD^Hp+2L,xD ; FreeQ@8a,b,c,m,n<,xD && RationalQ@pD && p<-1 && NonzeroQ@b^2*n^2*p^2+Hm+1L^2D 4: à xm Sec@a + b Log@c xn DDp â x when p Ï Z- ì b2 n2 p2 + Hm + 1L2 ¹ 0 Rule: If b2 n2 p2 + Hm + 1L2 ¹ 0, then xm+1 I2 + 2 ã2 ä a Hc xn L2 ä b M p m+1+äbnp Program code: 1+ ãä a Hc xn Lä b ã2 ä a Hc p m n à x Sec@a + b Log@c x DD â x xn L2 ä b p m+1+äbnp Hypergeometric2F1Bp, 2äbn m+1+äbnp , 1+ 2äbn , - ã2 ä a Hc xn L2 ä b F Int@x_^m_.*Sec@a_.+b_.*Log@c_.*x_^n_.DD^p_.,x_SymbolD := x^Hm+1L*H2+2*E^H2*I*aL*Hc*x^nL^H2*I*bLL^pHm+1+I*b*n*pL* HE^HI*aL*Hc*x^nL^HI*bLH1+E^H2*I*aL*Hc*x^nL^H2*I*bLLL^p* Hypergeometric2F1@p,Hm+1+I*b*n*pLH2*I*b*nL,1+Hm+1+I*b*n*pLH2*I*b*nL,-E^H2*I*aL*Hc*x^nL^H2*I*bLD ; FreeQ@8a,b,c,m,n,p<,xD && NonzeroQ@b^2*n^2*p^2+Hm+1L^2D Rules for integrands of the form x^m trig(a+b log(c x^n))^p 14 Int@x_^m_.*Csc@a_.+b_.*Log@c_.*x_^n_.DD^p_.,x_SymbolD := x^Hm+1L*H2-2*E^H2*I*aL*Hc*x^nL^H2*I*bLL^pHm+1+I*b*n*pL* H-I*E^HI*aL*Hc*x^nL^HI*bLH1-E^H2*I*aL*Hc*x^nL^H2*I*bLLL^p* Hypergeometric2F1@p,Hm+1+I*b*n*pLH2*I*b*nL,1+Hm+1+I*b*n*pLH2*I*b*nL,E^H2*I*aL*Hc*x^nL^H2*I*bLD ; FreeQ@8a,b,c,m,n,p<,xD && NonzeroQ@b^2*n^2*p^2+Hm+1L^2D 3. à u Sin@a xn Log@b xDp D Log@b xDp â x 1. à Sin@a xn Log@b xDp D Log@b xDp â x 1: à Sin@a x Log@b xDp D Log@b xDp â x when p > 0 Rule: If p > 0, then Program code: p p à Sin@a x Log@b xD D Log@b xD â x - Cos@a x Log@b xDp D Int@Sin@a_.*x_*Log@b_.*x_D^p_.D*Log@b_.*x_D^p_.,x_SymbolD := -Cos@a*x*Log@b*xD^pDa p*Int@Sin@a*x*Log@b*xD^pD*Log@b*xD^Hp-1L,xD ; FreeQ@8a,b<,xD && RationalQ@pD && p>0 Int@Cos@a_.*x_*Log@b_.*x_D^p_.D*Log@b_.*x_D^p_.,x_SymbolD := Sin@a*x*Log@b*xD^pDa p*Int@Cos@a*x*Log@b*xD^pD*Log@b*xD^Hp-1L,xD ; FreeQ@8a,b<,xD && RationalQ@pD && p>0 a - p à Sin@a x Log@b xDp D Log@b xDp-1 â x Rules for integrands of the form x^m trig(a+b log(c x^n))^p 15 2: à Sin@a xn Log@b xDp D Log@b xDp â x when p > 0 Rule: If p > 0, then - Cos@a xn Log@b xDp D a n xn-1 Program code: p n n p p à Sin@a x Log@b xD D Log@b xD â x n p p-1 âx à Sin@a x Log@b xD D Log@b xD n-1 an à Cos@a xn Log@b xDp D âx xn Int@Sin@a_.*x_^n_*Log@b_.*x_D^p_.D*Log@b_.*x_D^p_.,x_SymbolD := -Cos@a*x^n*Log@b*xD^pDHa*n*x^Hn-1LL pn*Int@Sin@a*x^n*Log@b*xD^pD*Log@b*xD^Hp-1L,xD Hn-1LHa*nL*Int@Cos@a*x^n*Log@b*xD^pDx^n,xD ; FreeQ@8a,b<,xD && RationalQ@n,pD && p>0 Int@Cos@a_.*x_^n_*Log@b_.*x_D^p_.D*Log@b_.*x_D^p_.,x_SymbolD := Sin@a*x^n*Log@b*xD^pDHa*n*x^Hn-1LL pn*Int@Cos@a*x^n*Log@b*xD^pD*Log@b*xD^Hp-1L,xD + Hn-1LHa*nL*Int@Sin@a*x^n*Log@b*xD^pDx^n,xD ; FreeQ@8a,b<,xD && RationalQ@n,pD && p>0 2. à xm Sin@a xn Log@b xDp D Log@b xDp â x 1: à xn-1 Sin@a xn Log@b xDp D Log@b xDp â x when p > 0 Rule: If p > 0, then Program code: n-1 Sin@a xn Log@b xDp D Log@b xDp â x àx Cos@a xn Log@b xDp D p - an Int@x_^m_.*Sin@a_.*x_^n_.*Log@b_.*x_D^p_.D*Log@b_.*x_D^p_.,x_SymbolD := -Cos@a*x^n*Log@b*xD^pDHa*nL pn*Int@x^m*Sin@a*x^n*Log@b*xD^pD*Log@b*xD^Hp-1L,xD ; FreeQ@8a,b,m,n<,xD && ZeroQ@m-n+1D && RationalQ@pD && p>0 n àx n-1 Sin@a xn Log@b xDp D Log@b xDp-1 â x Rules for integrands of the form x^m trig(a+b log(c x^n))^p 16 Int@x_^m_.*Cos@a_.*x_^n_.*Log@b_.*x_D^p_.D*Log@b_.*x_D^p_.,x_SymbolD := Sin@a*x^n*Log@b*xD^pDHa*nL pn*Int@x^m*Cos@a*x^n*Log@b*xD^pD*Log@b*xD^Hp-1L,xD ; FreeQ@8a,b,m,n<,xD && ZeroQ@m-n+1D && RationalQ@pD && p>0 2: à xm Sin@a xn Log@b xDp D Log@b xDp â x when p > 0 ì m - n + 1 ¹ 0 Rule: If p > 0 ì m - n + 1 ¹ 0, then - xm-n+1 Cos@a xn Log@b xDp D an Program code: p n m n p p à x Sin@a x Log@b xD D Log@b xD â x m n p p-1 âx + à x Sin@a x Log@b xD D Log@b xD Int@x_^m_.*Sin@a_.*x_^n_.*Log@b_.*x_D^p_.D*Log@b_.*x_D^p_.,x_SymbolD := -x^Hm-n+1L*Cos@a*x^n*Log@b*xD^pDHa*nL pn*Int@x^m*Sin@a*x^n*Log@b*xD^pD*Log@b*xD^Hp-1L,xD + Hm-n+1LHa*nL*Int@x^Hm-nL*Cos@a*x^n*Log@b*xD^pD,xD ; FreeQ@8a,b,m,n<,xD && RationalQ@pD && p>0 && NonzeroQ@m-n+1D Int@x_^m_*Cos@a_.*x_^n_.*Log@b_.*x_D^p_.D*Log@b_.*x_D^p_.,x_SymbolD := x^Hm-n+1L*Sin@a*x^n*Log@b*xD^pDHa*nL pn*Int@x^m*Cos@a*x^n*Log@b*xD^pD*Log@b*xD^Hp-1L,xD Hm-n+1LHa*nL*Int@x^Hm-nL*Sin@a*x^n*Log@b*xD^pD,xD ; FreeQ@8a,b,m,n<,xD && RationalQ@pD && p>0 && NonzeroQ@m-n+1D m-n+1 an àx m-n Cos@a xn Log@b xDp D â x
© Copyright 2024 Paperzz